抗血管新生DNA疫苗Flk-1_(ECD)-C3d3的制备及其抗膀胱肿瘤效应的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤的形成、生长、浸润和转移均有赖于血流提供养分,新生血管化的强度限制/决定了肿瘤生长速度。因此,抗血管新生被认为是恶性肿瘤极有力的治疗手段。自Judah Folkmanl971年在《新英格兰医学杂志》上发表题为《Tumor anagiogensis:Therapeutic implications》的、具有开创性意义的文章以来,经过近四十年的发展,关于肿瘤血管新生及抗血管新生治疗的研究取得了令人瞩目的成果,大量研究表明这种治疗方法具有“两高(高靶向性、高作用效率)、两低(低副反应、低耐药比例)”的特点,在动物实验中显示出良好的效果,但应用于人体后疗效却不尽如人意,主要问题是由于药物分子代谢特性等限制,常需大量、长期给药,副反应大为增加;此外,目前也缺少相对成熟的治疗方案和疗效评估体系。
     相比之下,激发机体针对肿瘤新生血管内皮细胞的特异性主动免疫反应,则可形成直接的杀伤效应,从而抑制和破坏新生血管的形成,具有作用持久、效率高、避开了肿瘤细胞产生的免疫抑制效应等优势。实现这一方案首先需选择肿瘤和正常内皮细胞表达有明显差异、免疫系统能够识别的靶抗原。Flk-1(即血管内皮细胞生长因子受体-2,vascular endothelial cell growth factor receptor-2,VEGFR-2)在成人正常内皮细胞表达极低,多数组织中检测不到,而在血管新生过程中增殖的内皮细胞上则高度表达,是目前公认的肿瘤内皮细胞较好的分子标志和靶抗原。但Flk-1属自身抗原,研究人员面临如何才能增强其免疫原性,打破免疫耐受激发有效免疫应答的难题。上个世纪90年代后期发现2-3个串联的补体C3裂解片段C3d具有强烈的免疫佐剂效应,可大大提高抗原的免疫原性,为克服这一障碍提供了有力的工具。本研究利用了补体领域的这一重要发现,引入C3d作为分子内佐剂,制备了含有Flk-1胞外段265bp-2493bp(Flk-1_(extraeellular domain),Flk-1_(ECD)和串联的3个C3d(C3d3)融合基因的DNA疫苗,并利用动物模型初步观察了该疫苗对膀胱肿瘤生长的抑制效应,为开发安全、有效的肿瘤抗血管新生疫苗打下了基础。主要的研究内容及结果如下:
The close relationship between tumor progression and its angiogenesis was first hypothesized by Folkman in 1971. Accumulating evidence has clearly shown that angiogenesis played an essential role in the development of various solid tumors and affected its growth and metastasizing dramatically. Therefore, tumor angiogenesis is potentially an important therapeutic target which has been actively studied during the last decade.
    The strategy of inhibition of tumor angiogenesis has been proved to be extremely effective in animal experiments. However, translation of these strategies to a clinical setting has proven difficult, in part due to toxicities of the drugs. Another obstacle is the delivery of sufficient amounts of bioavailable drugs. In most cases, chronic long-term delivery of high doses is necessary to achieve a clinical response.
    One strategy to circumvent the hurdles has been to take advantage of inherent immune response to selectively target tumor neovascularization, thereby eliminating the need for long-term expensive delivery of high doses of potentially toxic agents. Appropriate target antigen is the key factor to the success of this strategy. Vascular endothelial growth factor(VEGF) and its receptor vascular endothelial growth factor receptor 2 (VEGFR-2, also known as Flk-1) play a critical role in the regulation of normal and pathological angiogenesis. Flk-1, which has a more restricted expression on proliferating tumor endothelial cells, provides an optimization selection. But Flk-1 is self-antigen. A major challenge is to break the immune tolerance and induce a robust, long-lived T cell-mediated immunity which leads to an effective suppression of tumor angiogenesis. Luckily, in 90s of the last century, an important discover in the research area of complement provided a novel approach to solve this tough question. This discover was that C3d, a fragment of complement C3 component, can influence the acquired immune response by binding to its receptor CR2/CD21, on B lymphocytes and other antigen-presenting cells (APC). Dempsey et al. found that the fusion of three copies of C3d (C3d3) to hen egg lysozyme, a model antigen, increased the efficiency of immunizations by more than 1000-fold. The development of vaccines containing the
引文
1. Boehm, T, Folkman J, Browder T, et al. Antiangiogentic therapy of experimental cancer does not induce acquired drug resistance. Nature, 1997,390(6658):404-407
    2. J Folkman. Tumor angiogenesis: therapeutic implication. New Engl J Med, 1971,285(21):1182-1186
    3. Nyberg P, Xie L, Kalluri R, et al. Endogenous inhibitors of angiogenesis. Cancer Res, 2005,65(10):3967-79
    4. J Folkman. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med, 1995,1(1):27-31
    5. EG Robert, JD Hunt. Lipid messengers as targets for antiangiogenic therapy. Curr Pharm Des, 2001,7(16):1615-1626
    6. GM Tozer, VE Prise, J Wilson, et al. Combretastatin A-4 phosphate as a tumor vascular-targeting agent: early effects in tumors and normal tissues. Cancer Res, 1999,59(7):1626-1634
    7. Cao Y, Endogenous angiogenesis inhibitors and their therapeutic implications. Int J Biochem Cell Biol, 2001, 33(4):357-369
    8. Bamias A, Dimopoulos MA. Angiogenesis in human cancer: implications in cancer therapy.Eur J Intern Med. 2003, 14(8):459-469
    9. Niethammer AG, Xiang R, Becker JC, et al. A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nat Med. 2002,8(12):1369-75
    10. Hicklin DJ, Marincola FM, Ferrone S. HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol Med Today. 1999,5(4): 178-86
    11. Reisfeld RA, Niethammer AG, Luo Y, et al. DNA vaccines designed to inhibit tumor growth by suppre- ssion of angiogenesis. Int Arch Allergy Immunol, 2004,133(3):295-304
    12. Liu JY, Wei YQ, Yang L, et al. Immunotherapy of tumors with vaccine based on quail homologous vascular endothelial growth factor receptor-2. Blood. 2003,102 (5):1815-23
    13. Hou JM, Liu JY, Yang L, et al. Combination of low-dose gemcitabine and recombinant quail vascular endothelial growth factor receptor-2 as a vaccine induces synergisticantitumor activities. Oncology, 2005,69(1):81-7
    14. Alessi P, Ebbinghaus C, Neri D. Molecular targeting of angiogenesis. Biochim Biophys Acta, 2004,1654(1):39-49.
    15. Fengshuo Jin, Zhihui Xie, Calvin J Kuo, et al. Cotargeting tumor and tumor endothelium effectively inhibits the growth of human prostate cancer in adenovirus-mediated antiangiogenesis and oncolysis combination therapy. Cancer Gene Therapy. 2005,12(3):
    16. Dempsey PW, Allison ME, Akkaraju S, et al. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science, 1996, 271(5247): 348-350
    17. Liu F, Mboudjeka I, Shen S, et al. Independent but not synergistic enhancement to the immunogenicity of DNA vaccine expressing HIV-1 gp120 glycoprotein by codon optimization and C3d fusion in a mouse model. Vaccine, 2004,22(13-14):1764-1772
    18. Green TD, Newton BR, Rota PA, et al. C3d enhancement of neutralizing antibodies to measles hemagglutinin. Vaccine. 2001, 20(1-2): 242-248.
    19. Watanabe I, Ross TM, Tamura S, et al. Protection against influenza virus infection by intranasal administration of C3d-fused hemagglutinin. Vaccine. 2003, 21 (31): 4532-8
    20. Ross TM, Xu Y, Bright RA, et al. C3d enhancement of antibodies to hemagglutinin accelerates protection against influenza virus challenge. Nat Immunol. 2000, 1(2):127-131
    21. Wang L, Sunyer JO, Bello LJ. Fusion to C3d enhances the immunogenicity of the E2 glycoprotein of type 2 bovine viral diarrhea virus. J Virol. 2004,78(4): 1616-22
    22. Janusz Rak, Joanne L Yu. Oncogenes and tumor angiogenesis: The question of vascular ‘supply' and vascular ‘demand' [J]. Seminars in Cancer Biology, 2004,14(2):93-104
    23. 郝葆青,刘鲁蜀,张晓东.DNA疫苗的研究与应用前景.华西医学,2005,20(1):197-199
    24. DUNHAMSP, FLYNNJN, et al. Protection against feline immunodeficiency virus using replication defective proviral DNA vaccines with feline interleukin-12 and-18. Vaccine, 2002,20(11-12):1483-1496.
    25. NAMJH,CHASL,CHOHW. Immunogenicity of a recombinant MVA and a DNA vaccine for Japaneseen-cephalitis virus in swine. Microbiol Immunol, 2002,46(1):23-28.
    26. N Ferrara. VEGF and the quest for tumour angiogenesis factors[J]. Nat Rev Cancer,2002,2(10):795-803
    27. Schmidt NO, Westphal M, Hagel C, et al. Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int J Cancer, 1999,84(1):10-18
    28. Abdollahi A, Lipson KE, Han X, et al. SU5416 and SU6668 attenuat the angiogenic effects of radiation-induced tumor cell growth factor production and amplify the direct anti-endothelial action of radiation in vitro. Cancer Res, 2003,63(13):3755-3763
    29. Singhal S, Vachani A, Antin Ozerkis D, et al. Prognostic implications of cell cycle, apoptosis, and angiogenesis biomarkers in non-small cell lung cancer: a review[J]. Clin Cancer Res, 2005,11(11):3974-3986
    30. Hannan JP, Young KA, Guthridge JM, et al. Mutational analysis of the complement receptor type 2 (CR2/CD21)-C3d interaction reveals a putative charged SCR1 binding site for C3d. J Mol Biol, 2005,346(3):845-58
    31. Fynan EF, Webster RG, Fuller DH, et al. DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci USA, 1993,90:11478
    32. Corr M, Lee DJ, Carson DA, et al. Gene vaccination with naked plasmid DNA: mechanism of CTL priming. J Exp Med, 1996,184:1555
    33. Li YH, Fan MW, Bian Z, et al. Chitosan-DNA microparticles as mucosal delivery system: synthesis, characterization and release in vitro. Chin Med J(Engl), 2005, 118(11):936-41
    34. 卢铀,田聆,魏于全,等.DNA疫苗抗肿瘤研究进展.中华医学遗传学杂志,2000,17(4):288-290
    35. Hannan JP, Young KA, Guthridge JM, et al. Mutational analysis of the complement receptor type 2(CR2/CD21)-C3d interaction reveals a putative charged SCR1 binding site for C3d. J Mol Biol, 2005,346(3):845-58
    36. Hess MW, Schwendinger MG, Eskelinen EL, et al. Tracing uptake of C3dg -conjugated antigen into B cells via complement receptor type 2. Blood, 2000,95(8):2617-2623
    37. Cherukuri A, Cheng PC, Pierce SK. The role of the CD19/CD21 complex in B cell processing and presentation of complement-tagged antigen.J Immunol, 2001,167(1):163-167
    38. Konozo Y, Abe R, Konozo H, et al. Cross-linking CD21/CD35 or increases both B7-1 and B7-2 expression on murine splenic B cell. Immunol, 1998,160(4): 1565-1572
    39.龚非力 主编.医学免疫学,北京,科学出版社,2004年6月第一版,42-60
    40. Pisetsky DS. The immunologic properties of DNA. J Immunol, 1996.156(2):421
    41.谢崧,钱桂生,杨晓静,等.大鼠肺微血管内皮细胞培养及鉴定.中国应用生理学杂志,1997,13(2):189
    42. Chen SF, Fei X, Li SH. A new simple method for Isolation of microvascular edndothelial cells avoiding both chemical and mechanical injuries. Microvasc Res, 1995,50(1): 119
    43.梁光波,金慧铭.微血管内皮细胞的分离培养.中国微循环杂志,2002,6(1):59
    44.胡大海,陈璧,汤朝武,等.人真皮微血管内皮细胞的体外分离和原代培养.西北国防医学杂志,1999;20(4):244-248
    45.姜明,金岩,刘源,等.大鼠肺微血管内皮细胞培养方法的研究.实用口腔医学杂志,2004,20(1):24-269
    46.郝亚荣2 李庚山2 杨波 血管内皮生长因子(VEGF)对培养内皮细胞VEGF受体表达的影响微循环学杂志,2001,11f2):9-11
    47. Magee JC, et al. Isolation, culture and characterization of rat lung microvascular endothelial cell. Am J physiol, 1994;267:L433-L441
    48. Cao Y. Antiangiogenic cancer therapy. Seminars in Cancer Biology, 2004,14(2): 139-1451
    49.刘忠良,刘禄成,张国成.抗人膀胱癌/抗VEGF双功能基因抗体的动物实验研究. 中国老年学杂志,2005,25:563-565
    50.杨绍波,孔垂泽.血管内皮生长因子受体在肾细胞癌组织中的表达.中国医科大学学报,2004,33(4):352-353
    51. Gakiopoulou Givalou H, Nakopoulou L, Panayotopoulou EG, et al. Nonendothelial KDR/FIk-1 expression is associated with increased survival of patients with urothelial bladder carcinomas. Histopathology, 2003,43(3):272-279
    52. Singhal S, Vachani A, Antin Ozerkis D, et al. Prognostic implications of cell cycle, apoptosis, and angiogenesis biomarkers in non-small cell lung cancer: a review. Clin Cancer Res, 2005,11(11):3974-3986
    53. Cirone P, Shen F, Chang PL. A multiprong approach to cancer gene therapy by??coencapsulated cells. Cancer Gene Ther, 2005,12(4):369-80
    54. Hoff PM. Future directions in the use of antiangiogenic agents in patients with colorectal cancer. Semin Oncol, 2004,31(6 Suppl 17):17-21
    55. PA Burke, SJ DeNardo. Antiangiogenic agents and their promising potential in combined therapy. Crit Rev Oncol Hematol, 2001,39(1-2):155-171
    56. Herbst RS, Onn A, Sandier A. Angiogenesis and lung cancer: prognostic and therapeutic implications. J Clin Oncol, 2005,23(14):3243-56
    57. AP Dicker, TL Williams, DS Grant. Targeting angiogenic processes by combination rofecoxib and ionizing radiation. Am J Clin Oncol, 2001,24(5):438-442
    58. Nishikawa T, Ramesh R, Munshi A, et al. Adenovirus-mediated mda-7 (IL24) gene therapy suppresses angiogenesis and sensitizes NSCLC xenograft tumors to radiation. Mol Ther, 2004,9(6):818-28
    59. Gali Muhtasib H, Sidani M, Geara F, et al. Quinoxaline 1,4-dioxides are novel angiogenesis inhibitors that potentiate antitumor effects of ionizing radiation. Int J Oncol, 2004,24(5):1121-31.
    60. Kim YB, Park YN, Park C, et al. Increased proliferation activities of vascular endothelial cells and tumour cells in residual hepatocellular carcinoma following transcatheter arterial embolization. Histopathology, 2001,38(2):160-166
    61. Liao XF, Yi JL, Li XR, et al. Angiogenesis in rabbit hepatic tumor after transcatheter arterial embolization. World J Gastroenterol, 2004,10(13):1885-9.
    62. D' Olimpio J, Hande K, Collier M. Proc. Am. Soc. Clin. Oncol., 1999,18:615 Ng SS, Figg WD. Upregulation of endogenous angiogenesis inhibitors: a mechanism of action of metronomic chemotherapy. Cancer Biol Ther, 2004,3(12):1212-3
    63. Eskens FA. Angiogenesis inhibitors in clinical development; where are we now and where are we going? Br J Cancer, 2004,90(1):1-7.
    64. Gyorffy S, Palmer K, Podor TJ, et al. Combined treatment of a murine breast cancer model with type 5 adenovirus vectors expressing murine angiostatin and LI-12: a role for combined anti-angiogenesis and immunotherapy. J Immunol, 2001,166(10):6212-6217
    1. J Folkman. Tumor angiogenesis: therapeutic implication. New Engl J Med, 1971,285(21):1182-1186.
    2. Yihai Cao. Antiangiogenic cancer therapy. Seminars in Cancer Biology, 2004,14(2):139-145
    3. Annabi B, Naud E, Lee YT, et al. Vascular progenitors derived from murine bone marrow stromal cells are regulated by fibroblast growth factor and are avidly recruited by vascularizing tumors. J Cell Biochem, 2004,91(6):1146-1158.
    4. Yue WY, Chen ZR. Does vasculogenic mimicry exist in astrocytoma? J Histochem Cytochem, 2005,53(8):997-1002
    5. Nyberg P, Xie L, Kalluri R, et al. Endogenous inhibitors of angiogenesis. Cancer Res, 2005,65(10):3967-79
    6. J Folkman. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med, 1995,1(1):27-31
    7. MS Lee, EJ Moon, SW Lee, et al. Angiogenic activity of pyruvic acid in in vivo and in vitro angiogenesis models. Cancer Res, 2001,61(8):3290-3293
    8. Staton CA, Lewis CE. Angiogenesis inhibitors found within the haemostasis pathway. J Cell Mol Med, 2005,9(2):286-302
    9. M Relf, S Lejeune, PAE Scott et al., Expression of the angiogenic factors vascular endothelial-cell growth-factor, acidic and basic fibroblast growth-factor, tumor-growth factor-beta-1, platelet-derived endothelial-cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res, 1997,57(5):963-969
    10. M Inoue, JH Hager, N Ferrara, et al. VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic beta cell carcinogenesis. Cancer Cell, 2002,1(2):193-202
    11. J Folkman. Looking for a good endothelial address. Cancer Cell, 1(2):2002,113-115
    12. Singhal S, Vachani A, Antin Ozerkis D, et al. Prognostic implications of cell cycle, apoptosis, and angiogenesis biomarkers in non-small cell lung cancer: a review. Clin Cancer Res, 2005,11(11):3974-86
    13. Brown LF, Lanir N, McDonagh J, et al. Fbrioblastmigration in fibringel matrices. Am J Pathol, 1993,142(1):273-283
    14. Hoeben A, Landuyt B, Highley MS, et al. Vascular endothelial growth factor and angiogenesis. Pharmacol_Rev, 2004,56(4):549-80.
    15. Kaur B, Khwaja FW, Severson EA, et al. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro oncol, 2005,7(2):134-53
    16. A Lal, H Peters, B St Croix et al. Transcriptional response to hypoxia in human tumors. J Natl Cancer Inst, 2001,93(17):1337-1343
    17. KR Laderoute, RM Alarcon, MD Brody et al. Opposing effects of hypoxia on expression of the angiogenic inhibitor thrombospondin 1 and the angiogenic inducer vascular endothelial growth factor. Clin Cancer Res, 2000,6(7):2941-2950.
    18. Li YM, Zhou BP, Deng J, et al. A hypoxia-independent hypoxia-inducible factor-1 activation pathway induced by phosphatidylinositol-3 kinase/Akt in HER2 overexpressing cells. Cancer Res, 2005,65(8):3257-63.
    19. Suzuki, A Tomida, T Tsuruo. Dephosphorylated hypoxia-inducible factor lalpha as a mediator of p53-dependent apoptosis during hypoxia. Oncogene, 2001,20(41):5779-5788
    20. Janusz Rak, Joanne L Yu. Oncogenes and tumor angiogenesis: The question of vascular ‘supply' and vascular ‘demand'. Seminars in Cancer Biology,2004,14(2):93-104
    21. Rundhaug JE. Matrix metalloproteinases and angiogenesis. J Cell Mol Med, 2005,9(2):267-85
    22. Shukunami C, Oshima Y, Hiraki Y. Chondromodulin-I and tenomodulin: a new class of tissue-specific angiogenesis inhibitors found in hypovascular connective tissues. Biochem Biophys Res Commun, 2005,333(2):299-307
    23. Dong Z, R Kumar, X Yang, et al. Macrophage-derived metal loelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell, 1997,88(6):801-810
    24. Cao Y, Ji RW, Davidson D, et al. Kringle domains of human angiostatin: Characterization of the antiproliferative activity of endothelil cells. J Biol Chem, 1996,271(46):29461-29467
    25. Heljasvaara R, Nyberg P, Luostarinen J, et al. Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases.Exp Cell Res, 2005,307(2):292-304
    26. Rege TA, Fears CY, Gladson CL. Endogenous inhibitors of angiogenesis in malignant gliomas: nature's antiangiogenic therapy. Neuro oncol, 2005,7(2):106-21
    27. J Rak, Y Mitsuhashi, C Sheehan et al. Oncogenes and tumor angiogenesis: differential modes of vascular endothelial growth factor up-regulation in ras-transformed epithelial cells and fibroblasts. Cancer Res, 2000,60(2):490-498
    28. CP Webb, GFV Woude. Genes that regulate metastasis and angiogenesis. J Neurooncol, 2000,50(1-2):71-87
    29. Sharma S, Sharma MC, Sarkar C. Morphology of angiogenesis in human cancer: a conceptual overview, histoprognostic perspective and significance of neoangiogenesis. Histopathology, 2005,46(5):481-9
    30. Carson WEB, Watkins DN, Nanda A, et al. Cell surface tumor endothelial markers are conserved in mice and humans. Cancer Res 2001, 61(18):6649-6655.
    31. St Croix, B. et al. Genes expressed in human tumor endothelium. Science, 2000,289(5482):1197-1202
    32. P Mancuso, A Burlini, G Pruneri, et al. Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood, 2001,97(11):3658-3661
    33. H Ito, II Rovira, ML Bloom et al. Endothelial progenitor cells as putative targets for angiostatin. Cancer Res, 1999,59(23):5875-5877
    34. Andreas G, Niethammer, Rong Xiang, et al. A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nat Med, 2002,8(12):1369-1375
    35. EG Robert, JD Hunt. Lipid messengers as targets for antiangiogenic therapy. Curr Pharm Des, 2001,7(16):1615-1626
    36. Tille JC, Wood J, Mandriota SJ, et al. Vascular Endothelial growth factor (VEGF) receptor-2 antagonists inhibit VEGF- and basic fibroblast growth gactor-induced angiogenesis in vivo and in vitro. J Pharmacol Exp Ther, 2001,299(3):1073-1085
    37. KJ Kim, B Li, J Winer, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumout growth in vivo. Nature, 1993,362:841-844
    38. Jin F, Xie Z, Kuo CJ, et al. Cotargeting tumor and tumor endothelium effectively inhibits the growth of human prostate cancer in adenovirus-mediated antiangiogenesisand oncolysis combination therapy. Cancer Gene Ther, 2005,12(3):257-67
    39. Jung SP, Siegrist B, Wang YZ, et al. Effect of human Angiostatin protein on human angiogenesis in vitro. Angiogenesis, 2003,6(3):233-40
    40. Griscelli F, Li H, Griscelli BA, et al. Angiostatin gene transfer: inhibition of tumor growth in vivo by blockage of endothellia cell proliferation associatied with a mitosis arrest. Proc Natl Acad Sci USA, 1998,95(11):6367-6372
    41. Tarui T, Miles L A, Takada Y, et al. Specific interaction of angiostatin with integrin alpha(v)beta(3) in endothelial cells. J Biol Chem, 2001,276(43):39562-39568.
    42. Kirsch M, Strasser J, Allende R, et al. Angiostatin suppresses malignant glioma growth in vivo. Cancer Res, 1998,58(20):4654-4659
    43. Brown PD. Ongoing trials with matrix metalloproteinase in inhibitors. Expert Opin Investig Drugs, 2000,9(9):2167-2177
    44. SM Kiselev, SV Lutsenko, SE Severin, et al. Tumor Angiogenesis Inhibitors. Biochemistry(Moscow), 2003,68(5):497-513
    45. C Halin, D Neri. Antibody-based targeting of angiogenesis. Crit. Rev. Ther. Drug Carrier Syst, 2001,18(3):299-339
    46. GM Tozer, VE Prise, J Wilson, et al. Combretastatin A-4 phosphate as a tumor vascular-targeting agent: early effects in tumors and normal tissues. Cancer Res, 1999,59(7):1626-1634
    47. Reisfeld R.A, Niethammer AG, Luo Y, et al. DNA vaccines designed to inhibit tumor growth by suppression of angiogenesis. Int Arch Allergy Immunol, 2004,133(3):295-304
    48. Gupta K, Zhang J. Angiogenesis: a curse or cure? Postgrad Med J, 2005,81(954):236-42
    49. MV Blagosklonny. Antiangiogenic therapy and tumor progression. Cancer Cell, 2004,5(1):13-17
    50. JW Rak, JL Yu, RS Kerbel, et al. What do oncogenic mutations have to do with angiogenesis/vascular dependence of tumors?. Cancer Res, 2002,62(7):1931-1934
    51. JL Yu, JW Rak, P Carmeliet, et al. Heterogeneous vascular dependence of tumor cell populations. Am. J. Pathol, 2001,158(4):1325-1334
    52. SA Abdalla, F Behzad, S Bsharah, et al. Prognostic relevance of microvessel density in colorectal tumours. Oncol Rep, 1999,6(4):839-842.
    53. F Pezzella, U Pastorino, E Tagliabue et al. Non-small-cell-lung carcinoma tumor-growth without morphological evidence of neo-angiogenesis. Am J Pathol, 1997,151(5):1417-1423.
    54. KN Naresh, AY Nerurkar, AM Borges. Angiogenesis is redundant for tumour growth in lymph node metastases. Histopathology, 2001,38(5):466-470.
    55. F Pezzella, M Manzotti, A DeBAcco et al. Evidence for novel non-angiogenic pathway in breast cancer metastasis. Lancet, 2000,355(9217):1787-1788.
    56. S Soker, S Takashima, HQ Miao, et al. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell, 1998,92(6):735-745.
    57. G Bergers, K Javaherian, KM Lo, et al. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science, 1999,284(5415):808-812
    58. Alani RM, Silverthorn CF, Orosz K. Tumor angiogenesis in mice and men. Cancer Biol Ther, 2004,3(6):498-500
    59. RK Jain. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med, 2001,7(9):987-989
    60. Peeters CF; de-Geus LF; Westphal JR, et al. Decrease in circulating anti-angiogenic factors (angiostatin and endostatin) after surgical removal of primary colorectal carcinoma coincides with increased metabolic activity of liver metastases. Surgery, 2005,137(2):246-249
    61. HM Pinedo, HM Verheul, RJ D'Amato, et al. Involvement of platelets in tumour angiogenesis?. Lancet, 1998,352(9142):1775-1777
    62. Anderson SA, Rader RK, Westlin WF, et al. Magnetic resonance contrast enhancement of neovasculature with alpha(v)beta(3)-targeted nanoparticles. Magn Reson Med, 2000,44(3):433-439
    63. Lee KH, Song SH, Paik JY, et al. Specific endothelial binding and tumor uptake of radiolabeled angiostatin. Eur J Nucl Med Mol Imaging, 2003,30(7):1032-7
    64. Ralph Mazitschek, Athanassios Giannis. Inhibitors of angiogenesis and cancer-related receptor tyrosine kinases. Current Opinion in Chemical Biology, 2004,8(4):432
    65. Malik AjayK, Hans Peter, Gerber. Targeting VEGF ligands and receptors in cancer. TARGETS, 2003,2(2):48-57
    66. Eskens FA. Angiogenesis inhibitors in clinical development; where are we now and where are we going? Br J Cancer, 2004,90(1): 1-7
    67. PA Burke, SJ DeNardo. Antiangiogenic agents and their promising potential in combined therapy. Crit Rev Oncol Hematol, 2001,39(1-2):155-171
    68. Gyorffy S, Palmer K, Podor TJ, et al. Combined treatment of a murine breast cancer model with type 5 adenovirus vectors expressing murine angiostatin and LI-12: a role for combined anti-angiogenesis and immunotherapy. J Immunol, 2001,166(10):6212-6217
    69. Mauceri HJ, Hanna NN, Beckett MA, et al. Combined effects of angiostatin and ionizing radiation in antitumor therapy. Nature, 1998,394(6690):287-291
    70. Herbst RS, Onn A, Sandier A. Angiogenesis and lung cancer: prognostic and therapeutic implications. J Clin Oncol, 2005,23(14):3243-56.
    71. AP Dicker, TL Williams, DS Grant. Targeting angiogenic processes by combination rofecoxib and ionizing radiation. Am J Clin Oncol, 2001,24(5):438-442
    72. Mitsiades N, Poulaki V, Mitsiades CS, et al. Induction of tumour cell apoptosis by matrix metalloproteinase inhibitors: new tricks from a (not so) old drug. Expert Opin Investig Drugs, 2001,10(6):1075-84
    73. ST Nawrocki, CJ Bruns, MT Harbison, et al. Effects of the proteasome inhibitor PS-341 on apoptosis and angiogenesis in orthotopic human pancreatic tumor xenografts. Mol Cancer Ther, 2002,1(14):1243-1253
    74. CL Sawyers. Will mTOR inhibitors make it as cancer drugs? Cancer Cell, 2003,4(5):343-348
    75. Harris AL. Angiogenesis as a new target for cancer control. EJC Supplements, 2003,1(2):1 - 12
    76. Ng SS, Figg WD. Upregulation of endogenous angiogenesis inhibitors: a mechanism of action of metronomic chemotherapy. Cancer Biol Ther, 2004,3(12):1212-3
    77. Kim YB, Park YN, Park C, et al. Increased proliferation activities of vascular endothelial cells and tumour cells in residual hepatocellular carcinoma following transcatheter arterial embolization. Histopathology, 2001,38(2):160-166
    78. Liao XF, Yi JL, Li XR, et al. Angiogenesis in rabbit hepatic tumor after transcatheter arterial embolization. World J Gastroenterol, 2004,10(13):1885-9.
    79. Shahin Rafii. Vaccination against tumor neovascularization: Promise and reality. Cancer cell, 2002,2(6):429-431
    80. QR Chen, L Zhang, W Gasper, et al. Targeting tumor angiogenesis with gene therapy. Mol Genet Metab, 2001,74(1-2):120-127
    81. BN Varda, A Shaish, A Gonen, et al. Tissue-specific gene therapy directed to tumor angiogenesis. Gene Ther, 2001,8(11):819-827
    1. Chen Z. Influenza DNA vaccine: an update. Chin Med J(Engl), 2004, 117(1):125-32
    2. Bhopale GM, Nanda RK. Prospects for hepatitis C vaccine. Acta Virol, 2004,48(4):215-21
    3. Hasan UA, Harper DR, Wren BW, et al. Immunization with a DNA vaccine expressing a truncated form of varicellazoster virus glycoprotein.E Vaccine, 2002, 20(9-10):1308-1315
    4. Min W, Lillehoj HS, Burnside J, et al. Adjuvant effects of IL-beta, Il-2, IL-8, IL-15, IFN-alpha, IFN-gamma GF-beta4 and lymphotactin on DNA vaccination against Eimeria acervulina. Vaccine, 2001, 20(1-2):167-174
    5. Takeda A, Nakamura H, Matano T. Evaluation of simian immunodeficiency virus-specific immune responses induced by a defective proviral DNA vaccine in macaques. Vaccine, 2002, 20(11-12):1483-1496
    6. Nam JH, Cha SL, Cho HW. Immunogenicity of a recombinant MVA and a DNA vaccine for Japanese encephalitis virus in swine. Microbiol Immunol, 2002, 46(1):23-8
    7. Xing YP, Huang ZH, Wang SX, et al. Novel DNA vaccine based on hepatitis B virus core gene induces specific immune responses in Balb/c mice. World J Gastroenterol, 2005, 11(29):4583-4586
    8. Kim JJ, Yang JS, Dang K, et al. Engineering enhancement of immune responses to DNA-based vaccines in a prostate cancer model in rhesus macaques through the use of cytokine gene adjuvants. Clin Cancer Res, 2001, 7(3 Suppl):882s-889s
    9. Schneider J, Langermans J-A, Gilbert S-C, et al. A prime-boost immunisation regimen using DNA followed by recombinant modified vaccinia virus Ankara induces strong cellular immune responses against the Plasmodium falciparum TRAP antigen in chimpanzees. Vaccine, 2001, 19(32):4595-4602
    10. Cui FD, Asada H, Jin ML, et al. Cytokine genetic adjuvant facilitates prophylactic intravascular DNA vaccine against acute and latent herpes simplex virus infection inmice. Gene Ther, 2005, 12(2):160-168
    11. Forsthuber T, Yip HC, Lehmann PV. Induction of TH1 and TH2 immunity in neonatal mice. Science, 1996, 271(5256): 1728-30
    12. Lima J, Jenkins C, Guerrero A, et al. A DNA vaccine encoding genetic fusions of carcinoembryonic antigen (CEA) and granulocyte/macrophage colony-stimulating factor (GM-CSF). Vaccine, 2005, 23(10): 1273-83
    13.龙健儿,黄莉娜,秦智强.IFN—γ基因对表达DHBVpreSPS蛋白质的DNA疫苗诱生免疫应答的影响.中华微生物学和免疫学杂志,2003,123(7):529-533
    14. Lin CC, Chou CW, Shiau AL, et al. Therapeutic HER2/Neu DNA vaccine inhibits mouse tumor naturally overexpressing endogenous neu. Mol Ther, 2004, 10(2):290-301
    15. Zhu Y, Ren J, Da'dara A, et al. The protective effect of a Schistosoma japonicum Chinese strain 23 kDa plasmid DNA vaccine in pigs is enhanced with IL-12. Vaccine, 2004, 15, 23(1):78-83
    16. Gan Y, Shi YE, Bu LY, et al. Immune responses against Schistosoma japonicum after vaccinating mice with a multivalent DNA vaccine encoding integrated membrane protein Sj23 and cytokine interleukin-12. Chin Med J (Engl), 2004, 117(12): 1842-1846
    17. Barouch DH, Santra S, Termer Racz K, et al. Potent CD4+T cell responses elicited by a bicistronic HIV-1 DNA vaccine expressing gpl20 and GM-CSF. J Immunol, 2002, 168(2):562-568
    18. Kusakabe K, Xin KQ, Katoh H, et al. The timing of GM-CSF expression plasmid administration influences the Th1/Th2 response induced by an HIV-1-specific DNA vaccine. J Immunol, 2000, 164(6):3102-3111
    19. Nobiron I, Thompson I, Brownlie J, et al. Cytokine adjuvancy of BVDV DNA vaccine enchances both humoral and cellular immune responses in mice. Vaccine, 2001, 19(30):4226-4235
    20. Chen HW, Pan CH, Huan HW, et al. Suppression of immune response and protective immunity to a Japanese encephalitis virus DNA vaccine by coadministration of an IL-12-expressing plasmid. Immunol, 2001, 166(12):7419-742621. Maue AC, Waters WR, Palmer MV, et al. CD80 and CD86, but not CD154, augment DNA vaccine-induced protection in experimental bovine tuberculosis. Vaccine, 2004, 23(6):769-779
    22. Manoj S, Griebel PJ, Babiuk LA, et al. Targeting with bovine CD154 enhances humoral immune responses induced by a DNA vaccine in sheep. J Immunol, 2003, 170(2):989-996
    23. Dempsey P-W, Allison M-E, Akkaraju S, et al. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science, 1996, 271(5247):348-350
    24. Liu F, Mboudjeka I, Shen S, et al. Independent but not synergistic enhancement to the immunogenicity of DNA vaccine expressing HIV-1 gp120 glycoprotein by codon optimization and C3d fusion in a mouse model. Vaccine, 2004, 22(13-14):1764-1772
    25. Hannan JP, Young KA, Guthridge JM, et al. Mutational analysis of the complement receptor type 2 (CR2/CD21)-C3d interaction reveals a putative charged SCR1 binding site for C3d. J Mol Biol, 2005, 346(3):845-58
    26. Wang L, Sunyer JO, Bello LJ. Fusion to C3d enhances the immunogenicity of the E2 glycoprotein of type 2 bovine viral diarrhea virus. J Virol, 2004, 78(4):1616-1622
    27. Koch M, Frazier J, Sodroski J, et al. Characterization of antibody responses to purified HIV-1 gp120 glycoproteins fused with the molecular adjuvant C3d. Virology, 2005, 340(2):277-284
    28. Temperton NJ, Quenelle DC, Lawson KM, et al. Enhancement of humoral immune responses to a human cytomegalovirus DNA vaccine: adjuvant effects of aluminum phosphate and CpG oligodeoxynucleotides. J Med Virol, 2003, 70(1):86-90
    29. 方新华.DNA疫苗的结构与免疫应答的关系华中医学杂志,2001,25(3):159-160
    30. Sanchez AE, Aquino G, Ostoa Saloma P, et al. Cholera toxin B-subunit gene enhances mucosal immunoglobulin A, Th1-type, and CD8+ cytotoxic responses when coadministered intradermally with a DNA vaccine. Clin Diagn Lab Immunol, 2004, 11(4):711-719
    31. Leifert JA, Lindencrona JA, Charo J, et al. Enhancing T Cell activation and antiviralprotection by introducing the HIV-1 protein transduction domain into a DNA vaccine. Hum Gene Ther, 2001, 12(15):1881-1892
    32. Hauser H, Chen SY. Augmentation of DNA vaccine potency through secretory heat shock protein-mediated antigen targeting. Methods, 2003, 31(3):225-231
    33. Qazi KR, Wikman M, Vasconcelos NM, et al. Enhancement of DNA vaccine potency by linkage of Plasmodium falciparum malarial antigen gene fused with a fragment of HSP70 gene. Vaccine, 2005, 23(9):1114-25
    34. Kim TW, Hung CF Cheng WF, Hung CF, Chai CY, et al. Tumor-specific immunity and anti-angiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest, 2001, 108(5):669
    35. Dela Cruz CS, MacDonald KS, Barber BH. Anti-major histocompatibility complex antibody responses in macaques via intradermal DNA immunizations. Vaccine, 2000, 18(27):3152-65
    36. Sasaki S, Amara RR, Oran AE, et al. Apoptosis-mediated enhancement of DNA-raised immune responses by mutant caspases. Nat Biotechnol, 2001, 19(6):543-7
    37. Kim TW, Hung CF, Juang J, et al. Enhancement of suicidal DNA vaccine potency by delaying suicidal DNA-induced cell death. Gene Ther, 2004, 11(3):336-342
    38. Kim TW, Hung CF, Boyd DA, et al. Enhancement of DNA vaccine potency by coadministration of a tumor antigen gene and DNA encoding serine protease inhibitor-6. Cancer Res, 2004, 64(1):400-405
    39. You Z, Huang X, Hester J, et al. Targeting dendritic cells to enhance DNA vaccine potency. Cancer Res, 2001, 61(9):3704
    40. Chen CH, Wang TL, Hung CF, et al. Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene. Cancer Res, 2000, 60(4):1035
    41. Barouch DH, Santra S, Tenner R, et al. Potent CD4+ T cell responses elicited by a bicistronic HIV-1DNA vaccine expressing gp120 and GM-CSF. J Immunol, 2002, 168(2):562-568
    42. Bolmstedt A, Hinkula J, Rowcliffe E, et al. Enhanced immunogenicity of a humanimmunodeficiency virus type 1 env DNA vaccine by manipulating N-glycosylation signals. Effects of elimination of the V3 N306 glycan. Vaccine, 2001, 20(3-4):397-405
    43. Bu Z, Ye L, Skeen MJ, et al. Enhancement of immune responses to an HIV env DNA vaccine by a C-terminal segment of listeriolysin O. AIDS Res Hum Retroviruses, 2003, 19(5):409-420
    44. Xin KQ, Ooki T, Jounai N, et al. A DNA vaccine containing inverted terminal repeats from adeno-associated virus increases immunity to HIV. J Gene Med, 2003, 5(5):438-445
    45. Chikhlikar P, arros de Arruda L, Agrawal S, et al. Inverted terminal repeat sequences of adeno-associated virus enhance the antibody and CD8(+) responses to a HIV-1 p55Gag/LAMP DNA vaccine chimera. Virology, 2004, 323(2):220-32
    46. Lund LH, Andersson K, Zuber B, et al. Signal sequence deletion and fusion to tetanus toxoid epitope augment antitumor immune responses to a human carcinoembryonic antigen (CEA) plasmid DNA vaccine in a murine test system. Cancer Gene Ther, 2003,10(5):365-376
    47. Bristol JA, Orsini C, Lindinger P, et al. Identification of a ras oncogene peptide that contains both CD4(+) and CD8(+) T cell epitopes in a nested configuration and elicits both T cell subset responses by peptide or DNA immunization. Cell Immunol, 2000, 205(2):73
    48. Singh M, Briones M, Ott G, et al. Cationic microparticles: a potent delivery system for DNA vaccines. Proc Natl Acad Sci USA, 2000, 97(2):811
    49. Galvin TA, Muller J, Khan AS. Effect of different promoters on immune responses elicited by HIV-1 gag/env multigenic DNA vaccine in Macaca mulatta and Macaca nemestrina. Vaccine, 2000, 18(23):2566-2583
    50. Gao W, Rzewski A, Sun H, et al. UpGene: Application of a web-based DNA codon optimization algorithm. Biotechnol Prog, 2004, 20(2):443-448
    51. Schoen C, Stritzker J, Goebel W, et al. Bacteria as DNA vaccine carriers for genetic immunization. Int J Med Microbiol, 2004, 294(5):319-335
    52. Reisfeld R-A, Niethammer A-G, Luo Y, et al. DNA vaccines designed to inhibit tumor growth by suppression of angiogenesis. Int Arch Allergy Immunol, 2004, 133(3):295-304
    53. Doria Rose NA, Haigwood NL. DNA vaccine strategies: candidates for immune modulation and immunization regimens. Methods, 2003, 31 (3):207-16
    54.王辉,杨秋霞.肿瘤基因疫苗.实用肿瘤学杂志,2002,16(1):72-74
    55. Davis HL, McCluskie MJ, Gerin JL, et al. DNA vaccine for hepatitisB: evidence for immunogenicity in chimpanzees and comparison with other vaccines. Proc Ncad Sci USA, 1996, 93(14):7213-7218
    56. Akbari O, Panjwani N, Garcia S. DNA vaccination: transfection and activation of dendritic cells as key events for immunity. J Exp Med, 1999, 189(1): 169-178
    57. Pertmer TM, Roberts TR, Haynes JR. Influenza virus nucleoprotein-specific immunoglobulin G subclass and cytokine responses elicited by DNA vaccination are dependent on the route of vector DNA delivery. J Virol, 1996, 70(9):6119-6125
    58.鱼艳荣,张彦明.诱导免疫的基因-DNA疫苗.动物医学进展,2000,21(3):72-74
    59. Shata MT, Reitz MSJr, De Vico AL, et al. Mucosal and systemic HIV-1 Env specific CD8(+)T cells develop after intragastric vaccination with a Salmonella Env DNA vaccine vector. Vaccine, 2001, 20(3-4):623-629
    60. Tadokoro K, Koizumi Y, Miyagi Y, et al. Rapid and wide reaching delivery of HIV lenv DNA vaccine by intranasal administration. Viral Immunol, 2001, 14(2): 159-167
    61. Aguiar JC, Hedstrom RC, Rogers WO, et al. Enhancement of the immune response in rabbits to a malaria DNA vaccine by immunization with a needle free jet device. Vaccine, 2001, 20(1-2):275-280
    62. Roy MJ, Wu MS, Barr LJ, et al. Induction of antigen specific CD8+T cells, T helper ceils, and protective levels of antibody in humans by particle mediated administration of a hepatitis B virus DNA vaccine. Vaccine, 2000, 19(7-8):764-778
    63. Shinoda K, Xin KQ, Jounai N, et al. Polygene DNA vaccine induces a high level of protective effect against HIV-vaccinia virus challenge in mice. Vaccine, 2004, 22(27-28):3676-90
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.