纳米材料高压行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要利用高压原位同步辐射X射线衍射技术和金刚石对顶砧高压装置,对纳米尺寸Ge-Ⅰ(立方金刚石结构)、q-GeO_2(α-石英结构)、和β-Ga_2O_3的高压行为进行了研究,并对比了相应大块材料的高压数据,以期了解晶粒尺寸对相变压力、体弹性模量的影响。本文还总结了ⅣA族单质半导体、ⅢA-ⅤA族和ⅡB-ⅥA族二元半导体材料的高压数据,探究相变压力P_(tr)和能隙之间的关系。
     首先利用能量色散X射线衍射技术对晶粒尺寸为100 nm、49 nm和13 nm的Ge进行了高压实验,最高压力为35 GPa。发现在高压下会发生Ge-Ⅰ→Ge-Ⅱ的相变,相变压力分别11.5 GPa、12.4 GPa、16.4 GPa。根据压力-体积数据计算出Ge-Ⅰ相在零压下的体弹性模量分别为88GPa、92 GPa、112 GPa。可以看出,随着晶粒尺寸的减小,其体弹性模量逐渐升高,相转变压力亦随之提高。本文建立了一个描述晶粒尺寸与体弹性模量关系的模型,并利用Jamieson公式计算了相变压力随晶粒尺寸的变化,尽管在数值上存在一定的误差,但理论计算结果成功预示了随着晶粒尺寸的减小,体弹性模量和相变压力增加的趋势,与实验结果相一致。
     其次又利用能量色散X射线衍射技术研究了晶粒尺寸为40 nm和260 nm q-GeO_2的高压相变,最高压力分别为51.5 GPa和40.6 GPa。在加压过程中发生了两种相变:首先由α-石英结构的GeO_2转变为非晶GeO_2,40 nm q-GeO_2相变的起止压力分别为10.8 GPa和14.9 GPa,而260 nm q-GeO_2的则为9.5 GPa和12.4 GPa;然后会发生非晶相到单斜相的转变,40 nm和260 nm的试样检测到单斜相的压力分别为26.9GPa和28.4 GPa。这种单斜相和非晶相的混合物可以保持到实验的最高压力,并能够保留到卸压以后。这个结果表明非晶相与单斜相的自由能比较接近,因此起始材料中的缺陷对q-GeO_2在高压下发生何种相变有很大的影响。
     而后又利用角度色散X射线衍射技术对晶粒尺寸为14 nm的β-Ga_2O_3进行了高压研究,最高压力为64.9 GPa。实验发现β-到α-Ga_2O_3相变的起始压力在13.6-16.4 GPa之间,相变进行的很缓慢,为不可逆相变,最高压力下的相仍为α-Ga_2O_3,并可保留到卸压后。根据第一性原理的计算结果以及相变压力和能隙之间的关系,我们判定纳米β-Ga_2O_3的相变压力要高于大块材料。压力提高的主要原因是由于纳米β-Ga_2O_3和α-Ga_2O_3表面能的差异,数值大约为4.6-4.7 J/m~2。根据体积压缩数据计算了β-Ga_2O_3和α-Ga_2O_3的体弹性模量,当B_0′=4时β-Ga_2O_3和α-Ga_2O_3的体弹性模量分别为228 GPa和333 GPa,都要高于相应的大块材料的数值。
     最后我们总结了ⅣA族单质半导体、ⅢA-ⅤA族和ⅡB-ⅥA族二元半导体材料的高压数据。对于纤锌矿结构的二元半导体,在高压下将从直接半导体转变为NaCl结构的间接半导体。而闪锌矿结构的半导体(不包括ZnS和ZnSe)在高压下会转变为六配位或者八配位的金属相。对于可转变为金属相的闪锌矿结构半导体,它们基本满足P_(tr)⊿V=0.14+0.12E_g;而在高压下无法转变为金属相的二元半导体则符合P_(tr)⊿V<0.14+0.12E_g。
We have studied the high-pressure behavior of nanocrystalline Ge-Ⅰ(cubic diamond structure),q-GeO_2(α-quartz structure),andβ-Ga_2O_3 using in situ high-pressure synchrotron x-ray diffraction and diamond anvil cell techniques.The effects of grain size on transition pressure and bulk modulus have been discussed by analyzing the data of nanocrystals and comparing with that of bulk counterpart.And the high-pressure data ofⅣA group elements,ⅢA-VA andⅡB-ⅥA binary compounds were summarried in order to explore the relationship between transition pressure P_(tr) and energy gap E_g.
     First,energy-dispersive synchrotron x-ray diffraction measurements of nanocrystalline Ge with grain sizes of 100 nm,49 nm,and 13 nm were carried out up to 35 GPa.Transition pressures from Ge-Ⅰto Ge-Ⅱwere 11.5 GPa,12.4 GPa,and 16.4 GPa,and the bulk modulus were 88 GPa,92 GPa,and 112 GPa for Ge-Ⅰwith grain size of 100 nm,49 nm,and 13 nm, respectively.It is confirmed that the values of bulk modulus and transition pressures would increase with decreasing particle size.A model was established to calculate the bulk modulus with consideration of grain size, and Jamieson equation was used to calculate the transition pressures of samples with different sizes.Theoretical results corresponded well with the tendency of experimental data.
     Second,high-pressure behaviors of nanocrystalline q-GeO_2 with average crystallite sizes of 40 nm and 260 nm have been studied by in situ high-pressure synchrotron radiation x-ray diffraction measurements up to about 51.5 GPa at ambient temperature.Two phase transformations,from q-GeO_2 to amorphous GeO_2 and from amorphous GeO_2 to monoclinic GeO_2 phase,were detected.The ranges of transition pressure from q-GeO_2 to amorphous GeO_2 were found to be approximately 10.8-14.9 GPa for the 40 nm q-GeO_2 sample,and 9.5-12.4 GPa for the 260 nm q-GeO_2 sample. The mixture of amorphous and monoclinic GeO_2 phases remained up to 51.5 GPa during compression and even after pressure release.This result strongly suggested that the difference of free energy between the amorphous phase and the monoclinic phase might be small.Consequently, defects in the starting material,which could alter the free energies of amorphous phase and the monoclinic phase,may play a key role for the phase transformation of q-GeO_2.
     Third,free-standing nanocrystallineβ-Ga_2O_3 particles with an average grain size of 14 nm prepared by chemical method was investigated by angle-dispersive synchrotron x-ray diffraction in diamond anvil cell up to 64.9 GPa at ambient temperature.It was found thatβ- toα-Ga_2O_3 transition began at about 13.6-16.4 GPa,and extended up to 39.2 GPa.At the highest investigated pressure,onlyα-Ga_2O_3 was present,which remained after pressure release.Based on the first principle calculation and the relationship between the transition pressure and energy gap,we concluded that the transition pressure of nanocrystallineβ-Ga_2O_3 is higher than that of bulk counterpart.The enhancement of the transition pressure was mainly due to the difference of surface energy betweenβ-Ga_2O_3 andα-Ga_2O_3 phases,which was determined to be about 4.6-4.7 J/m~2.A Birch-Murnaghan fit to the P-V data yielded a zero-pressure bulk modulus at fixed Bo'= 4:B_0 = 228 GPa and B_0 = 333 GPa forβ-Ga_20_3 andα-Ga_2O_3 phases,respectively.It could be concluded that the phase transition pressure and bulk modulus of nanocrystallineβ-Ga_2O_3 were higher than that of bulk counterpart.
     Finally,the high-pressure data ofⅣA group elements,ⅢA-ⅤA andⅡB-ⅥA binary compounds were summarried.It was found that the binary compounds with wurtzite structure will transform from direct to indirect band-gap semiconductor under high pressure.But almost all semiconductors with zinc-blende structure could transform to six-fold or eight-fold coordinated metallic phase,except ZnS and ZnSe.As to ZB-structured semiconductors with metallic high-pressure phase,a linear relationship was obtained:P_(tr)△V=0.14+0.12E_g.And for semiconductors that could not transform into metallic phase during compression,the appropriate relationship tended to be P_(tr)△V<0.14+0.12E_g.
引文
[1]J.C.Jamieson,A.W.Lawson and N.D.Nachtrieb,Rev.Sci.Instrum.30,1016(1959).
    [2]C.E.Weir,E.R.Lippincott,A.Van Valkenburg and E.N.Bunting,J.Res.Natl.Bur.Stand.,Sec.A 63,55(1959).
    [3]R.A.Forman,G.J.Piermarini,J.D.Barnet and S.Block,Science 176,284(1972).
    [4]毛河光,高压研究——物理、化学、材料学、地学及生物学的新领域[R],杭州:第一届同步辐射高级研讨会,2005.
    [5]S.G.Prilliman,Synchrotron x-ray diffraction studies of phase transitions and mechanical properties of nanocrystalline materials at high pressure[D],Berkeley:Chemistry,University of California,2003.
    [6]J.L.Burris,High-pressure,low-temperature optical and x-ray diffraction studies of semiconducting and incommensurate materials[D],Fort Collins:Department of Physics,Colorado State University,2003.
    [7]肖万生,翁克难,刘景,谢鸿森,地学前缘(中国地质大学,北京:北京大学)12,102(2005).
    [8]J.H.Nguyen,and N.C.Holmes,Nature 427,339(2004).
    [9]H.K.Mao,J.F.Shu,G.Y.Shen,R.J.Hemley,B.S.Li,and A.K.Singh,Nature 396,741(1998).
    [10]J.F.Lin,D.L.Heinz,A.J.Campbell,J.M.Devine,and G.Y.Shen,Science 295,313(2002).
    [11]M.Murakami,K.Hirose,K.Kawamura,N.Sata,and Y.Ohishi,Science 304,855(2004).
    [12]L.R.Benedetti,J.H.Nguyen,W.A.Caldwell,H.J.Liu,M.Kruger,and R.Jeanloz,Science 286,100(1999).
    [13] T. Lin, W. Schildkamp, K. Brister, P. C. Doerschuk, M. Somayazulu, H. Mao and J. E. Johnson, Acta Cryst. D61, 737 (2005).
    
    [14] R. M. Hazen, N. Boctor, J. A. Brandes, G. D. Cody, R. J. Hemley, A. Sharma, and H. S. Yoder Jr., J. Phys.: Condens. Matter 14, 11489 (2002).
    
    [15] A. Sharma, J. H. Scott, G. D. Cody, M. L. Fogel, R. M. Hazen, R. J. Hemley and W. T. Huntress, Science 295, 1514 (2002).
    
    [16] I. Daniel, P. Oger, and R. Winter, Chem. Soc. Rev. 35, 858 (2006).
    
    [17] P. F. McMillan, Nature Mater. 1, 19 (2002).
    
    [18] F. J. Manjon, and D. Errandonea, Phys. Stat. Sol. (b) 246, 1 (2009).
    
    [19] E. Horvath-Bordon, R. Riedel, A. Zerr, P. F. McMillan, G. Auffermann, Y. Prots, W. Bronger, R. Kniep, and P. Kroll, Chem. Soc. Rev. 35, 987 (2006).
    
    [20] V. V. Brazhkin, A. G. Lyapin, and R. J. Hemley, Philosoph. Magaz. A 82,231 (2002).
    
    [21] F. P. Bundy, H. T. Hall, H. M. Strong and R. H. Wentorf, nature 176, 51 (1955).
    
    [22] R. H. Wentorf, J. Chem. Phys. 26, 956 (1957).
    [23] P. F. McMillan, High Pressure Res. 23, 7 (2003).
    [24] S. Veprek, J. Vac. Sci. Technol. A 17, 2401 (1999).
    
    [25] J. Haines, J. M. Leger, and G. Bocquillon, Annu. Rev. Mater. Res. 31, 1 (2001).
    
    [26] V. L. Solozhenko, High Pressure Res. 24, 499 (2004).
    
    [27] M. L. Cohen, Phys. Rev. B 32, 7988 (1985).
    
    [28] A. Y. Liu, and M. L. Cohen, Sicence 245, 841 (1989).
    
    [29] A. Y. Liu, and M. L. Cohen, Phys. Rev. B 41, 10727 (1990).
    
    [30] J. V. Badding, and D. C. Nesting, Chem. Mater. 8, 1535 (1996).
    [31] A. Andreyew, M. Akaishi, and D. Golberg, Chem. Phys. Lett. 372, 635 (2003).
    
    [32] V. P. Dymont, E. M. Nekrashevich, and M. Starchenko, Solid State Commun. 111,443 (1999).
    
    [33] V. L. Solozhenko, E. G. Solozhenko, P. V. Zin, L. C. Ming, J. Chen, and J. B. Parise, J. Phys. Chem. 64, 1265 (2003).
    
    [34] Z. Zhang, K. Leinenweber, M. Bauer, L. A. J. Garvie, P. F. McMillan, and G. H. Wolf, J. Am. Chem. Soc. 123, 7788 (2001).
    
    [35] V. L. Solozhenko, S. N. Dub, and N. Novikov, Diamond Relat. Mater. 10,2228(2001).
    
    [36] A. Zerr, G. Miehe, G. Serghiou, M. Schwarz, E. Kroke, R. Riedel, H. Fueb, P. Kroll, and R. Boehler, Nature 400, 340 (1999).
    
    [37] K. Leinenweber, M. O'Keeffe, M. Somayazulu, H. Hubert, P. F. McMillan, and G. H. Wolf, Chem. Eur. J. 5, 3076 (1999).
    
    [38] G. Serghiou, G. Mieche, O. Tschauner, A. Zerr, and R. Boehler, J. Chem. Phys. 111, 4659 (1999).
    
    [39] H. Hubert, B. Devouard, L. A. J. Garvie, M. O'Keeffe, P. R. Buseck, W. T. Petuskey, and P. F. McMillan, Nature 391, 376 (1998).
    
    [40] A. Zerr, M. Kempf, M. Schwarz, E. Kroke, M. Goken, and R. Riedel, J. Am. Ceram. Soc. 85, 86 (2002).
    
    [41] M. P. Shemkunas, W. P. Petuskey, A. V. G. Chizmeshya, K. Leinenweber, and G. H. Wolf, J. Mater. Res. 19, 1392 (2004).
    
    [42] T. Sekine, H. He, T. Kobayashi, M. Zhang, and F. Xu, Appl. Phys. Lett. 76, 3706 (2000).
    
    [43] T. Sekine, and T. Mitsuhashi, Appl. Phys. Lett. 79, 2719 (2001).
    [44] A. Zerr, G. Miehe, and R. Riedel, Nat. Mater. 2, 185 (2003).
    [45] M. Schwarz, A. Zerr, E. Kroke, G. Miehe, I. W. Chen, M. Heck, B. Thybusch, B. T. Poe, and R. Riedel, Angew. Chem. Int. Ed. 41, 789 (2002).
    
    [46] I. Kinski, G. Miehe, G. Heymann, R. Theissmann, R. Riedel, and H. Huppertz, Z. Natruforsch. B: Chem. Sci. 60, 831 (2005).
    
    [47] E. Soignard, D. Machon, P. F. McMillan, J. Dong, B. Xu, and K. Leinenweber, J. Chem. Mater. 17, 5465 (2005).
    
    [48] K. Landskron, H. Huppertz, J. Senker, and W. Schnick, Angew. Chem. Int. Ed. 40, 2643 (2001).
    
    [49] N. Funamori, andd R. Jeanloz, Science 278, 1109 (1997).
    [50] V. Iota, C. S. Yoo, and H. Cynn, Science 283, 1510 (1999).
    
    [51] S. Serra, C. Cavazzoni, G. L. Chiarotti, S. Scandolo, and E. Tosatti, Science 284, 788(1999).
    
    [52] H. Cynn, J. E. Klepeis, C. S. Yoo, and D. A. Young, Phys. Rev. Lett. 88, 135701 (2002).
    
    [53] L. S. Dubrovinsky, Nature 410, 653 (2001).
    
    [54] E. Soignard, P. F. McMillan, T. D. Chaplin, S. Farag, C. L. Bull, M. Somayazulu, and K. Leinenweber, Phys. Rev. B 68, 132101 (2003).
    
    [55] E. Gregoryanz, C. Sanloup, M. Somayazulu, J. Badro, G. Fiquet, H. K. Mao, and R. J. Hemley, Nat. Mater. 3, 294 (2004).
    
    [56] J. C. Crowhurst, A. F. Goncharov, B. Sadigh, C. L. Evans, P. G. Morrall, J. L. Ferreira, and A. J. Nelson, Science 311, 1275 (2006).
    
    [57] R. S. Ruoff, and A. L. Ruoff, Nature 350, 663 (1991).
    
    [58] Y. Wang, D. Tomanek, and G. F. Bertsch, Phys. Rev. B 44, 6562 (1991).
    
    [59] V. V. Brazhkin, A. G. Lyapin, S. V. Popova, Y. A. Klyuev, and A. M. Naletov, J. Appl. Phys. 84, 219 (1998).
    [60] V. V. Brazhkin, A. G. Lyapin, S. V. Popova, R. N. Voloshin, Y. V. Antonov, S. G. Lyapin, Y. A. Klyuev, A. M. Naletov, and N. N. Mel'nik, Phys. Rev. B 56, 11465 (1997).
    
    [61] H. Hirai, K. Kondo, N. Yoshizava, and M. Shiraishi, Appl. Phys. Lett. 64, 1797(1994).
    
    [62] H. Hirai, Y. Tabira, K. Kondo, T. Oikawa, and N. Ishizawa, Phys. Rev. B 52, 6162(1995).
    
    [63] K. Amaya, K. Shimizu, and M. I. Eremets, Int. J. Mod. Phys. B 13, 3623 (1999).
    
    [64] K. Shimizu, N. Tamitani, N. Takeshita, M. Ishizuka, K. Amaya, and S. Endo, J. Phys. Soc. Jpn. 61, 3853 (1992).
    
    [65] V. V. Struzhkin, R. J. Hemley, H. K. Mao, and Y. A. Timofeev, Nature 390, 382 (1997).
    
    [66] M. I. Eremets, V. V. Struzhkin, H. K. Mao, and R. J. Hemley, Science 293, 272 (2001).
    
    [67] M. I. Eremets, E. A. Gregoryanz, V. V. Struzhkin, H. Mao, R. J. Hemley, Phys. Rev. Lett. 85, 2797 (2000).
    
    [68] K. Shimizu, T. Kimura, S. Furomoto, K. Takeda, K. Kontani, Y. Onuki, and K. Amaya, Nature 412, 316 (2001).
    
    [69] N. W. Ashcroft, Nature 419, 569 (2002).
    
    [70] M. I. Elemets, K. Shimizu, T. C. Kobayashi, K. Amaya, Science 281, 1333 (1998).
    
    [71] M. I. Eremets, K. Shimizu, T. C. Kobayashi, and K. Amaya, J. Phys.: Condens. Matter 10, 11519 (1998).
    
    [72] T. Yokota, N. Takeshita, K. Shimizu, K. Amaya, A. Onodera, I. Shirotani, and S. Endo, Czechoslovak J. Phys. 46, Suppl. 817 (1996).
    [73] A. Schilling, M. Cantoni, j. D. Guo, and H. R. Ott, Nature 363, 56 (1993).
    
    [74] L. Gao, Y. Y. Xue, F. Chen, Q. Xiong, R. L. Meng, D. Ramirez, C. W. Chu, J. H. Eggert, and H. K. Mao, Phys. Rev. B 50, 4260 (1994).
    
    [75] A. Iyo, Y. Aizawa, Y. Tanaka, M. Tokumoto, K. Tokiwa, T. Watanabe, and H. Ihara, Physica C 357, 324 (2001).
    
    [76] T. Kawashima, Y. Matsui, E. Takayama-Muromachi, Physica C 257, 313 (1996).
    
    [77] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001).
    
    [78] M. Imai, T. Hirano, T. Kikegawa, and O. Shimomura, Phys. Rev. B 58, 11922(1998).
    
    [79] H. Kanda, Radiation Effects Defects Solids 156, 163 (2001).
    
    [80] H. Hubert, B. Devouard, L. A. J. Garvie, M. O'Keefe, P. R. Buseck, W. T. Petuskey, and P. F. McMillan, Nature 391, 376 (1998).
    
    [81] H. Hubert, L. A. J. Garvie, B. Devouard, P. R. Buseck, W. T. Petuskey, and P. F. McMillan, Chem. Mater. 10, 1530 (1998).
    
    [82] T. Taniguchi et al., Jpn. J. Appl. Phys. 241, L109 (2002).
    
    [83] H. Sumiya, N. Noda, Y. Nishibayashi, and S. Satoh, J. Crystal Growth 178,485(1997).
    
    [84] S. Nakamura, Mater. Res. Soc. Bull. 22, 29, (1997).
    [85] F. A. Ponce and D. P. Bour, Nature 386, 351 (1997).
    
    [86] S. Krukowski, M. Bockowski, B. Lucznik, I. Grzegory, S. Porowski, T. Suski, and Z. Romanowski, J. Phys.: Condens. Matter 13, 8881 (2001).
    
    [87] M. Bockowski, M. Wroblewski, B. Lucznik and I. Grzegory, Mater. Sci. Semicond. Proc. 4, 543 (2001).
    [88] K. Leinenweber, M. O'Keeffe, M. Somayazulu, K. Hubert, P. F. McMillan, and G. H. Wolf, Chem. Eur. J. 5, 3076 (1999).
    
    [89] J. Dong, O. F. Sankey, S. K. Deb, G. Wolf, and P. F. McMillan, Phys. Rev B 61, 11979(2000).
    
    [90] E. Soignard, M. Somayazulu, H. K. Mao, J. Dong, O. F. Sankey, and P. F. McMillan, Solid State Commun. 120, 237 (2001).
    
    [91] I. M. Chou, J. Blank, A. F. Goncharov, H. K. Mao, and R. J. Hemley, Science 281, 809(1998).
    
    [92] M. French, T. R. Mattsson, N. Nettelmann, and R. Redmer, Phys. Rev. B 79, 054107 (2009).
    
    [93] C. Cavazzoni, G. L. Chiarotti, S. Scandolo, E. Tosatti, M. Bernasconi, and M. Parrinello, Science 283, 44 (1999)
    
    [94] R. Chau, A. C. Mitchell, R. W. Minich, and W. J. Nellis, J. Chem. Phys. 114, 1361 (2001).
    
    [95] A. F. Goncharov, N. Goldman, L. E. Fried, J. C. Crowhurst, I. W. Kuo, C. J. Mundy, and J. M. Zaug, Phys. Rev. Lett. 94, 125508 (2005).
    
    [96] V. Lota, C. S. Yoo, and H. Cynn, Science283, 1510 (1999).
    
    [97] O. Tschauner, H. K. Mao, and R. J. Hemley, Phys. Rev. Lett. 87, 75701(2001)
    
    [98] M. Somayazulu, A. Madduri, A. F. Goncharov, O. Tschauner, P. F. McMillan, H. K. Mao, and R. J. Hemley, Phys. Rev. Lett. 87, 135504 (2001).
    
    [99] E. Gregoryanz, A. F. Goncharov, R. J. Hemley, and H. K. Mao, Phys. Rev. B 64, 052103 (2001).
    
    [100] M. Citroni, M. Ceppatelli, R. Bini, and V. Schettino, Science 295, 2058 (2002).
    [101] M. C. Wilding, M. Wilson, and P. F. McMillan, Chem. Soc. Rev. 35, 964 (2006).
    
    [102] K. Katayama, T. Mizutani, W. Utsumi, O. Shimomura, Y. Yamakata, and K. Funakoshi, Nature 403, 170 (2000).
    
    [103] P. H. Poole, T. Grande, C. A. Angell, and P. F. McMillan, Science 275, 322 (1997).
    
    [104] O. Mishima, L. D. Calvert, and E. Whalley, Nature 310, 393 (1984).
    [105] R. J. Hemley, A. P. Jephcoat, H. K. Mao, L. C. Ming and M. H. Manghnani, Nature 334, 52 (1988).
    
    [106] J. Catafesta, J. Haines, J. E. Zorzi, A. S. Pereira, and C. A. Perottoni, Phys. Rev. B 77, 064104 (2008).
    
    [107] M. I. McMahon, and R. J. Nelmes, Chem. Soc. Rev. 35, 943 (2006).
    
    [108] U. Schwarz, A. Grzechnik, K. Syassen, I. Loa, and M. Hanfland, Phys. Rev. Lett. 83, 4085 (1999)
    
    [109] M. I. McMahon, O. Degtyareva, R. J. Nelmes, Phys. Rev. Lett. 85, 4896 (2002).
    
    [110] U. Schwartz, Z. Kristallogr. 219, 376 (2004).
    
    [111] A. Vegas and V. G. Baonza, Acta Crystallogr. B 63, 339 (2007).
    
    [112] A. San-Miguel, Chem. Soc. Rev. 35, 876 (2006).
    
    [113] S. M. Clark, S. G. Prilliman, C. K. Erdonmez, and A. P. Alivisatos, Nanotechnology 16, 2813 (2006).
    
    [114] S. H. Tolbert and A. P. Alivisatos, J. Chem. Phys. 102, 4642 (1995).
    [115] J. Z. Jiang, J. Mater. Sci. 39, 5103 (2004).
    
    [116] C. T. Dameron, R. N. Reese, R. K. Mehra, A. R. Kortan, P. J. Carroll, M. L. Steigerwald, L. E. Brus, and D. R. Winge, Nature 338, 596 (1989).
    
    [117] K. Jacobs, D. Zaziski E. C. Scher, A. B. Herhold, and A. P. Alivisatos, Science 293, 1803 (2001).
    [118] K. Jacobs, J. Wickham, and A. P. Alivisatos, J. Phys. Chem. B 106, 3759 (2002).
    
    [119] F. Decremps, J. Pellicer-Porres, F. Datchi, J. P. Itie, A. Polian, F. Baudelet, and J. Z. Jiang, Appl. Phys. Lett. 81, 4820 (2002).
    
    [120] S. H. Tolbert, A. B. Herhold, L. E. Brus, and A. P. Alivisatos, Phys. Rev. Lett. 76, 4384(1996).
    
    [121] V. Swamy, A. Kuznetsov, L. S. Dubrovinsky, P. F. McMillan, V. B. Prakapenka, G. Shen, and B. C. Muddle, Phys. Rev. Lett. 96, 135702 (2006).
    [1] K. J. Chang and M. L. Cohen, Phys. Rev. B 34, 8581 (1986).
    [2] S. P. Lewis and M. L. Cohen, Phys. Rev. B 48, 16144 (1993).
    [3] C. H. Bates, F. Dachille, and R. Roy, Science 147, 860 (1965).
    [4] M. Baublitz and A. L. Ruoff, J. Appl. Phys. 53, 5669 (1982).
    
    [5] S. B. Qadri, E. F. Skelton, and A. W. Webb, J. Appl. Phys. 54, 3609 (1983).
    
    [6] Y. K. Vohra, K. E. Brister, S. Desgreniers, A. L. Rouff, K. J. Chang, and M. L. Cohn, Phys. Rev. Lett. 56, 1944 (1986).
    
    [7] F. P. Bundy and J. S. Kasper, Science 139, 340 (1963).
    
    [8] C. S. Menoni, J. Z. Hu, and I. L. Spain, Phys. Rev. B 34, 362 (1986).
    
    [9] R. J. Nelmes, M. I. McMahon, N. G. Wright, D. R. Allan, and J. S. Loveday, Phys. Rev. B 48, 9883 (1993).
    
    [10] R. J. Nelmes, H. Liu, S. A. Belmonte, J. S. Loveday, M. I. McMahon, D. R. Allan, D. Hausermann, and M. Hanfland, Phys. Rev. B 53, R2907 (1996).
    
    [11] R. J. Nelmes and M. I. McMahon, Semicond. Semimetals 54, 145. (1998).
    
    [12] S. P. Lewis and M. L. Cohen, Solid State Commun. 89, 483. (1994).
    
    [13] M. I. McMahon, R. J. Nelmes, N. G. Wright, and D. R. Allan, Phys. Rev. B 50, 739(1994).
    
    [14] K.Takemura, U. Schwarz, K. Syassen, M. Hanfland, N. E. Christensen, D. L. Novikov, and I. Loa, Phys. Rev. B 62, R10603 (2000).
    
    
    [15] F. J.Ribeiro and M. L. Cohen, Phys. Rev. B 62, 11388 (2000).
    [16] R. Ahuja and B. Johansson, J. Appl. Phys. 89, 2547 (2001).
    [17] K. Takemura, U. Schwarz, K. Syassen, N. E. Christensen, M. Hanfland, D. L. Novikov, and I.Loa, Phys. Stal. Sol. (b) 223, 385 (2001).
    
    [18] H. K. Mao, J. Xu, and P. M. Bell, J. Geophys. Res. 91, 4673 (1986).
    
    [19] J. Z. Jiang, J. S. Olsen, L. Gerward, and S. Morup, Europhys. Lett. 44, 620(1998).
    
    [20] J. Z. Jiang, J. S. Olsen, L. Gerward, and S. Steenstrup. High Pressure Res. 22, 395 (2002).
    
    [21] F. Birch, Phys. Rev. 71, 809 (1947).
    
    [22] Powder Diffraction File PDF#5-545, International Center for Diffraction Data (ICDD), Newton Square, PA19073-3273 USA.
    
    [23] H. Olijnyk, S. K. Sikka, and W. B. Holzapfel, Phys. Lett. 103A, 137 (1983).
    
    [24] A, Werner, J. A. Sanjurjo, and M. Cardona, Solid State Commun. 44, 155 (1982).
    
    [25] M. Durandurdu, Phys. Rev. B 71, 054112 (2005).
    
    [26] K. Gaal-Nagy, A. Bauer, M. Schmitt, K. Karch, P. Pavone, and D. Strauch, Phys. Stat. Sol. (b) 211, 275 (1999).
    
    [27] K. Gaal-Nagy, P. Pavone, and Dieter Strauch, Phys. Rev. B 69, 134112(2004).
    
    [28] S. H. Tolbert and A. P. Alivisatos, Science 265, 373 (1994).
    
    [29] J. Z. Jiang, J. S. Olsen, L. Gerward, D. Frost, D. Rubie, and J. Peyronneau, Europhys. Lett. 50, 48 (2000).
    
    [30] J. Z. Jiang, L. Gerward, D. Frost, R. Secco, J. Peyronneau, and J. S. Olsen, J. Appl. Phys. 86, 6608 (1999).
    
    [31] V. Swamy, L. S. Dubrovinsky, N. A. Dubrovinskaia, A. S. Simionovici and M. Drakopoulos, Solid State Commun. 125, 111 (2003).
    [32]Z.W.Wang,Y.S.Zhao,D.Schiferl,C.S.Zha,and R.T.Downs,Appl.Phys.Lett.85,124(2004).
    [33]Z.W.Wang,K.Tait,Y.S.Zhao,D.Schiferl,and C.S.Zha,J.Phys.Chem.B 108,11506(2004).
    [34]J.C.Jamieson,Science 139,845(1963).
    [35]Y.Wang,A.Suna,W.Mahler,and R.Kasowski,J.Chem.Phys.87,7315(1987).
    [36]刘恩科,朱秉升,罗晋生等,半导体物理学,西安:西安交通大学出版社,(1998).
    [37]F.H.Stillinger and T.A.Weber,Phys.Rev.B 31,5262(1985).
    [38]K.J.Ding and H.C.Andersen,Phys.Rev.B 34,6987(1986).
    [39]M.Ke,S.A.Hackney,W.W.Milligan and E.C.Aifantis,Nanostruct.Mater.5,689(1995).
    [40]V.M.Glazov,S.N.Chizhevskaya,and N.N.Glagoleva,Liquid Semiconductors,New York:Plenum Press,(1969).
    [41]R.C.Weast(ed),1988-1989 CRC Handbook of Chemistry and Physics vol.69,Boca Raton,FL:CRC Press.
    [42]J.Z.Jiang,J.Mater.Sci.39,5103(2004).
    [1] V. G. Hill and L. L. Y. Chang, Am. Mineral. 53, 1744 (1968).
    
    [2] M. Madon, Ph. Gillet, Ch. Julien, and G. D. Price, Phys. Chem. Minerals 18,7(1991).
    
    [3] S. Kawasaki, O. Ohtaka, and T. Yamanaka, Phys. Chem. Miner. 20, 531 (1994).
    
    [4] N. Suresh, G. Jyoti, S. C. Gupta, S. K. Sikka, Sangeeta, and S. C. Sabharwal, J. Appl. Phys. 76, 1530 (1994).
    
    [5] S. Kawasaki, J. Mater. Sci. Lett. 15, 1860 (1996).
    
    [6] M. Akaogi, T. Suzuki, R. Kojima, T. Honda, E. Ito, and I.. Nakai, Geophys. Res. Lett. 25, 3635 (1998).
    
    [7] T. Tsuchiya, T. Yamanaka, and M. Matsui, Phys. Chem. Miner. 25, 94 (1998).
    
    [8] T. Tsuchiya, T. Yamanaka, and M. Matsui, Phys. Chem. Miner. 27,149 (2000).
    
    [9] L. Liu and T. P. Mernagh, High Temp. High Pressure. 24, 13 (1992).
    
    [10] F. Vannereau, J. P. Itie, A. Polian, G. Calas, J. Petiau, A. Fontaine, and H. Tolentino, High Press. Res. 7, 372 (1991).
    
    [11] V. V. Brazhkin, E. V. Tat'yanin, A. G. Lyapin, S. V. Popova, O. B. Tsiok, and D. V. Balitskii, JETP Lett. 71, 293 (2000).
    
    [12] J. Haines, J. M. Leger, and C. Chateau, Phys. Rev. B 61, 8701 (2000).
    
    [13] O. Ohtaka, A. Yoshiasa, H. Fukui, K. Murai, M. Okube, Y. Katayama, W. Utsumi, and Y. Nishihata, J. Synchrotron Rad, 8, 791 (2001).
    
    [14] J. P. Itie, A. Polian, G. Calas, J. Petiau, A. Fontaine, and H. Tolentino, Phys. Rev. Lett. 63, 398 (1989).
    
    [15] J.Z. Jiang, J. Mater. Sci. 39, 5103 (2004).
    [16] H. K. Mao, J. Xu, and P. M. Bell, J. Geophys. Res. 91, 4673 (1986).
    
    [17] K.J. Kingma, H.K. Mao, and R.J. Hemley, High Press. Res. 14, 363 (1996).
    
    [18] M. P. Pasternak, G. Kh. Rozenberg, A.P. Milner, M. Amanowicz, T. Zhou, U. Schwarz, K. Syassen, R. D. Taylor, M. Hanfland, and K. Brister, Phys. Rev. Lett. 79, 4409 (1997).
    [1] L. Binet, and D. Gourier, J. Phys. Chem. Solids 59, 1241 (1998).
    
    [2] M. Ogita, N. Saika, Y. Nakanishi, and Y. Hatanaka, Appl. Surf. Sci. 142, 188(1999).
    
    [3] M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinidis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zydzik, J. Appl. Phys. 77, 686(1995).
    
    [4] T. Miyata, T. Nakatani, and T. Minami, Thin Solid Films 373, 145 (2000).
    
    [5] Z. Li, C. de Groot, and J. H. Moodera, Appl. Phys. Lett. 77, 3630 (2000).
    
    [6] E. G. Villora, T. Atou, T. Sekiguchi, T. Sugawara, M. Kikuchi, and T. Fukuda, Solid State Commun. 120, 455 (2001).
    
    [7] M. Yamaga, E. G. Villora, K. Shimamura, N. Ichinose, and M. Honda, Phys. Rev. B 68, 155207 (2003).
    
    [8] M. Fleischer and H. Meixner, J. Appl. Phys. 74, 300 (1993).
    
    [9] Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, Adv. Mater. 12, 746 (2000).
    
    [10] J. S. Kim, H. E. Kim, H. L. Park, and G. C. Kim, Solid State Commun. 132,459(2004).
    
    [11] C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, L. D. Zhang, and S. Y. Zhang, Appl. Phys. Lett. 78, 3202 (2001).
    
    [12] R. Rao, A. M. Rao, B. Xu, J. Dong, S. Sharma, and M. K. Sunkara, J. Appl. Phys. 98, 094312 (2005).
    
    [13] S. Sharma and M. K. Sunkara, J. Am. Chem. Soc. 124, 12288 (2002).
    
    [14] R. Roy, V. G. Hill, and E. F. Osborn, J. Am. Chem. Soc. 74, 719 (1952).
    [15] J. P. Remeika and M. Marezio, Appl. Phys. Lett. 8, 87 (1966).
    [16] H. G. Kim and W. T. Kim, J. Appl. Phys. 62, 2000 (1987).
    
    [17] T. P. Beales, C. H. L. Goodman, and K. Scarrott, Solid State Commun. 73, 1 (1990).
    
    [18] B. Tu, Q. Cui, P. Xu, X. Wang, W. Gao, C. Wang, J. Liu, and G. Zou, J. Phys.:Condens. Matter 14, 10627 (2002).
    
    [19] D. Machon, P. F. McMillan, B. Xu, and J. Dong, Phys. Rev. B 73, 094125 (2006).
    
    [20] H. Yusa, T. Tsuchiya, N. Sata, and Y. Ohishi, Phys. Rev. B 77, 064107 (2008).
    
    [21] K. E. Lipinska-Kalita, P. E. Kalita, O. A. Hemmers, and T. Hartmann, Phys. Rev. B 77, 094123 (2008).
    
    [22] P. Kroll, Phys. Rev. B 72, 144407 (2005).
    
    [23] H. He, R. Orlando, M. A. Blanco, R. Pandey, E. Amzallag, I. Baraille, and M. Rerat, Phys. Rev. B 74, 195123 (2006).
    
    [24] R. Caracas and R. E. Cohen, Phys. Rev. B 76, 184101 (2007).
    
    [25]K. E. Lipinska-Kalita, B. Chen, M. B. Kruger, Y. Ohki, J. Murowchick, and E. P. Gogol, Phys. Rev. B 68, 035209 (2003).
    
    [26] M. Grimsditch, Phys. Rev. Lett. 52, 2379 (1984).
    
    [27] C. Meade, R. J. Hemley, and H. K. Mao, Phys. Rev. Lett. 69, 1387(1992).
    
    [28] H. K. Mao, P. M. Bell, J. W. Shaner, and D. J. Steinberg, J. Appl. Phys. 49, 3276 (1978).
    
    [29] MATERIALS STUDIO, Version 2.1.5, Accelrys Inc. (2002).
    [30] D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
    [31] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
    
    [32] H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).
    
    [33] J. C. Jamieson, Science 139, 845 (1963).
    
    [34] S. H. Tolbert and A. P. Alivisatos, Science 265, 373 (1994).
    
    [35] S. B. Qadri, J. Yang, B. R. Ratna, E. F. Skelton, and J. Z. Hu, Appl. Phys. Lett. 69, 2205 (1996).
    
    [36] J. Z. Jiang, L. Gerward, D. Frost, R. Secco, J. Peyronneau, and J. S. Olsen, J. Appl. Phys. 86, 6608 (1999).
    
    [37] Y. He, J. F. Liu, W. Chen, Y. Wang, H. Wang, Y. W. Zeng, G. Q. Zhang, L. N. Wang, J. Liu, T. D. Hu, H. Hahn, H. Gleiter, and J. Z. Jiang, Phys. Rev. B 72, 212102 (2005).
    
    [38] J. Z. Jiang, J. Mater. Sci. 39, 5103 (2004).
    [1] J. C. Jamieson, Science 139, 845 (1963).
    
    [2] S. B. Qadri, J. Yang, B. R. Ratna, and E. F. Skelton, Appl. Phys. Lett. 69, 2205 (1996).
    
    [3] Y. He, J. F. Liu, W. Chen, and Y. Wang, H. Wang, Y. W. Zeng, G. Q. Zhang, L. N. Wang, J. Liu, T. D. Hu, H. Hahn, H. Gleiter, and J. Z. Jiang, Phys. Rev. B 72, 212102 (2005).
    
    [4] S. B. Qadri, E. F. Skelton, A. D. Dinsmore, J. Z. Hu, W. J. Kim, C. Nelson, and B. R. Ratna, J. Appl. Phys. 89, 115 (2001).
    
    [5] S. Minomura, and H. G. Drickamer, J. Phys. Chem. Solids 23, 451 (1962).
    
    [6] A. S. Balchan, and H. G. Drickamer, Rev. Sci. Instrum. 32, 308 (1961).
    
    [7] A. Jayaraman, R. C. Newton, and G. C. Kennedy, Nature 191, 1288 (1961).
    
    [8] A. Mujica, A. Rubio, A. Munoz, R. J. Needs, Rev. Mod. Phys. 75, 863 (2003).
    
    [9] O. Madelung(ed), Semiconductors: Data Handbook, 3rd ed., Berlin: Springer, (2004).
    
    [10] M. I. McMahon, R. J. Nelmes, N. G. Wright, and D. R. Allan. Phys. Rev. B 50, 739 (1994).
    
    [11] M. Hanfland, M. Alouani, K. Syassen, and N. E. Christensen. Phys. Rev. B38, 12864(1988)
    
    [12] C. S. Menoni, J. Z. Hu, and I. L. Spain. Phys. Rev. B 34, 362 (1986).
    [13] H. Olijinyk, Phys. Rev. Lett. 68, 2232 (1992).
    
    [14] M. Yoshida, A. Onodera, M. Ueno, K. Takemura, and O. Shimomura, Phys. Rev. B 48, 10587 (1993).
    [15] M. S. Miao, M. Prikhodko, and W. R. L. Lambrecht, Phys. Rev. B 66, 064107 (2002).
    
    [16] M. Ueno, A. Onodera, O. Shimomura, and K. Takemura, Phys. Rev. B 45, 10123 (1992).
    
    [17] Q. Xia, H. Xia, and A. L. Ruoff, J. Appl. Phys. 73, 8198 (1993).
    
    [18] J. Serrano, A. Rubio, E. Hernandez, A. Munoz, and A. Mujica, Phys. Rev. B 62, 16612 (2000).
    
    [19] H. Xia, Q. Xia, and A. L. Ruoff, Phys. Rev. B 47, 12925 (1993).
    
    [20] M. Ueno, M. Yoshida, A. Onodera, O. Shimomura, and K. Takemura, Phys. Rev. B 49, 14(1994).
    
    [21] H. Xia, Q. Xia, and A. L. Ruoff, Mod. Phys. Lett. B 8, 345 (1994).
    
    [22] R. G. Greene, H. Luo, and A. L. Ruoff, J. Appl. Phys. 76, 7296 (1994).
    
    [23] R. G. Greene, H. Luo, T. Li, and A. L. Ruoff, Phys. Rev. Lett. 72, 2045 (1994).
    
    [24] R. J. Nelmes, M. I. McMahon, and S. A. Belmonte, Phys. Rev. Lett. 79,3668(1997).
    
    [25] S. Minomura and H. G. Drickamer, J. Phys. Chem. Solids. 23, 451 (1962).
    
    [26] C. G. Homan, D. P. Kendall, T. E. Davidson, and J. Frankel, Solid State Commun. 17, 831 (1975).
    
    [27] M. I. McMahon and R. J. Nelmes, Phys. Rev. Lett. 78, 3697 (1997).
    
    [28] M . Mezour, H. Libotte, S. Deputier, T. L. Bihan, and D. Hausermann, Phys. Status Solidi B 211, 395 (1999).
    
    [29] M. I. McMahon, R. J. Nelmes, N. G. Wright, and D. R. Allan, Phys. Rev. B 50, 13047 (1994).
    [30] S. T. Weir, Y. K. Vohra, and A. L. Ruoff, Phys. Rev. B 36, 4543 (1987).
    
    [31] M. I. McMahon, R. J. Nelmes, N. G. Wright, and D. R. Allan. Proceedings of the Joint Conference of the AIRAPT/APS on High-pressure Science and Technology, edited by S. C. Schmidt, J. W. Shaner, G. A. Samara, and M. Ross, p.633 (1993).
    
    [32] R. J. Nelmes, M. I. McMahon, N. G. Wright, D. R. Allan, H. Liu, and J. S. Loveday, J. Phys. Chem. Solids 56, 539 (1995).
    
    [33] G. D. Pitt and M. K. R. Vyas, J. Phys. C 6, 274 (1973).
    
    [34] Y. K. Vohra, S. T. Weir, and A. L. Ruoff, Phys. Rev. B 31, 7344 (1985).
    
    [35] R. J. Nelmes and M. I. McMahon, Phys. Rev. Lett. 74, 106 (1995).
    
    [36] A. Jayaraman, R. C. Newton, and G. C. Kennedy, Nature 191, 1288 (1961).
    
    [37] S. Desgrenier, Phys. Rev. B 58, 14102 (1998).
    
    [38] A. Segura, J. A. Sans, F. J. Manjon, A. Munoz, and M. J. Herrera-Cabrera, Appl. Phys. Lett. 83, 278 (2003).
    
    [39] S. Ves, U. Schwarz, N. E. Christensen, K. Syassen, and M. Cardona, Phys. Rev. B 42, 9113 (1990).
    
    [40] J. Z. Jiang, L. Gerward, D. Frost, and R. S. Olsen, J. Appl. Phys. 86, 6608 (1999).
    
    [41] H. Karzel, W. Potzel, M. Kofferlein, and W. Schiessl et al, Phys. Rev. B 53, 11425(1996).
    
    [42] G. Itkin, G. R. Hearne, E. Sterer, M. P. Pasternak, and W. Potzel, Phys. Rev. B 51, 3195 (1995).
    
    [43] A. San-Miguel, A. Polian, M. Gauthier, and J. P. Itie, Phys. Rev. B 48, 8683 (1993).
    [44] R. J. Nelmes, M. I. McMahon, N. G. Wright, and D. R. Allan, Phys. Rev. Lett. 73, 1805(1994).
    
    [45] S. V. Ovsyannikov and V. V. Shchennikov, JETP Lett. 80, 35 (2004).
    [46] R. J. Nelmes, M. I. McMahon, Semicond. Semimetals 54, 145 (1998).
    
    [47] P. Cervantes, Q. Williams, M. Cote, O. Zakharov, and M. L. Cohen, Phys. Rev. B 54, 17585 (1996).
    
    [48] C. F. Cline and D. R. Stephens, J. Appl. Phys. 36, 2869 (1965).
    
    [49] M. I. McMahon, R. J. Nelmes, N. G. Wright, and D. R. Allan, Phys. Rev. B 48, 16246(1993).
    
    [50] J. Gonzalez, F. V. Perez, E. Moya, and J. C. Chervin, J. Phys. Chem. Solids 56, 335 (1995).
    
    [51] T. Zhou, U. Schwarz, M. Hanfland, Z. X. Liu, K. Syassen, and M. Cardona, Phys. Rev. B 57, 153 (1998).
    
    [52] S. R. Sun, Y. C. Li, J. Liu, and Y. H. Dong, Phys. Rev. B 73, 113201 (2006).
    
    [53] M. I. McMahon, R. J. Nelmes, H. Liu, and S. A. Belmonte, Phys. Rev. Lett. 77, 1781 (1996).
    
    [54] A. Ohtani, T. Seike, M. Motobayashi and A. Onodera, J. Phys. Chem. Solids 43, 627(1982).
    
    [55] A. San-Miguel, N. G. Wright, M. I. McMahon, and R. J. Nelmes. Phys. Rev. B 51, 8731 (1995).
    
    [56] H. Xia, Q. Xia, and A. L. Ruoff, J. Appl. Phys. 74, 1660 (1993).
    
    [57] R. G. Greene, H. Luo, A. L. Ruoff, S. S. Trail, and F. J. DiSalvo, Phys. Rev. Lett. 73,2476(1994).
    
    [58] L. Liu and W. A. Basset, Elements, Oxides and Silicates: High-Pressure Phase Transitions with Implications for the Earth's Mantle, New York: Oxford University Press (1986).
    [59] C. Janowitz, N. Orlowski, R. Manzke, and Z. Golacki, J. Alloys Compounds 328, 84(2001).
    
    [60] Y. Han, C. Gao, Y. Ma, H. Liu, Y. Pan, J. Luo, M. Li, C. He, X. Huang, G. Zou, Y. Li, X. Li, and J. Liu, Appl. Phys. Lett. 86, 064104 (2005).
    
    [61] M. Kobayashi, Phys. Stat. Sol. (b) 223, 55 (2001).
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.