新型光子晶体光纤的结构设计与关键特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米技术与光子技术的结合促进了光子晶体概念的提出。作为光子晶体一个重要应用,光子晶体光纤的出现标志着新一代光纤的诞生。与传统光纤相比,光子晶体光纤具有许多无法比拟的奇异特性,如无尽单模传输、可控的色散、非线性特性以及高双折射特性等。近年来,光子晶体光纤的研究与发展更是引起了世界范围的广泛关注,呈现出“新结构、新应用”两大特点。
     本论文旨在运用数值方法,围绕新型光子晶体光纤的设计、特性及应用进行前瞻性、探索性的理论分析研究,内容包括光波导的有限元模型以及光子晶体光纤的模式特性、偏振特性、色散特性及损耗特性等几个方面。主要研究内容如下:
     第一部分:有限元法及其在光波导中的应用研究
     建立了基于线性三角形单元的三分量有限元分析模型,分析了正三角形格子光子晶体光纤的模场特性,总结了三分量有限元法的优缺点。
     建立了基于混合棱边/节点元带有完全匹配层吸收边界条件的全矢量有限元分析模型,验证了该模型的正确性与有效性。深入研究了有限元方法中的对称边界条件。
     第二部分:光子晶体光纤的瑞利散射特性数值研究
     建立了基于全矢量有限元方法的光纤瑞利散射损耗数值分析模型。分析了F掺杂以及GeO_2掺杂高折射率芯Bragg光纤的瑞利散射特性,深入研究了结构参量对瑞利散射损耗的影响;分析了正三角形格子光子晶体光纤的瑞利散射特性,深入研究了瑞利散射系数、光纤结构参数等参量对瑞利散射损耗的影响。
     第三部分:宽带色散平坦光子晶体光纤的设计
     提出了一种用于实现宽带平坦色散的光子晶体光纤结构,分析了该结构光纤的模场特性以及波导色散特性,通过优化在理论上实现了1130~1710nm波长范围内色散值为0.3±0.3 ps/(km·nm)的近零色散平坦光纤,研究了结构偏差对色散平坦特性的影响。
     第四部分:高双折射低限制损耗光子晶体光纤的设计
     提出了一种高双折射低限制损耗光子晶体光纤结构,深入研究了光纤结构参数与模式双折射、限制损耗之间的关系,发现该结构光纤不仅可以获得高达10~(-3)量级的模式双折射,而且可以在包层空气孔环数仅为4的情况下实现不超过0.1dB/km的极低限制损耗。
     第五部分:宽带单模单偏振光子晶体光纤的设计
     提出了一种基于长方形格子的单模单偏振光子晶体光纤结构,深入研究了该结构光纤的单偏振特性,理论上实现了1.20~1.66μm波长范围内仅有慢轴模且限制损耗低于0.1dB/km的超宽带单模单偏振光子晶体光纤,研究了结构偏差对光纤单偏振传输特性的影响,最后分析了单模单偏振光子晶体光纤与传统单模光纤的耦合特性。
Photonic crystal fibers (PCFs), one of the most important applications of photonic crystal (PC) technology, have attracted significant attention all over the world. Compared with traditional fibers, PCFs posses many unique properties, such as light guidance in air, endlessly single-mode transmission, controllable dispersion, and high nonlinearity and birefringence, which are expected to bring a huge impact to future optical communications. Worldwide efforts have been taken to the research and development (R&D) of PCFs in "novel structures, new applications".
     This dissertation focuses on the analysis and design of novel index-guiding PCFs aiming at some potential applications in future optical communications.
     It first presents an overall survey of the current state of the art in PCFs.
     In chapter 2, a versatile simulation platform based a full-vector finite element method (FEM) for the analysis of PCFs is established. In order to avoid spurious solutions, a hybrid edge/nodal element is applied and, to investigate the behavior of not only bound modes but leaky modes in optical waveguides, an anisotropic perfectly matched layer (PML) is employed as boundary condition at the edges of the computational window. The validity and usefulness of the FEM is verified when a rib anti-resonant reflecting optical waveguide (ARROW) and the hexagonal-lattice PCFs are taken into consideration. Perfect magnetic conductor (PMC) and perfect electric conductor (PEC) boundaries are discussed in detail in the analysis of a step-index fiber.
     In the third chapter, an analytical model for Rayleigh scattering in fibers is presented based on the full-vector finite element method. By using this model, the Rayleigh scattering losses in F-doped and GeO_2-doped High-index-core Bragg fibers, as well as PCFs with air holes arranged in hexagonal lattice are numerically investigated.
     Chapter 4 presents a novel design for realizing flattened dispersion in PCFs, using a square-lattice PCF with a central air-hole defect in the core region. The influences of the central air-hole defect on the mode field and dispersion are discussed in detail. Based on the mutual cancellation between the waveguide and the material dispersions, a nearly-zero dispersion-flattened PCF with dispersion within 0.3±0.3 ps/(km·nm) and confinement loss less than 0.1dB/km at wavelengths ranging from 1130nm to 1710nm is numerical demonstrated. Influence of varying PCF parameters on the dispersion properties of the dispersion-flattened PCF is analyzed. Owing to its ultra-fattened dispersion features, as well as low confinement losses and small effective mode area, the proposed PCF may be used for some nonlinear optical applications.
     Described in chapter 5 is a novel systematic scheme to achieve both high birefringence and low confinement loss in PCFs with finite number of air holes (i.e. 4 rings) in the cladding region, based on the fact that the modal birefringence of PCFs is dominated by the inner-ring air holes in PCFs. The relationships between fiber parameters and birefringence in the proposed PCFs are investigated. Numerical results show that fibers with modal birefringence in the order of 10~(-3) and confinement loss less than 0.1dB/km can be easily realized in PCFs with only four rings of air holes in the cladding region.
     In the last chapter we propose a novel design for achieving wide-band single-polarization single-mode (SPSM) operation in photonic crystal fiber, using a rectangular-lattice PCF with two lines of three central air holes enlarged. The proposed PCF composed entirely of silica material is modeled by a full-vector finite element method with anisotropic perfectly matched layers. The polarization-dependent cutoff properties and confinement losses of the proposed structure are numerically analyzed as functions of PCF parameters and wavelengths. By adjusting the size of the central enlarged air holes, the position of the regime of single polarization can be tuned freely as required. The wide-band SPSM operation feature, low confinement losses and the small effective mode area are the main properties of the proposed PCF structure. Using this structure an ultra-wide-band SPSM-PCF with confinement loss less than 0.1dB/km within wavelength range from 1.20 to 1.66μm and effective mode area about 5.9μm~2 at 1.55μm is successfully designed. The proposed fiber is a nonlinear one that might be suitable for some nonlinear optical applications, or it can be used as polarizing elements in optical devices with wide SPSM operating bandwidths requirement such as an all fiber polarizer within the whole telecommunication window.
引文
[1]E.Yablonovitch,"Inhibited spontaneous emission in solid-state physics and electronics," Phys.Rev.Lett.,vol.58,no.20,1987,pp.2059-2062.
    [2]S.John,"Strong localization of photons in certain disordered dielectric superlattices," Phys.Rev.Lett.,vol.58,no.23,1987,pp.2486-2489.
    [3]M.Plihal,A.A.Maradudin,"Photonic band structure of two-dimensional systems:The triangular lattice," Phys.Rev.B,vol.44,no.16,1992,pp.8565-8571.
    [4]P.R.Villeneuve,M.Piche,"Photonic band gaps in two-dimensional square and hexagonal lattices,"Phys.Rev.B,vol.46,no.8,1994,pp.4969-4972.
    [5]Gadot F,Chelnokov A,De Lustrac A,"Experimental demonstration of complete photonic band gap in graphite structure,"Appl.Phys.Lett.,vol.71,no.13,1997,pp.1780-1782.
    [6]C.M.Anderson,K.Giapis,"Large Two-Dimensional Photonic Band Gaps," Phys.Rev.Lett.,vol.77,no.14,1996,pp.2949-2952.
    [7]K.M.Ho,C.T.Chan,C.M.Soukoulis,"Existence of a photonic gap in periodic dielectric structures,"Phys.Rev.Lett.,vol.62,no.25,1990,pp.3152-3155.
    [8]E.Yablonovitvh,"Photonic band structure:The face-centered-cubic case employing nonspherical atoms," Phys.Rev.Lett.,vol.67,no.17,1991,pp.2295-2298.
    [9]W.J.Wadsworth,J.C.Knight,W.H.Reeves,P.St.J.Russell and J.Arriaga,"Yb~(3+)-doped photonic crystal fibre laser," IEEE Electron.Lett.,vol.36,no.17,Aug 2000,pp.1452-1454.
    [10]K.Furusawa,T.M.Monro,P.Petropoulos and D.J.Richardson,"Modelocked laser based on ytterbium doped holey fibre," IEEE Electron.Lett.,vol.37,no.9,April 2001,pp.560-561.
    [11]W.J.Wadsworth,R.M.Percival,G.Bouwmans,J.C.Knight,and P.St.J.Russell,"High power air-clad photonic crystal fibre laser," Optics Express,vol.11,no.1,January 2003,pp.48-53.
    [12]J.Limpert,A.Liem,H.Zellmer and A.Tunnemann,"500 W continuous-wave fibre laser with excellent beam quality," IEEE Electron.Lett.,vol.39,no.8,April 2003,pp.645-647.
    [13]Y Jeong,J.K.Sahu,R.B.Williams,D.J.Richardson,K.Furusawa and J.Nilsson,"Ytterbium-doped large-core fibre laser with 272W output power," IEEE Electron.Lett.,vol.39,no.13,June 2003,pp.977-978.
    [14]C.-H.Liu,B.Ehlers,E Doerfel,S.Heinemann,A.Carter,K.Tankala,J.Farroni and A.Galvanauskas,"810W continuous-wave and single transverse-mode fibre laser using 20μm core Yb-doped double-clad fibre," IEEE Electron.Lett.,vol.40,no.23,Nov 2004,pp.1471-1472.
    [15]Y.Jeong,J.K.Sahu,D.N.Payne and J.Nilsson,"Ytterbium-doped large-core fibre laser with 610W of near diffraction-limited output power," IEEE Electron.Lett.,vol.40,no.24,Nov 2004,pp.1527-1528.
    [16]Y.Jeong,J.K.Sahu,D.N.Payne and J.Nilsson,"Ytterbium-doped large-core fibre laser with lkW of continuous-wave output power",IEEE Electron.Lett.,vol.40,no.8,April 2004,pp.470-472.
    [17]R.Coccioloi,M.Boroditsky,K.W.Kim,Y.Rahmat-Samii,and E.Yablonovitch,"Smallest possible electromagnetic mode volume in a dielectric cavity," Inst.Elec.Eng.Proc.-Optoeleetron,vol.145,no. 6,Dec.1998,pp.391-397.
    [18]H.Yokoyama,"Physics and device application of optical microcavities," Science,vol.256,no.5053,Apr.1992,pp.66-70.
    [19]Y.Yamamoto and S.Machida,"Microcavity semiconductor laser with enhanced spontaneous emission," Phys.Rev.A,vol.44,no.1,July 1991,pp.657-668.
    [20]L.A.Graham,D.L.Huffaker,and D.G.Deppe,"Spontaneous lifetime control in a native-oxide-apertured microcavity," Appl.Phys.Lett.,vol.74,no.17,Apr.1999,pp.2408-2410.
    [21]M.Fujita,A.Sakai,and T.baba,"Ultrasmall and ultralow threshold GalnAsP-Inp microdisk injection laser:Design,fabrication,lasing characteristic,and spontaneous emission factor," IEEE J.Sel.Top.Quantum Electron.,vol.5,no.3,May-Jun.1999,pp.673-681.
    [22]Kengo Nozaki and Toshihiko baba,"Carrier and Photon Analyses of Photonic Microlasers by Two-Dimensional Rate Equations," IEEE J.Sel.Areas in Comm.,vol.23,no.7,July 2005,pp.1411-1417.
    [23]O.J.Painter,Student Member,A.Husain,A.Scherer,J.D.O'Brien,Member,I.Kim,and P.D.Dapkus,"Room Temperature Photonic Crystal Defect Lasers at Near-Infrared Wavelengths in InGaAsP," J.Lightwave.Technol.,vol.17,no.11,Nov 1999,pp.2082-2088.
    [24]Paula M.Powell,"Photonic crystal laser features low-threshold pumping,"Appl.Phys.Lett,vol.81,no.7,Oct 2002,pp.2680-2682.
    [25]Se-Heon Kim,Han-Youl Ryu,Hong-Gyu Park,Guk-Hyun Kim,Yong-Seok Choi,and Yong-Hee Lee,"Two-dimensional photonic crystal hexagonal waveguide ring laser,"Appl.Phys.Lett.,vol.81,no.14,Sep 2002,pp.2499-2501.
    [26]S.Noda,A.Chutinan,and M.Imada,"Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature,voL 407,no.5,2000,pp.608-610.
    [27]Masahiro Imada,Susumu Noda,Alongkarn Chutinan,Masamitsu Mochizuki,and Tomoko Tanaka,"Channel Drop Filter Using a Single Defect in a 2-D Photonic Crystal Slab Waveguide," J.Lightwave.Technol.,vol.20,no.5,May 2003,pp.873-878.
    [28]Takashi Asano,Masamitsu Mochizuki,Susumu Noda,Makoto Okano,and Masahiro Imada,"A Channel Drop Filter Using a Single Defect in a 2-D Photonic Crystal Slab-Defect Engineering With Respect to Polarization Mode and Ratio of Emissions From Upper and Lower Sides," J.Lightwave.Technol.,vol.21,no.5,May 2003,pp.1370-1376.
    [29]C.Manolatou,"Coupling of modes analysis of resonant channel add2drop filters," IEEE J.Quantum Electron.,vol.35,no.9,1999,pp.1322-1331.
    [30]Masanori Koshiba,"Wavelength division multiplexing and demultiplexing with photonic crystal wavegnide couplers," J.Lightwave.Teclnol.,vol.19,no.12,Dec 2001,pp.1370-1376.
    [31]Bin Liu,Ali Shakouri,P.Abraham,and John E.Bowers,"A wavelength multiplexer using cascaded three-dimensional vertical couplers,"Appl.Phys.Lett.,vol.76,no.3,Jan 2000,pp.282-284.
    [32]J.P.Dowling and C.M.Bowden,"Anomalous index of refraction in photonic bandgap materials," J.Mod.Opt.,vol.41,no.2,1994,pp.345-351.
    [33]K.Ohtaka and Y.Tanabe,"Photonic band using vector spherical waves-Ⅰ:Various properties of Bloch electric fields and heavy photons," J.Phys.Soc.Japan,vol.65,no.7,1996,pp.2265-2275.
    [34]A.Figotin and Y.Godin,"The computation of spectra of some 2-D photonic crystals," J.Comput.Phys.,vol.136,no.22,1997,pp.585-598.
    [35]A.Figotin,Yu.A.Godin,and I.Vitebsky,"Two-dimensional tunable photonic crystals," Phys.Rev.B,vol.57,no.5,Feb.1998,pp.2841-2848.
    [36]H.Kosaka,T.Kawashima,A.Tomita,M.Notomi,T.Tamamura,T.Sato,and S.Kawakami,"Superprism phenomena in photonic crystals," Phys.Rev.B,vol.58,no.16,Oct.1998,pp.10096R-10098R.
    [37]S.Y.Lin,V.M.Hietala,L.Wang,and E.D.Jones,"Highly dispersive photonic hand-gap prism," Opt.Lett.,vol.21,no.21,Nov 1996,pp.1771-1773.
    [38]H.Kosaka,T.Kawashima,A.Tomita,M.Notomi,T.Tamamura,Toshiaki Tamamura,Takashi Sato,and Shojiro Kawakami,"Superprism Phenomena in Photonic Crystals:Toward Microscale Lightwave Circuits," J.Lightwave.Technol.,vol.17,no.11,Nov.1999,pp.2032-2038.
    [39][34].Takashi Matsumoto,Shinji Fujita and Toshihiko Baba,"Wavelength demultiplexer consisting of Photonic crystal superprism and superlens," Opt.Express,vol.13,no.26,Dec 2005,pp.10768-10776.
    [40]Lijun Wu,Michael Mazilu,Tim Katie,and Thomas F.Krauss,"Superprism Phenomena in Planar Photonic Crystals," IEEE.J.Quan.Electron.,vol.38,no.7,July 2002,pp.915-918.
    [41]Lijun Wu,Michael Mazilu,and Thomas F.Krauss,"Beam Steering in Planar-Photonic Crystals:From Superprism to Supercollimator," J.Lightwave.Technol.,vol.21,no.2,Feb 2003,pp.561-566.
    [42]Baba,T.and M Nakamura,"Photonic Crystal Light Deflection Devices Using the Superprism Effect,"IEEE J.Quan.Electron.,vol.38,no.7,2002,pp.909-914.
    [43]Chung,K.B.and S.W.Hong,"Wavelength Demultiplexers Based on the Superprism Phenomena in Photonic Crystals," Applied Physics Letter,vol.81,no.9,2002,1549-1551.
    [44]T.Matsumoto and T.Baba,"Photonic Crystal k-Vector Superprism," vol.22,no.3,Mar 2004,pp.917-922.
    [45]A.Di Falco,C.Conti,and G.Assanto,"Three-Dimensional Superprism Effect in Photonic-Crystal Slabs," J.Lightwave.Technol.,vol.22,no.7,July 2004,pp.1748-1753.
    [46]X.Z.Sun,P.F.Gu,H.X.Chen B.Jin,H.F.Li,X.Liu,"Superprism Effect in Thin Film Fabry-Perot Filter," Progress In Electromagnetics Research Symposium 2005,Hangzhou,China,August 2005,pp.22-26.
    [47]冯志芳,张向东,王义全,李志远,程丙英,张道中.十二重准晶光子结构中的负折射与成像.物理,2006,35(1):13-16.
    [48]刘建国,开桂云,薛力芳,张春书,刘艳格,王志,郭宏雷,李燕,孙婷婷,袁树忠,董孝义.基于高非线性光子晶体光纤Sagnac环形镜的全光开关.物理学报,2007,56(2):353-357.
    [49]许兴胜,王春霞,杜伟,赵致民,胡海洋,宋倩,鲁琳,阚强,陈弘达.光子晶体垂直腔面发射850hm 波长激光器研究.物理,2007,56(1):20-22.
    [50]王霞,谭永炎.准晶结构的激光全息人工制作.物理学报,2006,55(10):421-425.
    [51]殷建玲,黄旭光,刘颂豪,胡社军.液晶调制的光子晶体可控偏光片和光开关.物理学报,2006,55(10):291-299.
    [52]贾亚青,闫培光,吕可诚,张铁群,朱晓农.高非线性光子晶体光纤中飞秒脉冲的传输特性和超连续谱产生机制的实验研究及模拟分析.物理学报,2006,55(4):277-282.
    [53]刘江涛,周云松,王福合,顾本源.光子晶体反常色散超窄带滤波理论.物理学报,2005,54(10):92-96.
    [54]许震宇,张若京,龚益玲.光子晶体压力传感器的基本原理.物理学报,2004,53(3):64-67.
    [55]李明海,马懿,徐岭,张宇,马飞,黄信凡,陈坤基.二氧化硅人工蛋白石晶体(opal)的制备及其结构性质的研究.物理学报,2003,5745):264-268.
    [56]阮双琛.光子晶体光纤超连续谱与激光器[学位论文],天津,天津大学,2004.
    [57]曾谨言.量子力学导论(第二版).世界图书出版公司,1998.
    [58]J.C.Knight,T.A.Birks,P.S.J.Russell,and D.M.Atkin,"All-silica single-mode optical fiber with photonic crystal cladding," Opt.Lett.,vol.21,no.19,1996,pp.1547-1549.
    [59]J.C.Knight,T.A.Birks,P.S.J.Russell,and D.M.Atkin,"All-silica single-mode optical fiber with photonic crystal cladding:errata," Opt.Lea.,vol.22,no.7,1997,pp.484-485.
    [60]J.C.Knight,J.Broeng,T.A.Birks,and P.S.J.Russell,"Photonic band gap guidance in optical fibers,"Science,vol.282,no.5393,1998,pp.1746-1748.
    [61]R.F.Cregan,B.J.Mangan,J.C.Knight,T.A.Birks,P.S.J.Russell,P.J.Roberts,and D.C.Allan,"Single-mode photonic band gap guidance of light in air," Science,vol.285,no.5433,1999,pp.1537-1539.
    [62]M.Yan,"Introduction to microstructured optical fibers," available at http://arxiv.org/pdf/physics/0508139/
    [63]Philip Russell,"Photonic Crystal Fibers," Science,vol.299,17 January 2003,pp.358-362.
    [64]刘兆伦,刘建民,马彪,倪正华,侯蓝田,刘晓东.光子晶体光纤的制备和应用进展.大连民族学院学报,2005,7(1):39-43.
    [65]杨广强.光子晶体光纤(广义)色散与非线性特性的理论与实验研究[学位论文],北京,北京邮电大学,2005.
    [66]R.Buczynski,"photonic crystal fibers,"Acta Physica Polonica,vol.106,no.2,2004,pp.141-167.
    [67]M.Yan,X.Yu,P.Shum,C.Lu,and Y.Zhu,"Honeycomb photonic bandgap fiber with a modified core desigu," IEEE Photon.Technol.Lett.,vol.16,no.3,2004,pp.2051-2053.
    [68]C.M.Smith,N.Venkataraman,M.T.Gallagher,D.Muller,J.A.West,N.F.Borrelli,D.C.Allan,and K.W.Koch,"Low-loss hollow-core silica/air photonic bandgap fibre," Nature,vol.424,no.6949,2003,657-659.
    [69]M.Yan,P.Shum,and J.Hu,"Design of air-guiding honeycomb photonic bandgap fiber," Opt.Lett.,vol.30,no.5,2005,pp.465-467.
    [70]M.Yan,P.Shum,and X.Yu,"Heterostructured Photonic Crystal Fiber," IEEE Photon.Technol.Lett.,vol.17,no.7,2005,1438-1440.
    [71]Yanfeng Li,Ching-Yue Wang,Minglie Hu,Bowen Liu,Xiwen Sun,and Lu Chai,"Photonic Bandgap Fibers Based on a Composite Honeycomb Lattice",IEEE Photon.Technol.Lett.,vol.18,no.1,2006,pp.262-264.
    [72]P.Yeh,A.Yariv,and E.Marom.,"Theory of Bragg fiber",J.Opt.Soc.Am.,pp.1196-1201,1978.
    [73]Y.Fink,D.J.Ripin,S.Fan,C.Chen,J.D.Joannopoulos,and E.L.Thomas,"Guiding optical light in air using an all-dielectric structure," J.Lightwave Technol.,vol.17,no.11,1999,pp.2039-2041.
    [74]G.Vienne,Y.Xu,C.Jakobsen,H.-J.Deyerl,.I.B.Jensen,T.Sorensen,T.P.Hansen,Y.Huang,M.Terrel,R.K.Lee,N.A.Mortensen,J.Broeng,H.Simonsen,A.Bjarldev,and A.Yariv,"Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports," Opt.Express,vol.12,no.15,2004,pp.3500-3508.
    [75]P.J.Roberts,F.Couny,H.Sabert,B.J.Mangan,D.P.Williams,L.Farr,M.W.Mason,A.Tomlinson,T.A.Birks,J.C.Knight,and P.S.Russell,"Ultimate low loss of hollow-core photonic crystal fibres,"Opt.Express,vol.13,no.1,2005,pp.236-244.
    [76]Jian Zhou,Tajima.Katsusuke,Nakajima.Kazuhide,Kurokawa.Kenji,Fukai,Chisato,Matsui,Takashi,Sankawa,"Progress on low loss photonic crystal fibers," Opt.Fiber Technol.,vol.11,no.2,2005,pp.101-110.
    [77]Kunimasa Saitoh and Masanori Koshiba,"Leakage loss and group velocity dispersion in air-core photonic bandgap fibers" Opt.Express,vol.11,no.23,2003,pp.3100-3109.
    [78]L.Vincetti,"Confinement Losses in Honeycomb Fibers" IEEE Photon.Technol.Lett.,vol.16,no.9,2004,pp.2048-2050.
    [79]M.Yan,P.Shum,"Leakage loss of air-guiding honeycomb photonic bandgap fiber," in Optical Fiber Communication Conference 2005.Technical Digest.OFC/HFOEC,Anaheim California,USA,vol.1,6-11 March 2005,pp.1-3.
    [80]J.A.West,C.M.Smith,N.F.Borrelli,D.C.Allan,and K.W.Koch,"Surface modes in air-core photonic band-gap fibers," Opt.Express,vol.12,no.8,2004,pp.1485-1496.
    [81]Hyang Kyun Kim,Jonghwa Shin,Shanhui Fan,M.J.F.Digonnet,G.S.Kino,"Surface-mode behavior of air-core photonic-bandgap fibers," in Lasers and Electro-Optics 2004.(CLEO).Conference on vol.2,16-21 May 2004,paper CThX5.
    [82]C.Peucheret,B.Zsigri,T.P.Hansen and P.Jeppesen,"10Gbit/s transmission over air-guiding photonic bandgap fibre at 1550nm,"IEEE Electron.Lett.,vol.41,no.1,2005,pp.27-29.
    [83]Theis P.Hansen,Jes Broeng,Christian Jakobsen,Guillaume Vienne,Harald R.Simonsen,Martin D.Nielsen,Peter M.W.Skovgaard,Jacob R.Folkenberg,and Anders Bjarldev,"Air-Guiding Photonic Bandgap Fibers:Spectral Properties,Macrobending Loss,and Practical Handling," J.Lightwave Technol.,vol.22,no.1,2002,pp.11-15.
    [84]J.Jasapara,R.Bise,R.Windeler,"Chromatic dispersion measurements in a photonic bandgap fiber" in Optical Fiber Communication Conference and Exhibit 2002.OFC 2002.17-22 Mar 2002 pp.519-521.
    [85]S.E.Barkou,.I.Broeng,A.Bjarklev,"Dispersion properties of photonic bandgap guiding fibers," in Optical Fiber Communication Conference,1999,and the International Conference on Integrated Optics and Optical Fiber Communication.OFC/IOOC '99.Technical Digest.vol.4,21-26 Feb.1999,pp.117-119.
    [86]J.Jasapara,R.Bise,T.Her,J.Nicholson,"Effect of mode cut-off on dispersion in photonic bandgap fibers," Optical Fiber Communications Conference,2003.OFC 2003,vol.2,23-28 March 2003,pp.492-493.
    [87]Ni Yi,"Large Negative Dispersion in Square Solid-Core Photonic Bandgap Fibers," IEEE J.Quan.Electron.,vol.41,no.5,2005,ppp.666-670.
    [88]George Ouyang,Yong Xu,and Amnon Yariv,"Theoretical study on dispersion compensation in air-core Bragg fibers," Opt.Express,vol.10,no.17,2002,pp.899-908.
    [89]D.Torkel Engeness,Mihai Ibanescu,G.Steven Johnson,Ori Weisberg,Maksim Skorobogatiy,Steven Jacobs,and Yoel Fink,"Dispersion tailoring and compensation by modal interactions in OmniGuide fibers," Opt.Express,vol.11,no.10,2003,pp.1175-1196.
    [90]F.Benabid,J.C.Knight,and P.St.J.Russell,"Particle levitation and guidance in hollow-core photonic crystal fiber," Opt.Express,vol.10,no.21,2002,pp.1195-1203.
    [91]F.Benabid,J.C.Knight,G.Antonopoulos,"Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber," Science,vol.298,no.5592,2002,pp.399-402.
    [92]Dimitre G.Ouzounov,Faisal R.Ahmad,Dirk Müller,Natesan Venkataraman,Michael T.Gallagber,Malcolm G.Thomas,John Silcox,Karl W.Koch,and Alexander L.Gaeta.,"Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers," Science,vol.301,no.5640,2003,pp.1702-1704.
    [93]J.D.Shephard,J.D.C.Jones,D.P.Hand,G.Bouwmans,J.C.Knight,P.St.J.Russell,B.J.Mangan,"Delivery of high-peak power nanosecond pulses through air-core photonic bandgap fibres," in Lasers and Electro-Optics,2004.(CLEO).vol.2,16-21 May 2004,pp.103-106.
    [94]F.Luan,J.C.Knight,P.St.J.Russell,"Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers," Opt.Express,vol.12,no.5,2004,pp.835-840.
    [95]G.Humbert,J.C.Knight,G.Bouwmans,P.St.J.Russell,"Hollow core photonic crystal fibers for beam delivery," Opt.Express.2004,vol.12,no.8,2004,pp.1477-1484.
    [96]P.T.Rakich,J.T.Gopinath,H.Sotobayashi,Chee Wei Wong,S.G.Johnson,J.D.Joannopoulos,E.P.Ippen,"Broadband supercontinuum based measurements of high-index contrast photonic bandgap devices from 1 to 2μm," in Lasers and Electro-Optics Society,2004.LEOS 2004.The 17th Annual Meeting of the IEEE,vol.2,7-11 Nov.2004 pp.813-814.
    [97]K.Suzuki,M.Nakazawa,"Ultrabroad band white light generation from a multimode photonic bandgap fiber with an air core," in Lasers and Electro-Optics,2001.CLEO/Pacific R/m 2001.The 4th Pacific Rim Conference on Volume Supplement,15-19 July 20,2001,pp.24-25.
    [98]C.J.S.de Matos,J.R.Taylor,T.P.Hansen,K.P.Hansen,J.Broeng,"All-fiber chirped pulse amplification with reeompression in an air-core photonic bandgap fiber," in Optical Fiber Communication Conference,2004.OFC 2004.Volume 95,23-27 Feb.2004,pp.16-18.
    [99]叶培大,吴彝尊.光波导技术基本理论.北京:人民邮电出版社,1981,pp.181-186.
    [100]T.A.Birks,J.C.Knight,and P.S.J.Russell,"Endlessly single-mode photonic crystal fiber," Opt.Lett., vol.22,no.13,1997,pp.961-963.
    [101]N.A.Mortensen,J.R.Folkenberg,M.D.Nielsen,and K.P.Hansen,"Modal cutoff and the V parameter in photonic crystal fibers," Opt.Lett.,vol.28,no.20,2003,pp.1879-1881.
    [102]N.A.Mortensen,M.D.Nielsen,J.R.Folkenberg,A.Petersson,and H.R.Simonsen,"Improved large-mode-area endlessly single-mode photonic crystal fibers," Opt.Lett.,vol.28,no.6,2003,pp.393-395.
    [103]L.Labonte,D.Pagnoux,P.Roy,F.Bahloul,M.Zghal,G.Melin,E.Burov,and G.Renversez,"Accurate measurement of the cutoff wavelength in a microstructured optical fiber by means of an azimuthal filtering technique," Opt.Lett.,vol.31,no.12,2006,pp.1779-1781.
    [104]K.Nakajima,Jian Zhou,K.Tajima,K.Kurokawa,C.Fukai,I.Sankawa,"Ultrawide-band single-mode transmission performance in a low-loss photonic crystal fiber," J.Lightwave Technol.,vol.23,no.1,005,pp.7-12.
    [105]N.A.Mortensen,J.R.Folken,P.M.W.Skovgaard,J.Broeng,"Numerical aperture of single-mode photonic crystal fibers," IEEE Photon.Technol.Lett.,vol.14,no.8,2002,pp.1094-1096.
    [106]J.C.Knight,J.Arriaga,T.A.Birks,A.Ortigosa-Blanch,W.J.Wadsworth,and P.St.J.Russell,"Anomalous Dispersion in Photonic Crystal Fiber," IEEE Photon.Technol.,2000,vol.12,no.7,pp.807-809.
    [107]K.Saitoh and M.Koshiba,"Chromatic dispersion control in photonic crystal fibers:application to ultra-flattened dispersion," Opt.Express,vol.11,no.8,2003,pp.843-852.
    [108]Kunimasa Saitoh,Nikolaos Florous,and Masanori Koshiba,"Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low conf'mement losses," Opt.Express,vol.13,no.12,2005,pp.8365-8371.
    [109]W.J.Wadsworth,J.C.Knight,A.Ortigosa-Blanch,J.Arriaga,E.Silvestre,and P.St.J.Russell,"Soliton effects in photonic crystal fibres at 850nm," IEEE.Electron Lett.,vol.36,no.1,2000,pp.53-55.
    [110]A.Ferrando,E.Silvestre,J.J.Miret,and P.Andres,"Nearly zero ultraflattened dispersion in photonic crystal fiber," Opt.Lett.,vol.25,no.1,2000,pp.790-792.
    [111]A.Ferrando,E.Silvestre,P.Andres,J.J.Miret,and M.V.Andres,"designing the properties of dispersion-flattened photonic crystal fibers," Opt.Express,vol.9,no.13,2001,pp.687-697.
    [112]W.H.Reeves,J.C.knight,P.St.J.Russell,and P.J.Roberts,"Demonstration of ultra-flattened dispersion in photonic crystal fibers," Opt.Express,vol.10,no.14,2002,pp.609-613.
    [113]T.L.Wu and C.H.Chao,"A novel ultraflattened dispersion photonic crystal fiber," IEEE Photon.Technol.Lett.,vol.17,no.1,2005,pp.67-69.
    [114]A.Ferrando,E.Silvestre,J.J.Miret,J.A.Monsoriu,M.V.Andres,P.St.J.Russell,"Designing a photonic crystal fiber with flattened chromatic dispersion," IEEE Electron.Lett.,vol.35,no.4,1999,pp.325-327.
    [115]T.A.Birks,D.Mogilevtsev,,I.C.Knight,P.St.J.Russell,"Dispersion compensation using single-material fibers," IEEE Photon.Technol.Lett.,vol.11,no.6,1999,pp.674-676.
    [116]Yi Ni,Lei Zhang,Liang An,Jiangde Peng,Chongcheng Fan,"Dual-core photonic Crystal fiber for dispersion compensation," IEEE Photon.Technol.Lett.,vol.16,no.6,2004,pp.1516-1518.
    [117]K.Saitoh,M.Koshiba,"Numerical modeling of photonic crystal fibers," J.Lightwave Technol.,vol.23,no.11,2005,pp.3580- 3590.
    [118]K.Saitoh and M.Koshiba,"Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window," Opt.Express,vol.12,no.10,2004,pp.2027-2032.
    [119]P.A.Champert,S.V.Popov,J.R.Taylor,"Generation of multiwatt,broadband continua in holey fibers," Opt.Lett.,vol.27,no.2,2002,pp.122-124.
    [120]K.Sakamaki,M.Nakao,M.Naganuma,M.Izutsu,"Soliton Induced Supercontinuum Generation in Photouic Crystal Fiber," IEEE J.Selected Topics In Quantum Electron.,vol.10,no.5,2004,pp.876-884.
    [121]Jia Ya-Qin,Yah Pei-Guang,LV Ke-Cheng,Zhang Tie-Quan,Zhu Xiao-Nong,"Experimental study and numerical analysis of femtosecond pulse propagation and supercontinuum generation in highly nonlinear photonic crystal fiber,"Acta Phys.Sin.,vol.55,no.4,2006,pp.1809-1814.
    [122]K.Sakamaki,M.Nakao,M.Naganuma,M.Izutsu,"Soliton Induced Supercontinuum Generation in Photonic Crystal Fiber," IEEE J.Selected Topics In Quantum Electron.,vol.10,no.5,2004,pp.876-884.
    [123]A.Ortigosa-Blanch,J.C.Knight,W.J.Wadsworth,J.Arriaga,B.J.Mangan,T.A.Birks,and P.S.J.Russell,"Highly birefringent photonic crystal fibers," Opt.Lett,vol.25,no.18,2000,pp.1325-1327.
    [124]M.J.Steel and R.M.Osgood,Jr.,"Elliptical-hole photonic crystal fibers," Opt.Lett.,vol.26,no.4,2001,pp.229-231.
    [125]A.Peyrilloux,T.Chartier,A.Hideur,L.Berthelot,G.Mélin,S.Lempereur,D.Pagnoux,and P.Roy,"Highly Birefringent Index-Guiding Photouie Crystal Fibers," J.Lightwave Technol.,vol.21,no.2,2003,pp.536-539.
    [126]K.Suzuki,H.Kubota,S.Kawanishi,M.TanakaM.Fujita,"High-speed bi-directional polarisation division multiplexed optical transmission in ultra low-loss(1.3dB/km)polarisation-maintaining photonic crystal," IEEE Electron.Lett.,vol.37,no.23,2001,pp.1399-1401.
    [127]Theis P.Hansen,Jes Broeng,Stig E.B.l.ibori,Erik Knudsen,Anders Bjarklev,Jacob Riis Jensen,and Harald Simonsen,"Highly Birefringent Index-Guiding Photonie Crystal Fibers," IEEE Photon.Technol.,vol.13,no.6,2001,pp.588-590.
    [128]J.Ju,W.Jin,Senior Member,IEEE,and M.S.Demokan,"Properties of a Highly Bireh'ingent Photonie Crystal Fiber," IEEE Photon.Technol.,vol.15,no.10,2003,pp.1375-1377.
    [129]G.Kakarantzas,A.Ortigosa-Blanch,T.A.Birks,P.St.J.Russell,L.Farr,F.Couny,B.J.Mangan,"Structural rocking filters in highly birefringent photonic crystal fiber," Opt.Lett.,vol.28,no.3,2003,pp.158-160.
    [130]Kunimasa Saith,Mnsanori Koshiba,"Single-polarization single-modes photonic crystal fiber," IEEE Photon.Technol.,vol.15,no.10,2003,pp.1384-1386.
    [131]K.Hiirokazu,K.Satoki,K.Shigeki,"Absolutely Single-Polarization Single-Mode Photonic Crystal Fiber," IEEE Photon.Technol.,vol.16,no.1,2004,pp.182-184.
    [132]K.Tajima,J.Zhou,K.Nakajima,"Ultra low loss and long length photonic crystal fiber," J.Lightwave Technol.,vol.22,no.1,2004,pp.7-9.
    [133]Niels Asger Mortensen,Jacob Riis Folken,Peter M.W.Skovgaard,and Jes Broeng,"Numerical Aperture of Single-Mode Photonic Crystal Fibers," IEEE Photon.Technol.,vol.14,no.8,2002,pp.1094-1096.
    [134]Arturo Ortigosa-Blanch,Antonio Díez,Martina Delgado-Pinar,José L.Cruz,and Miguel V.Andrés,"Ultrahigh Birefringent Nonlinear Microstructured Fiber," IEEE Photon.Technol.,vol.16,no.7,2004,pp.1667-1669.
    [135]Jacob Folkenberg,M.Nielsen,N.Mortensen,C.Jakobsen,H.Simonsen,"Polarization maintaining large mode area photonic crystal fiber," Opt.Express,vol.12,no.5,2004,pp.956-960.
    [136]L Rosa,F.Poli,M.Foroni,A.Cucinotta,and S.Selleri,"Polarization splitter based on a square-lattice photonic-crystal fiber," Opt.Lett.,vol.31,no.4,2006,pp.441-443.
    [137]C.Martelli,J.Canning,N.Groothoff,and K.Lyytikainen,"Strain and temperature characterization of photonic crystal fiber Bragg gratings," Opt.Lett.,vol.30,no.14,2005,pp.1785-1787.
    [138]J.H.Lim,H.S.Jang,K.S.Lee,J.C.Kim,and B.H.Lee,"Mach-Zehnder intefferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings," Opt.Lett,,vol.29,no.4,2004,pp.346-348.
    [139]T.A.Birks,D.Mogilevtsev,J.C.Knight,P.St.J.Russell,J.Broeng,P.J.Roberts,J.A.West,D.C.Allan,J.C.Fajardo,"The analogy between photonic crystal fibers and step index fibers," OFC'98,FG4,1998,pp.114-116.
    [140]Masanori Koshiba,Kunimasa Saitoh,"Simple evaluation of confinement losses in holey fibers," Opt.Communications,vol.253,no.1-3,2005,pp.95-98.
    [141]A.Ferrando,E.Silvestre,J.J.Miter,P.Andres,M.V.Andres,"Full-vector analysis of a realistic photonic crystal fiber," Opt.Lett.,vol.24,no.5,pp.276-278.
    [142]D.Mogllevtsev,T.A.Birks,and P.St.J.Russell,"Localized function method for modeling defect modes in 2-D photonic crystals," J.Lightwave Technol.,vol.17,no.11,1999,pp.2078-2081.
    [143]Tanya M.Monro,D.J.Richardson,N.GR.Brodedck,PJ.Bennett,"Holey optical fibers:An efficient modal model," J.Lightwave Technol.,vol.17,no.6,1999,pp.1093-1102.
    [144]De Sterke,C.Martijn,T.P.White,B.T.Kuhlmey,R.C.McPhedran,D.Maystre,G Renversez,L.C.Botten,"Multipole method for microstructured optical fibers.I.Formulation," J.Opt.Soc.Am.B:Optical Physics,voL 19,no.10,2002,pp.2322-2330.
    [145]Boris T.Kuhlmey,Thomas P.White,Gilles Renversez,Maystre,Daniel,Botten,C.Lindsay,De Sterke,C.Martijn,McPhedran,C.Ross,"Multipole method for microstructured optical fibers.Ⅱ.Implementation and results," J.Opt.Soc.Am.B:Optical Physics,vol.19,no.10,2002,pp.2331-2340.
    [146]T.P.White,B.T.Kuhlmey,R.C.McPhedran,D.Maystre,G.Renversez,C.Martijn de Sterke,L.C.Botten,"Erratum:Multipole method for microstructured optical fibers.Ⅰ.Formulation," J.Opt.Soc.Am.B:Optical Physics,vol.20,no.7,2002,pp.1581-1581.
    [147]Zhi Wang,Guobin Ren,Shuqin Lou,Shuisheng Jian,"Supercell lattice method for photonic crystal fibers," Opt.Express,vol.11,no.9,2003,pp.980-991.
    [148]Guobin Ren,Zhi Wang,Shuqin Lou,Shuisheng Jian,"Mode classification and degeneracy in photonic crystal fibers," Opt.Express,vol.11,no.11,2003,pp.1310-1321.
    [149]Zhi Wang,Guobin Ren,Shuqin Lou,Shuisheng Jian,"Dependence of mode characteristics on the central defect in elliptical hole photonic crystal fibers," Opt.Express,vol.11,no.17,2003,pp.1966-1979.
    [150]Min Qiu,"Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method," Microwave and Opt.Technol.Lett.,vol.30,no.5,2001,pp.pp.327-330.
    [151]O.C.Zienkiewitz,The Finite Element Method,3rd ed.,McGraw-Hill,New York,1973.
    [152]Kenji Kawano,Tsutomu Kitoh,Introduction to Optical Waveguide Analysis:Solving Ma.rwell's Equations and the Schrodinger Equation,John Wiley & Sons,New York,2001.
    [153]M.Koshiba,Optical Waveguide Theory by the Finite Element Method,KTK Scientific Publishers and Kluwer Academic Publishers,Dordrecht,Holland,1992.
    [1]张方迪,刘小毅,张民,叶培大.全矢量有限元模型及其在光波导和光子晶体光纤中的应用.光子学报,2007,36(2):209-215.
    [2]O.C.Zienkiewitz,The Finite Element Method,3rd ed.,McGraw-Hill,New York,1973.
    [3]Kenji Kawano,Tsutomu Kitoh,Introduction to Optical Waveguide Analysis:Solving Maxwell's Equations and the Schrodinger Equation,John Wiley & Sons,New York,2001.
    [4]M.Koshiba,Optical Waveguide Theory by the Finite Element Method,KTK Scientific Publishers and Kluwer Academic Publishers,Dordrecht,Holland,1992.
    [5]吕英华著.计算电磁学的数值方法.北京:清华大学出版社,2006.LV Y H,Numerical Methods in Computational Electomagnetics,Tsinghua University Press,Beijing,2006.
    [6]金建铭(美)著,王建国译,葛德彪校.电磁场有限元方法.西安:西安电子科技大学出版社,2001.Jin J M,Tanslated by Wang J G,Ge D B,Thefinite element method in electromagnetics:Vector finite element,XiDian University Press,XiAn,1998.
    [7]R.F.Harrington,Time-Harmonic Electromagnetic Fields,McGraw-Hill,New York,1961.
    [8]R.S.Elliott,"Two-mode waveguide for equal mode velocities," IEEE Trans.Microwave Theory Tech.,vol.MTT-16,no.3,1968,pp.282-286.
    [9]P.Silvester,"Finite element solution of homogeneous waveguide problem,"Alta Freq.,vol.38,Special Issue,May 1969,pp.313-317.
    [10]S.Ahmed and P.Daly,"Waveguide solutions by the finite element method," Radio Electron.Eng.,vol.38,1969,pp.217-223.
    [11]P.Silvester,"A general high-order finite-element wavegnide analysis program," IEEE Trans.Microwave Theory Tech.,vol.MTT-17,no.4,Apr.1969,pp.204-210.
    [12]S.Ahrned and P.Daly,"Finite element method for inhomogeneous waveguides," IEE Pro.J.,vol.116,no.9,Oct.1969,pp.1661-1664.
    [13]Z.J.Cendes and P.Silvester,"Numerical solution of dielectric loaded waveguides:I.Finite element analysis," IEEE Trans.Microwave Theory Tech.,vol.MTT-18,no.12,Dec.1970,pp.1124-1131.
    [14]M.Koshiba,H.Saitoh,M.Eguchi,and K.Hirayama,"Simple scalar finite element approach to optical waveguides," IEE Proc.J.,vol.139,no.2,1992,pp.166-171.
    [15]D.Geider,"Numerical determination of microstrip properties using the transverse field components,"IEE Proc.J.,vol.117,1970,pp.699-703.
    [16]A.Konrad,"Vector variational formulation of electromagnetic fields in anisotropic media," IEEE Trans.Microwave Theory Tech.,vol.MTT-24,no.9,Sept.1976,pp.553-559.
    [17]B.M.A.Rahman and J.B.Davies,"Penalty function improvement of wavegnide solution by finite elements," IEEE Trans.Microwave Theory Tech.,vol.MTT-32,no.8,Aug.1984,pp.922-928.
    [18]M.Koshiba,K.Hayata,and M.Suzuki,"Improved finite-element formulation in terms of the magnetic field vector for dielectric waveguides," IEEE Trans.Microwave Theory Tech.,vol.MTr-33,no.3,Mar.1985,pp.227-233.
    [19]M.Koshiba,K.Hayata,and M.Suzuki,"Finite-element formulation in terms of the electric field vector for electromagnetic problems," IEEE Trans.Microwave Theory Tech.,vol.MTT-33,no.8,Oct.1985,pp.900-905.
    [20]K.Hayata,M.Koshiba,E.Egnchi,and M.Suzuki,"Vectorial finite-element method without any spurious solutions for dielectric waveguiding problems using transverse magnetic field component,"IEEE Trans.Microwave Theory Tech.,vol.MTT-34,no.3,Mar.1986,pp.1120-1124.
    [21]A.J.Kobelansky and J.R Webb,"Eliminating spurious modes in finite-element wavegnide problems by using divergence-free fields," IEEE Electron.Lett.,vol.22,no.11,May 1986,pp.569-570.
    [22]T.Angkae,M.Matsuhara,and N.Kumagal,"Finite-element analysis of wavegnide modes:A novel approach that eliminates spurious modes," IEEE Microwave Theory Tech.,vol.MTT-35,no.2,Feb.1987,pp.117-123.
    [23]K.Hayata,K.Miura,and M.Koshiba,"Finite element formulation for lossy waveguides," IEEE Trans.Microwave Theory Tech.,vol.MTT-36,no.2,Feb.1988,pp.268-276.
    [24]J.P.Webb,"Finite element analysis if dispersion in wavegnides with sharp metal edges," IEEE Trans.Microwave Theory Tech.,vol.MTr-36,no.12,Dec.1988,pp.1819-1824.
    [25]K.Hayata,M.Koshiba,M.Egnchi,and M.Suzuki,"Finite-element formulation using transverse electric-field component," IEEEMicrowave Theory Tech.,vol.MTT-37,no.1,Jan.1989,pp.256-258.
    [26]W.C.Chew and M.A.Nasir,"A variational analysis of anisotropic,inhomogeneous dielectric waveguides," IEEE Trans.Microwave Theory Tech.,vol.MTT-37,no.4,Apr.1989,pp.661-668.
    [27]K.Hayata,K.Miura,and M.Koshiba,"Full vectorial finite element forrmulism for lossy anisotropic waveguides," IEEE Trans.Microwave Theory Tech.,vol.MTT-37,no.5,May.1989,pp.875-883.
    [28]J.A.M.Svedin,"A numerically efficient finite-element formulation for the general wavegnide problem without spurious modes," IEEE Microwave Theory Tech.,vol.MTF-37,no.11,Nov.1989,pp.1708-1715.
    [29]F.A.Fernandez and Y.Lu,"Variational finite element analysis of dielectric wavegnides with no spurious solutions," IEEE Electron.Lett.,vol.26,no.25,1990,pp.2125-2126.
    [30]M.Israel and R.Miniowitz,"Hermitian finite-element method for inhomogeneous waveguides," IEEE Trans.Microwave Theory Tech.,vol.MTT-38,no.9,Sept.1990,pp.1319-1327.
    [31]H.Whitney,Geometric Integration Theory,Princeton,NJ:Princeton University Press,1957.
    [32]A.Bossavit and J.C.Verite,"A mixed FEM-BIEM method to solve 3-D eddy current problems," IEEE Trans.Magnetics,vol.MAG-18,no.3,Mar.1982,pp.431-435.
    [33]M.Hano,"Finite-element analysis of dielectric-loaded wavegnides," IEEE Trans.Microwave Theory Tech.,vol.MTT-32,no.10,1984,pp.1275-1279.
    [34]G.Mur and T.de Hoop,"A finite-element method for computing three-dimensional electromagnetic fields in inhomogeneous media," IEEE Trans.Magnetics,vol.MAG-21,1985,pp.2188-2191.
    [35]J.S.Van Welij,"Calculation of eddy current in terms of H on hexahedra," IEEE Trans.Magnetics,vol.MAG-21,1985,no.6,pp.2239-2241.
    [36]A.Bossavit and I.Mayergoyz,"Edge-elements for scattering problems," IEEE Trans.Magnetics,vol.MAG-24,1988,no.4,pp.74-79.
    [37]J.F.Lee,D.K.Sun,and Z.J.Cendes,"Full-wave analysis of dielectric waveguides using tangential vector finite elements," IEEE Trans.Microwave Theory Tech.,vol.MTT-39,no.8,1991,pp.1262-1271.
    [38]R.Miniowitz and J.P.webb,"Covariant-projection quadrilateral elements for the analysis of waveguides with sharp edges," IEEE Trans.Microwave Theory Tech.,vol.MTF-39,no.3,1991,pp.501-505.
    [39]K.Ise,K.Inoue,and M.Koshiba,"Three-dimensional finite-element method with edge elements for electromagnetic waveguide discontinuities," IEEE Trans.Microwave Theory Tech.,vol.MTT-39,no.8,1991,pp.1289-1295.
    [40]K.Sakiyama,H.Kotera,and A.Ahagon,"3-D electromagnetic field mode analysis using finite element method by edge element,"IEEE Trans.Magnetics,vol.MAG-26,no.5,1990,pp.1759-1761.
    [41]J.S.Wang and N.Ida,"Eigenvalue analysis in electromagnetic cavities using divergence free finite elements," IEEE Trans.Magnetics,vol.MAG-27,no.5,1991,pp.3978-3981.
    [42]A.Chatterjee,J.M.Jin,and J.L Volakis,"Robust finite element solution for three-dimensional scattering," IEEE Electron.Lett.,vol.2,no.10,1992,pp.966-967.
    [43]Jong Chang Yi,Sun Ho Kim,Sang Sam Choi,"Finite-element method for the impedance analysis of traveling-wave modulators," J.Lightwave Technol.,vol.6,no.6,1990,pp.817-822.
    [44]Yamamoto.T,Koshiba.M,"Numerical analysis of curvature loss in optical waveguides by the finite-element method," J.Lightwave Technol.,vol.11,no.10,1993,pp.1579-1583.
    [45]Koshiba.M,Maruyama.S,Hirayama.K,"A vector f'mite element method with the high-order mixed-interpolation-type triangular elements for optical waveguiding problems," J.Lightwave Technol.,vol.12,no.3,1994,pp.495-502.
    [46]Cheung.P,Silveira.M,Gopinath.A,"Analysis of lossy dielectric guides by transverse magnetic field finite elements method," J.Lightwave Technol.,vol.13,no.9,1995,pp.1873-1875.
    [47]Tortes.P,Guzman.A.M,"Complex finite.element method applied to the analysis of optical waveguide amplifiers," J.Lightwave Technol.,vol.15,no.3,1997,pp.546550.
    [48]Yoneta.S,Koshiba.M,Tsuji.Y,"Combination of beam propagation method and finite element method for optical beam propagation analysis," J.Lightwave Technol.,vol.17,no.11,1999,pp.2398-2404.
    [49]Obayya.S.S.A,Rahman.B.M.A,El-Mikati.H.A,"New full-vectorial numerically efficient propagation algorithm based on the finite element method,"J.Lightwave Technol.,vol.18,no.3,2000,pp.409-415.
    [50]M.Koshiba,Y.Tsuji,"Corvilinear Hybrid Edge/Nodal Elements with Triangular Shape for Guided-Wave Problems," J.Lightwave Technol.,vol.18,no.5,2000,pp.737-743.
    [51]Tsuji Y,and Koshiba M.Guided-Mode and Leaky-Mode Analysis by Imaginary Distance Beam Propagation Method Based on Finite Element Scheme.J.Lightwave Technol.,vol.18,no.4,2000,pp.618-623.
    [52]Govind P.Agrawal,Nonlinear Fiber Optics,3rd ed,Academic Press,1995,pp.7.
    [53]葛德彪,闫玉波.电磁波时域有限差分方法.西安:西安电子科技大学出版社,2002.Ge D B,Yah Y B,The finite difference time domain method for electromagnetics,XiDian University Press,Xi An,2002.
    [54]Wu J Y,Kingsland D M,Lee J F,"A comparison of anisotropic PML to Berenger's PML and its application to the finite element method for EM scattering," IEEE Trans.Antennas Propagation,vol.45,no.1,1999,pp.40-50.
    [55]TeixeiraF L,Chew W C,"General closed-form PML constitutive linear media," IEEE Microwave Guided Wave Lett.,vol.8,1998,pp.223-225.
    [56]M.Koshiba,Y.Tsuji,S.Sasaki,"High-Performance Absorbing Boundary Conditions for Photonic Crystal Waveguide Simulations," IEEE Microwave and Wireless Components Letters,vol.11,no.4,2001,pp.152-154.
    [57]Hernandez H E,Hernandez F A,Lu Y,et al,"Vectorial Finite Element Modelling of 2D leaky Waveguides," IEEE Trans.Magnetics,vol.31,no.3,1995,pp.1710-1713.
    [58]Selleri S,Vincetti L,Cueinotta A,et al,"Complex FEM modal solver of optical waveguides with PML boundary conditions," Opt.and Quan.Electron.,vol.33,2001,pp.359-371.
    [59]Koshiba M,Hayata K,Suzuki M,"Improved Finite-Element Formulation in terms of the Magnetic Field Vector for the Dielectric Waveguides," IEEE Trans.Microwave Theory Tech.,vol.MTT-33,no.3,1985,pp.227-233.
    [60]I.P.Kaminow,"Polarization in optical fibers," IEEE J.Quan.Electron.,vol.QE-17,no.1,1981.pp.15-22.
    [1]张方迪,刘小毅,张民,叶培大.高折射率芯Bragg光纤的瑞利散射特性的数值分析.吉首大学学报,2007,27(6):68-71.
    [2]陈盛华,张志刚,王清月,张方迪,“光子晶体光纤瑞利散射特性的数值分析,”天津大学学报,vol.40,(In Press).
    [3]H.Kanamori,H.Yokota,G.Tanaka,M.Watanabe,Y.Ishiguro,I.Yoshida,T.Kakii,S.Ito,Y.Asano,and S.Tanaka,"Transmission characteristics and reliability of pure..SiO2-core single-mode fibers," J.Lightwave Technol.,vol.4,no.8,1986,pp.1144-1150.
    [4]M.Bredol,D.Leers,L.Bosselaar,and M.Hutjens,"Improved model for OH absorption in optical fibers," J.Lightwave Technol.,vol.18,no.10,1990,pp.1536-1540.
    [5]M.Ohashi,K.Shiraki,and K.Tajima,"Optical loss property of silica-based single-mode fibers," J.Lightwave Technol.,vol.10,no.5,1992,pp.539-543.
    [6]K.Tajima,M.Ohashi,K.Shiraki,M.Tateda,and S.Shibata,"Low Rayleigh scattering P2OS-F-SiO2glasses," J.Lightwave Technol.,vol.10,no.11,1992,pp.1532-1535.
    [7]M.Tateda,M.Ohashi,K.Jajima,and K.Shiraki,"Design of viscosity matched optical fibers," IEEE Photon.Technol.Lea.,vol.4,no.9,1992,pp.1023-1025.
    [8]M.Ohashi,M.Tadeda,K.Shiraki,and K.Tajima,"Imperfection loss reduction in viscosity-matched optical fibers," IEEE Photon.Technol.Lett.,vol.5,no.7,1993,pp.1532-1535.
    [9]K.Tsujikawa,M.Ohashi,K.Shiraki,and M.Tateda,"Scattering property of F and GeO2 codoped silica glasses," IEEE Electron.Lett.,vol.30,no.4,1994,pp.351-352.
    [10]K.Tsujikawa,M.Ohashi,K.Shiraki,and M.Tateda,"Effect of thermal treatment on Rayleigh scattering in silica-based glasses," IEEE Electron.Lett.,vol.31,no.22,1995,pp.1940-1941.
    [11]K.Tsujikawa,K.Tajima,and M.Ohashi,"Rayleigh scattering reduction method for silica-based optical fiber," J.Lightwave Technol.,vol.18,no.11,2000,pp.1528-1532.
    [12]K.Tajima,"Low-loss optical fibers realized by reduction of Rayleigh scattering loss," in Optical Fiber Communication Conference,Vol.2 of 1998 O SA Technical Digest Series(Optical Society of America,Washington,D.C.,1998),pp.305-306.
    [13]P.Guenot,P.Nouchi,and B.Poumellec,"Influence of drawing temperature on light scattering properties of single-mode fibers," in Optical Fiber Communication Conference(Optical Society of America,Washington,D.C.,1999),pp.84-86.
    [14]T.Kato,M.Hirano,M.Onishi,and M.Nishimura,"Ultra low nonlinearity low loss pure silica core fiber for long-haul WDM transmission," IEEE Electron.Lett.,vol.35,no.19,1999,pp.1615-1617.
    [15]T.P.White,R.C.McPhedran,C.M.de Sterke,L.C.Botten,and M.J.Steel,"Confinement losses in microstructured optical fibers," Opt.Lett.,vol.26,no.21,2001,pp.1660-1662.
    [16]Y.Xu and A.Yariv,"Loss analysis of air-core photonic crystal fibers," Opt.Lett.,vol.28,no.20,2003,pp.1885-1887.
    [17]K.Tajima,Jian Zhou,IC Nakajima,and K.Sato,"Ultralow loss and long length photonic crystal fiber," J.Lightwave Technol.,vol.22,no.1,2004,pp.7-10.
    [18]Ming-Yang Chen,Rong-Jin Yu,and An-Ping Zhao,"Confinement Losses and Optimization in Rectangular-Lattice Photonic-Crystal Fibers," J.Lightwave Technol.,vol.23,no.9,2005,pp.2707-2712.
    [19]Takashi Matsui,Jian Zhou,Kazuhide Nakajima,and Izumi Sankawa,"Dispersion-Flattened Photonic Crystal Fiber with Large Effective Area and Low Confinement Loss," J.Lightwave Technol.,vol.23,no.12,2005,pp.4178-4183.
    [20]A.Hochman and Y.Leviatan,"Calculation of confinement losses in photonic crystal fibers by use of a source-model technique," J.Opt.Soc.Am.B,vol.22,no.2,2005,pp.474-480.
    [21]H.C.Nguyen,B.T.Kuhlmey,M.J.Steel,C.L.Smith,E.C.Magi,R.C.McPhedran,and B.J.Eggleton,"Leakage of the fundamental mode in photonic crystal fiber tapers," Opt.Lett.,vol.30,no.10,2005,pp.1123-1125.
    [22]Wang Zhi,Ren Guobin,Lou Shuqin,and Jian Shuisheng,"Loss properties due to Rayleigh scattering in different types of fiber," Opt.Express,vol.11,no.1,2003,pp.40-47.
    [23]P.Yeh,A.Yariv,and E.Marom.,"Theory of Bragg fiber",J.Opt.Soc.Am.,vol.68,no.9,pp.1196-1201,1978.
    [24]E.Yablonovitch,"Inhibited spontaneous emission in solid-state physics and electronics," Phys.Rev.Lett.,vol.58,no.20,1987,pp.2059-2062.
    [25]J.A.Monsoriu,E.Silvestre,A.Ferrando,P.Andres,and J.J.Miret,"High-index-core Bragg fibers:dispersion properties," Opt.Express,vol.11,no.12,2003,pp.1400-1405.
    [26]J.C.Knight,T.A.Birks,P.St.J.Russell,and D.M.Atkin,"All-Silica single-mode optical fiber with photonic crystal cladding," Opt.Lett.vol.21,no.19,Oct.1996,pp.1547-1549.
    [27]任国斌,王智,娄淑琴等.高折射率芯Bragg光纤的色散特性研究.物理学报,vol.53,no.6,2004,pp.1862-1867.Ren Guobin,Wang Zhi,Lou Shuqin,et al.Acta Physica Sinica,vol.53,no.6,2004,pp.1862-1867.
    [28]Xian Feng,Tanya Monro M,Periklis Petropoulos,et al,"Single-mode high-index.core one-dimensional microstructured fiber with high nonlinearity," in Optical Fiber Communication Conference 2005,paper OThAS.
    [29]Govind P.Agrawal,Nonlinear Fiber Optics,3rd ed,Academic Press,1995,pp.7.
    [30]T.A.Birks,D.Mogilevtsev,J.C.Knight,P.St.J.Russell,J.Broeng,P.J.Roberts,J.A.West,D.C.Allan,and J.C.Fajardo,"The analogy between photonic crystal fibres and step index fibres," in Optical Fiber Communication Conference(Optical Society of America,Washington,D.C.,1999),pp.114-116.
    [31]Farr L,Knight J C,Mangna B J,et al,"Low loss Photonic Crystal fibre," in European Conference on Optical Communication,2002,paper PD1-3.
    [1]Fangdi Zhang,Xiaoyi Liu,Min Zhang,and Peida Ye,"A novel ultraflattened dispersion photonic Crystal fiber with high nonlinearity,"(Submitted to APOC'2007).
    [2]T.A.Birks,J.C.Knight,and E St.J.Russell,"Endlessly single-mode photonic crystal fiber," IEEE Photon.Technol.Lett.,vol.22,no.13,1997,pp.961-963.
    [3]Lou Shu-Qin,Wang Zhi,Ren Guo-Bin,and Jian Shui-Sheng,"Propagation properties of an index guiding high birefringence fibre," Chin.Phys.,vol.13,no.9,2004,pp.1493-1499.
    [4]Lou Shu-Qin,Yah Feng-Ping,Ren Guo-Bin,and Jian Shui-Sheng,"High-Flexible Single-Polarization Single-Mode Photonic-Crystal Fibre," Chinese Phys.Left.,vol.21,no.12,2004,pp.2448-2451.
    [5]Lou Shu-Qin,Liu Xiao-Dong,Hou Lan-Tian,"The study of waveguide mode and dispersion property in photonic crystal fibres",Acta Phys.Sin.,vol.52,no.11,2003,pp.2811-2817.
    [6]Ren Guo-Bin,Wang Zhi,Lou Shu-Qin,Jian Shui-Sheng,"Localized orthogonal function model of elliptical-hole photonic crystal fibers," Acta Phys.Sin.,vol.53,no.2,2004,pp.484-489.
    [7]Ren Guo-Bin,Wang Zhi,Lou Shu-Qin,Jian Shui-Sheng,"Study on mode degeneracy in photonic crystal fibers,"Acta Phys.Sin.,vol.53,no.6,2004,pp.1856-1861.
    [8]Li Shu-Guang,Liu Xiao-Dong,Hou Lan-Tian,"Vector analysis of dispersion for the fundamental cladding mode in photonic crystal fibers,"Acta Phys.Sin.,vol.53,no.6,2004,pp.1873-1879.
    [9]Hu Min-Lie,Wang Qin-Yue,Li Yan-Feng,et al,"Birefringence phenomena in a random distributed microstructure fiber,"Acta Phys.Sin.,vol.53,no.12,2004,pp.4248-4252.
    [10]Zhang De-Sheng,Dong Xiao-Yi,Zhang Wei-Gang,et al,"Studies on the dispersion in photonic crystal fiber using the step effective index model,"Acta Phys.Sin.,vol.54,no.3,2005,pp.1235-1240.
    [11]Li Shu-Guang,Xing Guang-Long,Zhou Gui-Yao,Hou Lan-Tian,"Numerical simulation of square-lattice photonic crystal fiber with high birefringence and low confinement loss," Acta Phys.Sin.,vol.55,no.1,2006,pp.238-243.
    [12]M.J.Steel and R.M.Osgood,Jr.,"Elliptical-hole photonic crystal fibers," Opt.Lett.,vol.26,no.4,2001,pp.229-231.
    [13]Lou Shu-Qin,Wang Zhi,Ren Guo-Bin,and Jian Shui-Sheng,"Polarization-maintaining photonic crystal fibre," Chin.Phys.,vol.53,no.7,2004,pp.1052-1057.
    [14]Theis P.Hansen,Jes Broeng,Stig E.B.Libofi,Erik Knudsen,Anders Bjarklev,Jacob Riis Jensen,and Harald Simonsen,"Highly Birefringent Index-Guiding Photonic Crystal Fibers," IEEE Photon.Technol.Lett.,vol.13,no.6,2001,pp.588-590.
    [15]Jia Ya-Qin,Yah Pei-Guang,LV Ke-Cheng,Zhang Tie-Quan,Zhu Xiao-Nong,"Experimental study and numerical analysis of femtosecond pulse propagation and supercontinuum generation in highly nonlinear photonic crystal fiber,"Acta Phys.Sin.,vol.55,no.4,2006,pp.1809-1814.
    [16]J.C.Knight,J.Arriaga,T.A.Birks,A.Ortigosa-Blanch,W.J.Wadsworth,and E St.J.Russell,"Anomalous Dispersion in Photonic Crystal Fiber," IEEE Photo.Technol.,2000,vol.12,no.7,pp.807-809.
    [17]K.Saitoh and M.Koshiba,"Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window," Opt.Express,vol.12,no.10,2004,pp.2027-2032.
    [18]A.Ferrando,E.Silvestre,J.J.Miret,and E Andres,"Nearly zero ultraflattened dispersion in photonic crystal fiber," Opt.Lett.,vol.25,no.1,2000,pp.790-792.
    [19]A.Ferrando,E.Silvestre,P.Andres,J.J.Miret,and M.V.Andres,"Designing the properties of dispersion-flattened photonic crystal fibers," Opt.Express,vol.9,no.13,2001,pp.687-697.
    [20]W.H.Reeves,J.C.knight,P.St.J.Russell,and P.J.Roberts,"Demonstration of ultra-flattened dispersion in photonic crystal fibers," Opt.Express,vol.10,no.14,2002,pp.609-613.
    [21]T.L.Wu and C.H.Chao,"A novel ultraflattened dispersion photonic crystal fiber," IEEE Photon.Technol.Lett.,vol.17,no.1,2005,pp.67-69.
    [22]A.Ferrando,E.Silvestre,J.J.Miret,J.A.Monsoriu,M.V.Andres,P.St.J.Russell,"Designing a photonic crystal fibre with flattened chromatic dispersion," Electron.Lett.,vol.35,no.4,1999,pp.325-327.
    [23]T.A.Birk,D.Mogilevtsev,et al,"Single material fibers for dispersion compensation," in Optical Fiber Communication Conference(Optical Society of America,Washington,D.C.,),vol.36,1999,FG-1-FG-3.
    [24]Yi Ni,Lei Zhang,Liang An,Jiangde Peng,Chongcheng Fan,"Dual-core photonic Crystal fiber for dispersion compensation," IEEE Photon.Technol.Lett.,vol.16,no.6,2004,pp.1516-1518.
    [25]K.Saitoh and M.Koshiba,"Chromatic dispersion control in photonic crystal fibers:application to ultra-flattened dispersion," Opt.Express,vol.11,no.8,2003,pp.843-852.
    [26]Kunimasa Saitoh,Nikolaos Florous,and Masanori Koshiba,"Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses," Opt.Express,vol.13,no.12,2005,pp.8365-8371.
    [27]Shailendra K.Varshney,Kunimasa Saitoh,and Masanori Koshiba,"A Novel Design for Dispersion Compensating Photonic Crystal Fiber Raman Amplifier," IEEE Photon.Technol.Lett.,vol.17,no.10,2005,pp.2062-2064.
    [28]W.J.Wadsworth,J.C.Knight,A.Ortigosa-Blanch,J.Arriaga,E.Silvestre,and P.St.J.Russell,"Soliton effects in photonic crystal fibres at 850nm," IEEEElectron Lett.,vol.36,no.1,2000,pp.53-55.
    [29]B.R.Washburn,S.E.Ralph,P.A.Lacourt,J.M.Dudley,W.T.Rhodes,R.S.Windeler,S.Coen,"Tunable near-infrared femtosecond soliton generation in photonic crystal fibres," IEEE Electron.Lett.,vol.37,no.25,2001,pp.1510-1512.
    [30]I.G.Cormack,D.T.Reid,W.J.Wadsworth,J.C.Knight,P.St.J.Russell,"Observation of soliton self-frequency shift in photonic crystal fibre," IEEE Electron.Lett.,vol.38,no.4,2002,pp.167-169.
    [31]P.A.Champert,S.V.Popov,J.R.Taylor,"Generation of multiwatt,broadband continua in holey fibers," Opt.Lett.,vol.27,no.2,2002,pp.122-124.
    [32]K.Sakarnaki,M.Nakao,M.Naganuma,M.Izutsu,"Soliton Induced Supercontinunm Generation in Photonic Crystal Fiber," IEEE J.Selected Topics In Quantum Electron.,vol.10,no.5,2004,pp.876-884.
    [33]Yang Geng,Peter Andreas Andersen,Torger Tokie,Christophe Peucheret,and Palle Jeppesen,"Wavelength Conversion of a 6x40Gb/s DPSK WDM Signal using FWM in a Highly Non-linear Photonic Crystal Fiber," in ECOC 2005 Proceedings,vol.2,Paper Tu 3.3.4,2005,pp.205-206.
    [34]C.H.Kwok,S.H.Lee,K.K.Chow,C.Shu,Lin Chinlon,"Widely tunable wavelength conversion with extinction ratio enhancement using PCF based HOLM," IEEE Photon.Technol.Lett.,vol.17,no.12,2005,pp.2655-2657.
    [35]Govind P.Agrawal,Nonlinear Fiber Optics,3rd ed,Academic Press,1995,pp.7.
    [36]M.J.Steel,T.P.White,C.Martijn de Sterke,R.C.McPhedran,and L.C.Botten,"Symmetry and degeneracy in microstructured optical fibers," Opt.Lett.,vol.26,no.8,2001,pp.488-490.
    [37]H C.Nguyen,B.T.Kuhlmey,M..I.Steel,C.L Smith,E.C.Magl,R.C.McPhedran,and B.J.Eggleton,"Leakage of the fundamental mode in photonic crystal fiber tapers," Opt.Lett.,vol.30,no.10,2005,pp.1446-1448.
    [1]Fangdi Zhang,Xiaoyi Liu,Min Zhang,and Peida Ye,"Design of High Birefringent Photonic Crystal Fibers with Low Confinement Loss,"(Submitted to Optical Engineering)
    [2]T.Hosaka,K.Okamoto,Y.Sasaki,and T.Edahiro,"Single-mode fibers with asymmetrical refractive-index pits on both sides of the core," IEEE Electron.Lett,vol.17,no.5,1981,pp.191-193.
    [3]T.Okoshi,K Oyamada,M.Nishimura,"Side tunnel fiber:An approach to polarization-maintaining optical waveguiding shceme," IEEE Electron.Lett.,vol.18,no.19,1982,pp.824-826.
    [4]T.Katsuyama,H.Matsumura,and T.Suganuma,"Propagation characteristics of single-polarization fibers,"Appl.Opt.,vol 22,no.11,1983,pp.1748-1753.
    [5]R.B.Dyott,J.R.Cozens,and D.G.Morris,"Preservation of polarization in optical-fiber waveguides with elliptical cores," IEEE Electron.Lett.,vol.15,no.13,1979,pp.380-382.
    [6]M.P.Varnham,D.N.Payne,R.D.Birch,and E.J.Tarbox,"Single-polarization operation of highly birefringent bow-tie optical fibers," IEEE Electron.Lett.,vol.19,no.7,1983,pp.246-247.
    [7]J.Noda,K.Okamoto,Y.Sasaki,"Polarization-maintaining fibers and their applications," J.Lightwave Technol.,vol.LT-4,no.8,1986,pp.1071-1086.
    [8]Y.W.Lee,J.Jung,B.Lee,"Multiwavelength-switchable SOA Fiber Ring Iaser Based on Polarization Maintaining Fiber Loop Mirror and Polarization Beam Splitter," IEEE Photon.Technol.,vol.16,no.1,2004,pp.54-56.
    [9]Jun.Zhang,Shuguang.Guo,Woonggyu.Jung,J.Nelson,Zhongping Chen,"Determination of birefringence and absolutely optics axis orientation using polarization-sensitice optical coherence tomography with PM fibers," Opt.Express,vol.11,no.24,2003,pp.3262-3270.
    [10]Y.J.Song,L.Zhan,S.Hu,Q.H.Ye,and Y.X.Xia,"Tunable Multiwavelength Brillouin-Erbium Fiber Laser with a Polarization-Maintaining Fiber Sagnac Loop Filter," IEEE Photon.Technol.,vol.16,no.9,2004,pp.2015-2017.
    [11]A.Ortigosa-Blanch,J.C.Knight,W.J.Wadsworth,J.Arriaga,B.J.Mangan,T.A.Birks,and P.S.J.Russell,"Highly birefringent photonic crystal fibers," Opt.Lett,vol.25,no.18,2000,pp.1325-1327.
    [12]M.J.Steel and R.M,Osgood,Jr.,"Elliptical-hole photonic crystal fibers," Opt.Lett.,vol.26,no.4,2001,pp.229-231.
    [13]Jacob Folkenberg,M.Nielsen,N.Mortensen,C.Jakobsen,H.Simonsen,"Polarization maintaining large mode area photonic crystal fiber," Opt.Express,vol.12,no.5,2004,pp.956-960.
    [14]A.Peyrilloux,T.Chattier,A.Hideur,L.Berthelot,G.Mélin,S.Lempereur,D.Pagnoux,and P.Roy,"Highly Birefringent Index-Guiding Photonic Crystal Fibers," J.Lightwave Technol.,vol.21,no.2,2003,pp.536-539.
    [15]K.Suzuki,H.Kubota,S.Kawanishi,M.TanakaM.Fujita,"High-speed hi-directional polarisation division multiplexed optical transmission in ultra low-loss(1.3dB/km)polarisation-maintaining photonic crystal," IEEE Electron.Lett.,vol.37,no.23,2001,pp.1399-1401.
    [16]Theis P.Hansen,Jes Broeng,Stig E.B.Libori,Erik Knudsen,Anders Bjarklev,Jacob Riis Jensen,and Harald Simonsen,"Highly Birefringent Index-Guiding Photonic Crystal Fibers," IEEE Photon.Technol.,vol.13,no.6,2001,pp.588-590.
    [17]K.Saitoh,M.Koshiba,"Photonic bandgap fibers with high birefringence," IEEE Photon.Technol.,vol.14,no.9,2002,pp.1291-1293.
    [18]J.Ju,W.Jin,Senior Member,IEEE,and M.S.Demokan,"Properties of a Highly Birefringent Photonic Crystal Fiber," IEEE Photon.Technol.,vol.15,no.10,2003,pp.1375-1377.
    [19]Kunimasa Saith,Masanori Koshiba,"Single-polarization single-modes photonic crystal fiber," IEEE Photon.Technol.,vol.15,no.10,2003,pp.1384-1386.
    [20]K.Hiirokazu,K.Satoki,K.Shigeki,"Absolutely Single-Polarization Single-Mode Photonic Crystal Fiber," IEEE Photon.Technol.,vol.16,no.1,2004,pp.182-184.
    [21]Arturo Ortigosa-Blanch,Antonio Díez,Martina Delgado-Pinar,José L.Cruz,and Miguel V.Andrés,"Ultrahigh Birefringent Nonlinear Microstructured Fiber," IEEE Photon.Technol.,vol.16,no.7,2004,pp.1667-1669.
    [22]G.Kakarantzas,A.Ortigosa-Blanch,T.A.Birks,P.St.J.Russell,L.Farr,F.Couny,B.J.Mangan,"Structural rocking filters in highly birefringent photonic crystal fiber," Opt.Lett.,vol.28,no.3,2003,pp.158-160.
    [23]T.P.White,R.C.McPhedran,C.M.de Sterke,L.C.Botten,and M.J.Steel,"Confinement losses in microstructured optical fibers," Opt.Lett,.vol.26,no.21,2001,pp.1660-1662.
    [24]Govind P.Agrawal,Nonlinear Fiber Optics,3rd ed,Academic Press,1995,pp.7.
    [25]T.A.Birks,J.C.Knight,and P.St.J.Russell,"Endlessly single-mode photonic crystal fiber," Opt.Lett.,vol.22,no.13,July 1997,pp.961-963.
    [1]Fangdi Zhang,Min Zhang,Xiaoyi Liu,and Peida Ye,"Design of Wideband Single-Polarization Single-Mode Photonic Crystal Fiber," IEEE J.Lightwave Technol.,vol.25,no.5,2007,pp.1184-1189.
    [2]Fangdi Zhang,Jian Li,Xiaoyi Liu,Min Zhang,and Peida Ye,"Novel design for a single-polarlzation single-mode photonic crystal fiber at 1310nm," Opt.Engineering,vol.46,no.6,2007.
    [3]Fang-Di Zhang,Xiao-Yi Liu,Min Zhang,and Pei-Da Ye,"Numerical simulation of a novel rectangular-lattice single-polarization single-mode photonic crystal fiber," Acta Physica Sinica,vol.55,no.12,2006,pp.6447-6453.
    [4]Fang-Di Zhang,Xiao-Yi Liu,Min Zhang,and Pei-Da Ye,"A novel design for single-polarization single-mode photonic crystal fiber at 1550nm," Chinese Opt.Lett.,vol.5,2007.
    [5]Fangdi Zhang,Xiaoyi Liu,Zhiguo Zhang,Min Zhang,Peida Ye,"A novel single-polarization single-mode photonic crystal fiber," Proc.of SPIE,vol.6351,APOC'2006,3-7 September 2006,Gwangju,Korea,paper 6351-103.
    [6]T.Okoshi and K.Oyamada,"Single-polarization single-mode optical fiber with refractive-index pits on both sides of core," IEEE Electron.Lett.,vol.16,1980,pp.712-713.
    [7]T.Okoshi,"Single-Polarization Single-Mode Optical Fibers," IEEE J.Quantum Electron,vol.QE-17,no.6,1981.
    [8]J.R.Simpson,R.H.Stolen,F.M.Sears,W.Pleibel,J.B.Macchesney,and R.E.Howard,"A single-polarization fiber," J.Lightwave.Technol.,vol.1,no.2,1983,pp.370-373.
    [9]K.Okamoto,"Single-polarization operation in highly birefringent optical fibers," Appl.Opt.,vol.23,no.15,1984,pp.2638-2642
    [10]K.S.Chiang,"Stress-induced birefringence fibers designed for single-polarization single-mode operation," J.Lightwave Technol.,vol.7,no.2,1989,pp.436-441.
    [11]K.Tajima,M.Ohashi,and Y.Sasaki,"A New Single-Polarization Optical Fiber," J.Lightwave Technol.,vol.7,no.10,1989,pp.1499-1503.
    [12]M.J.Messerly,J.R.Onstott,and R.C.Mikkelson,"Abroad-band single polarization optical fiber," J.Lightwave Technol.,vol.9,no.7,1991,pp.817-820.
    [13]S.Furukawa,T.Fujimoto,and T.Hinata,"Propagation Characteristics of a Single-Polarization Optical Fiber with an Elliptic Core and Triple-Clad," J.Lightwave Technol.,vol.21,no.5,2003,pp.1307-1312.
    [14]J.C.Knight,T.A.Birks,P.S.J.Russell,and D.M.Atkin,"All-silica single-mode optical fiber with photonic crystal cladding," Opt.Lett.,vol.21,no.19,pp.1547-1549,1996.
    [15]J.C.Knight and P.S.J.Russell,"Photonie crystal fibers:New way to guide light," Science,vol.296,no.5566,2002,pp.276-277.
    [16]T.A.Birks,J.C.Knight,and P.St.J.Russell,"Endlessly single-mode photonic crystal fiber," Op.Lett.,vol.22,no.13,1997,pp.961-963.
    [17]M.J.Gander,R.McBride,J.D.C.Jones,D.Mogilevtsev,T.A.Birks,J.C.Knight,and P.St.J.Russell,"Experimental measurement of group velocity dispersion in photonic crystal fibre," IEEE Electron.Lett.,vol.35,no.1,1999,pp.63-64.
    [18]W.Reeves,J.Knight,P.Russell,and P.Roberts,"Demonstration of ultra-flattened dispersion in photonic crystal fibers," Opt.Express,vol.10,no.14,2002,pp.609-613.
    [19]K.Saitoh,N.Florous,and M.Koshiba,"Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses," Opt.Express,vol.13,no.21,2005,pp.8365-8371.
    [20]Li S G,Liu X D,Hou L T,"The study of waveguide mode and dispersion property in photonic crystal fibres," Acta Physica Sinica,vol.52,no.11,2003,pp.2811-2817.
    [21]Ren GB,Wang Z,Lou S Q,Jian S S,"Localized orthogonal function model of elliptical-hole photonic crystal fibers,"Acta Physica Sinica,vol.53,no.2,2004,pp.484-489.
    [22]Ren GB,Wang Z,Lou S Q,Jian S S,"Study on mode degeneracy in photonic crystal fibers," Acta Physica Sinica,vol.53,no.6,2004,pp.1856-1861.
    [23]Li S G,Liu X D,Hou L T,"Vector analysis of dispersion for the fundamental cladding mode in photonic crystal fibers,"Acta Physica Sinica,vol.53,no.6,2004,pp.1873-1879.
    [24]Hu ML,Wang Q Y,Li Y F,et al,"Birefringence phenomena in a random distributed microstructure fiber," Acta Physica Sinica,vol.53,no.12,2004,pp.4248-4252.
    [25]Zhang D S,Dong X Y,Zhang W G,et al,"Studies on the dispersion in photonic crystal fiber using the step effective index model,"Acta Physica Sinica,vol.54,no.3,2005,pp.1235-1240.
    [26]Li S G,Xing G R,Zhou G Y,Hou L T,"Numerical simulation of square-lattice photonic crystal fiber with high birefringence and low confinement loss," Acta Physica Sinica,vol.55,no.1,2006,pp.238-243.
    [27]A.Ortigosa-Blanch,J.C.Knight,W.J.Wadsworth,J.Arriaga,B.J.Mangan,T.A.Birks,and P.S.J.P.St.J.Russell,"Highly birefringent photonic crystal fibers," Opt.Lett.,vol.25,no.18,2000,pp.1325-1327.
    [28]M.J.Steel and R.M.Osgood,Jr.,"Elliptical-hole photonic crystal fibers," Opt.Lett.,vol.26,no.4,2001,pp.229-231.
    [29]T.P.Hansen,J.Broeng,S.E.B.Libori,E.Knudsen,A.Bjarklev,J.R.Jensen,and H.R.Simonsen,"Highly birefringent index-guiding photonic crystal fibers," IEEE Phototon.Technol.Lett.,vol.13,June 2001,pp.588-590.
    [30]K.Suzuki,H.Kubota,S.Kawanishi,M.Tanaka,and M.Fujita,"Optical properties of a low-loss polarization-maintaining photonic crystal fiber," Opt.Express,vol.9,no.13,2001,pp.676-680.
    [31]K.Saitoh,M.Koshiba,"Single-Polarization Single-Mode Photonic Crystal Fibers," IEEE Photon.Technol.Lett.,vol.15,no.10,2003,pp.1384-1386.
    [32]Hiirokazu Kubota,Satoki Kawanishi,Shigeki Koyanagi,Masatoshi Tanaka,and Shyunichiro Yamaguchi,"Absolutely Single Polarization Photonic Crystal Fiber," IEEE Photon.Technol.Lett.,vol.16,no.1,2004,pp.182-184.
    [33]Ming-Jun Li,Xin Chen,Daniel A.Nolan,George E.Berkey,Ji Wang,William A.Wood,and Luis A.Zenteno,"High Bandwidth Single Polarization Fiber With Elliptical Central Air Hole," IEEE J.Lightwave Technol.,vol.23,no.11,2005,pp.3454-3460.
    [34]J.R.Folkenberg,M.D.Nielsen,and C.Jakobsen," Broadband single-polarization photonic crystal fiber," Opt.Lett.,vol.30,no.12,2005,pp.1446-1448.
    [35]A.Petersson,J.Broeng,K.P.Hansen,M.D.Nielsen,H.R.Simonsen,C.Jakobsen,J.R.Folkenberg,T.Schreiber,F.Roser,O.Schmidt,J.Limpert,R.Iliew,F.Lederer,and A.Tuinnermann "Polarization Properties of Photonic Crystal Fibers," Optical Fiber Communication Conference,2006,paper OWA6.
    [36]Jian Ju,Wei Jin,and M.Suleyman Demokan,"Design of Single-Polarization Single-Mode Photonic Crystal Fiber at 1.30 and 1.55μm," J.Lightwave Technol.,vol.24,no.2,2006,pp.825-830.
    [37]Govind P.Agrawal,Nonlinear Fiber Optics,3rd ed,Academic Press,1995,pp.7.
    [38]T.P.White,R.C.McPhedran,and C.M.de Sterke,L.C.Botten,M.J.Steel,"Confinement losses in microstmctured optical fibers," Opt.Lett.,vol.26,no.6,2001,pp.1660-1662.
    [39]Gerd Keiser著,李玉权,崔敏等译,李玉权审校.光纤通信.北京:电子工业出版社,2003,Chapter 5.
    [40]Qi Xiaoling,Cai Zhigang,Xu Yuke,Wang Fujuan,Deng Guang'an,Li Baojun,Jiang Shaoji,"A Theoretical Study of Optical Coupling in Optical Components," Acta Optica Sinica,vol.24,no.4,2004,pp.522-526.
    [41]SMF-28e Fiber Production Information Sheet,Corning Inc.,Corning,NY,2003.
    [42]Jian Ju,Wei Jin,and M.Suleyman Demokan,"Design of Single-Polarization Single-Mode Photonic Crystal Fiber at 1.30 and 1.55 μm,"J.Lightw.Technol.,vol.24,no.2,2006,pp.825-830.
    [43]K.Saitoh,N.Florous,and M.Koshiba,"Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses," Opt.Express,vol.13,no.21,2005,pp.8365-8371.
    [44]H C.Nguyen,B.T.Kuhlmey,M.J.Steel,C.L.Smith,E.C.Magi,R.C.McPhedran,and B.J.Eggleton,"Leakage of the fundamental mode in photonic crystal fiber tapers," Opt.Lett.,vol.30,no.10,2005,pp.1446-1448.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.