黄酮醇类活性提取物整体代谢轮廓及结构分析的质谱方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文开展了以黄酮醇类化合物为主要成分,具有抗老年痴呆和抗血栓活性的草棉植物活性提取物AB-8-2在大鼠体内代谢转化的系统研究。提出了以质谱裂解行为与代谢途径特征相结合获取双重信息且互补参照的研究思路,并将原型成分和代谢产物的结构推断互相佐证,建立了活性提取物AB-8-2中黄酮醇类化合物在大鼠体内生物转化的整体代谢轮廓质谱分析方法。同时还比较研究了黄酮醇类单体成分血浆中代谢产物的特征以及黄酮醇苷类化合物在不同CID方式下质谱裂解行为的差异。
     主要包括以下4个方面的内容:
     1.黄酮醇单糖苷类化合物在不同CID方式下的裂解行为比较
     选择有代表性的几种黄酮醇苷类单体化合物,进行了在ESI-MS~2裂解行为的比较研究,探讨了3D离子阱、Q TRAP~(TM)型质谱仪的EPI、LIT-MS~2谱扫描的三种不同CID方式下糖基化位置对该类化合物裂解行为的影响及其特征性裂解反应,研究发现不同CID方式将导致以糖基裂解方式为主的特征性差异,糖基丢失产生的苷元离子[Y_0-H]~(-·)和苷元离子Y_0~-相对强度比值及另一个诊断离子~(0,2)X_0~-产生与否与CID方式密切相关。不同类型质谱仪上获得的化合物结构判断规律不能不加以验证地应用于在其它类型质谱仪上采集的数据。但是,不同原理及类型的MS/MS仪获得的结果可以提供很有意义的参考价值及补充性的重要信息。
     2.草棉植物活性提取物中黄酮醇类成分及其整体代谢轮廓的质谱分析方法研究
     在前期研究的基础上,采用高效液相色谱-多级质谱联用技术(HPLC-MS~n),开展了对AB-8-2及其经灌胃和静注给药后大鼠胆汁样品的系统分析研究。首先从AB-8-2(原型)中分析共检测到31个黄酮醇类化合物;包括一些极微量且在紫外色谱上没有吸收峰的黄酮醇双糖苷和乙酰基糖苷类化合物,并根据MS~n谱对此进行细致分析,推断了它们的结构。本研究结合原型组分的质谱裂解规律和黄酮醇类成分的代谢途径特征,以不同给药途径获得的大鼠胆汁样品为研究对象,建立了黄酮醇类混合物及其代谢整体轮廓分析的快速质谱分析方法。运用本研究方法在AB-8-2及大鼠胆汁样品中共分析鉴别出了58个以槲皮素或山柰酚为母核的硫酸化、甲基化、葡萄糖醛酸化Ⅱ相代谢产物及糖苷原型,其中包括多组同分异构体。本项研究中提出的黄酮醇类化合物原型及其在生物体液中代谢产物多组分的快速、整体轮廓分析的方法,为中药及天然药物的复杂活性组分体系的代谢研究提供了一种新的研究思路。
     3.大鼠灌胃给予活性提取物AB-8-2后尿液中的代谢物分析
     研究了大鼠口服给予AB-8-2后尿液中的代谢转化情况,在一个分析周期内检测出了灌胃给予AB-8-2后大鼠尿样中的黄酮醇类成分。共鉴定了51个以槲皮素或山柰酚为母核的Ⅱ相代谢产物及黄酮醇苷元,发现在尿样中以槲皮素双葡萄糖醛酸结合物存在的代谢产物为主要形式。同时与口服给予AB-8-2后胆汁样品的结果比较分析,发现两种生物样本的代谢产物种类存在很大差异。其中尿样中发现的黄酮醇代谢终产物主要是葡萄糖醛酸结合物,且以甲基化槲皮素的单葡萄糖醛酸结合物含量最高,但是没有观察到像胆汁中多样化的代谢反应产物,没有检测到乙酰化、硫酸化产物。此外,还发现AB-8-2中某些黄酮醇双糖苷类化合物在小肠吸收过程中可保留其中一个糖基,并以次级苷的形式与葡萄糖醛酸结合,随尿液被排出体外。尿液样品中一些组分含有共流出的葡萄糖醛酸甲酯结合物,对此,经分析判断为在样品处理过程中产生的人工代谢产物。
     4.静脉注射槲皮素及其不同糖苷类化合物后大鼠血浆中的代谢物比较分析
     对比分析了大鼠静脉给予槲皮素及其C-7、C-3′、C-3位糖苷取代的4种黄酮醇类化合物后大鼠血浆中的代谢产物,经研究发现内源性物质在槲皮素母核上加合位点的倾向性;同时表明C-7位的游离羟基对葡萄糖醛酸结合反应具有重要影响。此外,还分析了血浆中检测不到4′-OH甲基化代谢产物的原因,提出是由于3′-OH被葡萄糖取代后,B环的邻二酚羟基结构消失,导致槲皮素-3′-O-葡萄糖苷不能作为儿茶酚甲基转移酶(COMT)的底物,因此不发生甲基化代谢反应。进一步阐明了对黄酮醇类化合物而言,只有母核上具有儿茶酚结构在体内方可发生甲基化反应。
AB-8-2 was an active fraction obtained from Gossypium herbaceam L, which mainly consisted of flavonol glycosides. The metabolism biotransformation of AB-8-2 in rat was investigated systematically using high-performance liquid chromatography/multi-stage tandem mass spectrometry (HPLC-MS~n). A novel strategy for the rapid identification of flavonols in complex herbal extract and their metabolic pathway was proposed and employed in profiling the integral metabolism of flavonols of AB-8-2.
     The characteristic mass spectrometric fragmentation behavior of flavonol O-glycosides were investigated in detail by ESI-MS/MS technique in negative ion mode using three CID mode on two types of mass spectrometer. The metabolites of flavonols in the bile and urine samples after administistration of AB-8-2 were analyzed using HPLC-MS~n in a single chromatographic run. In addition, metabolites in plasma of rats after a single intravenous dose of quercetin and its three glycosides, respectively, were characterized and compared for the purpose of investigating the region-selectivity of conjugation of quercetin.
     1. Characteristic fragmentation behavior of flavonol mono-glycosides with different CID mode
     The mass spectrometric fragmentation behavior of several typical flavonol O-glycosides were investigated in detail by ESI-MS/MS technique in negative ion mode using three CID mode on two types of mass spectrometer. The typical MS~2 spectrum obtained on a 3D ion trap, enhanced product ion (EPI) spectrum and "trap-like" MS~2 spectrum obtained on Q TRAP~(TM) mass spectrometer were compared. The fragmentation behavior of flavonol O-glycosides under different CID conditions were not identical but can provide complementary information revealing the structural differences in glycosylation position. In negative ion mode, the glycosylation position of flavonol 3-O-glycosides, flavonol 7-O-glycosides and flavonol 3'-O-glycosides were differentiated and determined through investigating the fragmentation behavior of [M-H]~- ions resulting from the different glycosylation position. [Y_0-H]~(-·) and ~(0,2)X_0~- ion were used as diagnostic ions in differentiating 3-O, 7-O and 3'-O-glycosyl flavonol using 3D ion trap, while the relative abundance of [Y_0-H]~(-·) ion can be employed to characterize the three isomers without the accessorial information of ~(0,2)X_0~- ion using EPI spectrum. The results provided a basis for structure identification using fragmentation rule derived from different instrument.
     2. Fast profiling of the integral metabolism of flavonols in the active fraction of Gossypium herbaceam L. using HPLC-MS~n technique
     The intergral metabolism of flavonols of AB-8-2 was profiled based on the combination of fragmentation behavior and metabolic pathways. Fifty-eight flavonols as a range of mixed sulphate, methyl, glucuronide and glycoside derivatives of quercetin or kaempferol were detected in rat bile samples, including several groups of isomers. The metabolic differences in bile samples from rats after oral and intravenous administration were compared to evaluate the influence of intestinal metabolism. The relationships between metabolites and parents were elucidated for some components. By profiling the constituents in AB-8-2 and metabolites in bile, a integral view on the biotransformation of the constituents in AB-8-2 was obtained.
     3. Metabolites of flavonols in urine after oral administration of AB-8-2
     Based on the method established, the urine sample after oral administration of AB-8-2 was analyzed. In one analytical run, 51 constituents including 35 di-glucuronidated metabolites, 12 mono-glucuronidated metabolites and 4 flavonol aglycones were characterized. Flavonol diglycosides in AB-8-2 probably remained one glycoside in the structure during the absorption process in intestinal tract. Some co-eluated glucuronide methyl ester conjugated metabolites were also identified in the urine sample, which may be produced in the process of sample preparation.
     4. Comparsion of the metabolites in rat plasma after intravenous administration of quercetin and its three glycosides
     By employing the HPLC-MS and HPLC-MS/MS method, the metabolites in the rat plasma were characterized after intravenous administration of quercetin, quercimeritrin, quercetin-3'-O-glucoside and hyperoside, respectively. The results indicated that quercetin occupied the most various metabolic reactions among these four compounds investigated. No glucuronidated conjugates was found in the plasma sample after intravenous administration of quercimeritrin, which suggested that the free 7-OH was an essential group for the glucuronidation. For quercetin-3'-O-glucoside, no methylation metabolite was detected in the plasma sample, which futher confirmed that catechol structure in B ring was necessary for the methylation in vivo for flavonols. As for hyperoside (quercetin-3-O-galactose), two metabolites were identidied as hyperoside monoglucuronide and methylated hyperoside, respectively.
引文
[1] 孙汉董.现代化是中药与植物药发展的必由之路.云南中医学院学报.2004;27:3-5
    [2] Geng P, Zhang RP, Aisa HA, He JM, Qu K, Zhu HB, Abliz Z. Fast profiling of the integral metabolism of flavonoIs in the active fraction of Gossypium herbaceam L. using liquid chromatography/multi-stage tandem mass spectrometry. Rapid Commun. Mass Spectrorn. 2007; 21: 1877-88.
    [3] Chen P, Li C, Liang S, Song G, Sun Y, Shi Y, Xu S, Zhang J, Sheng S, Yang Y, Li M. Characterization and quantification of eight water-soluble constituents in tubers of Pinellia ternata and in tea granules from the Chinese multiherb remedy Xiaochaihu-tang. J. Chromatogr. B. 2006; 843: 183-93.
    [4] 张伯礼,王永炎.方剂关键科学问题的基础研究——以组分配伍研制现代中药.中国天然药物.2005:3:258-61.
    [5] Chung VQ, Tattersall M, Cheung HT. Interactions of a herbal combination that inhibits growth of prostate cancer cells. Cancer Chemother. Pharmacol. 2004; 53: 384-90.
    [6] Lee KH. Research and future trends in the pharmaceutical development of medicinal herbs from Chinese medicine. Public Health Nutr. 2000; 3: 515-22.
    [7] Xu F, Zhang Y, Xiao S, Lu X, Yang D, Yang X, Li C, Shang M, Tu P, Cai S. Absorption and metabolism of Astragali radix decoction: in silico, in vitro, and a case study in vivo. Drug Metab Dispos. 2006; 34: 913-24.
    [8] 高洁 王素娟 徐瑞明 杨永春 张守仁 司伊康 石建功.以体内吸收分布特点指导花锚成分的研究.药学学报.2004:39:198-203.
    [9] Wang P, Liang Y, Zhou N, Chen B, Yi L, Yu Y, Yi Z. Screening and analysis of the multiple absorbed bioactive components and metabolites of Dangguibuxue decoction by the metabolic fingerprinting technique and liquid chromatography/diode-array detection mass spectrometry. Rapid Commun. Mass Spectrom. 2007; 21: 99-106.
    [10] Sun JH, Yang M, Wang XM, Xu M, Liu AH, Guo DA. Identification of tanshinones and their metabolites in rat bile after oral administration of TTE-50, a standardized extract of Salvia miltiorrhiza by HPLC-ESI-DAD-MS~n. J. Pharmaceut. Biomed. Anal. 2006, doi: 10. 1016/j. jpba. 2006. 11. 003.
    [11] Shen P, Guo BL, Gong Y, Hong DY, Hong Y, Yong EL. Taxonomic, genetic, chemical and estrogenic characteristics of Epimedium species. Phytochemistry. 2007; 68: 1448-58.
    [12] Spencer JP, Kuhnle GG, Williams RJ, Rice-Evans C. Intracellular metabolism and bioactivity of quercetin and its in vivo metabolites. Biochem J. 2003; 372: 173-81.
    [13] Chen L, Li J, Luo C, Liu H, Xu W, Chen G, Liew OW, Zhu W, Puah CM, Shen X, Jiang H. Binding interaction of quercetin-3-beta-galactoside and its synthetic derivatives with SARS-CoV 3CL(pro): structure-activity relationship studies reveal salient pharmacophore features. Bioorg Med Chem. 2006; 14: 8295-306.
    [14] Chang Q, Zuo Z, Chow MS, Ho WK. Difference in absorption of the two structurally similar flavonoid glycosides, hyperoside and isoquercitrin, in rats. Eur. J. Pharm. Biopharm. 2005; 59: 549-55.
    [15] Aziz AA, Edwards CA, Lean ME, Crozier A. Absorption and excretion of conjugated flavonols, including quercetin-4'-O-beta-glucoside and isorhamnetin-4'-O-beta-glucoside by human volunteers after the consumption of onions. Free Radic Res. 1998; 29: 257-69.
    [16] Hollman PC, de Vries JH, van Leeuwen SD, Mengelers MJ, Katan MB. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am. J. Clin. Nutr. 1995; 62: 1276-82.
    [17] Gee JM, DuPont MS, Day AJ, Plumb GW, Williamson G, Johnson IT. Intestinal transport of quercetin glycosides in rats involves both deglycosylation and interaction with the hexose transport pathway. J. Nutr. 2000; 130: 2765-71.
    [18] Hollman PC, van Trijp JM, Buysman MN, van der Gaag MS, Mengelers MJ, de Vries JH, Katan MB. Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Lett. 1997; 418: 152-6.
    [19] Crespy V, Morand C, Besson C, Manach C, Demigne C, Remesy C. Comparison of the intestinal absorption of quercetin, phloretin and their glucosides in rats. J. Nutr. 2001; 131: 2109-14.
    [20] Day AJ, Gee JM, DuPont MS, Johnson IT, Williamson G. Absorption of quercetin-3-glucoside and quercetin-4'-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Biochem PharmacoL 2003; 65: 1199-206.
    [21] Hollman PC, Bijsman MN, van Gameren Y, Cnossen EP, de Vries JH, Katan MB. The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man. Free Radic. Res. 1999; 31: 569-73.
    [22] Sesink AL, Arts IC, Faassen-Peters M, Hollman PC. Intestinal uptake of quercetin-3-glucoside in rats involves hydrolysis by lactase phlorizin hydrolase. J. Nutr. 2003; 133: 773-6.
    [23] Nemeth K, Plumb GW, Berrin JG, Juge N, Jacob R, Naim HY, Williamson G, Swallow DM, Kroon PA. Deglycosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur. J. Nutr. 2003; 42: 29-42.
    [24] Walgren RA, Lin JT, Kinne RK, Walle T. Cellular uptake of dietary flavonoid quercetin 4'-beta-glucoside by sodium-dependent glucose transporter SGLT1. J. Pharmacol. Exp. Ther. 2000; 294: 837-43.
    [25] Graefe EU, Wittig J, Mueller S, Riethling AK, Uehleke B, Drewelow B, Pforte H, Jacobasch G, Derendorf H, Veit M. Pharmacokinetics and bioavailability of quercetin glycosides in humans. J. Clin. PharmacoL 2001; 41: 492-9.
    [26] Olthof MR, Hollman PC, Vree TB, Katan MB. Bioavailabilities of quercetin-3-glucoside and quercetin-4'-glucoside do not differ in humans. J. Nutr. 2000; 130: 1200-3.
    [27] Morand C, Manach C, Crespy V, Remesy C. Quercetin 3-O-beta-glucoside is better absorbed than other quercetin forms and is not present in rat plasma. Free Radic. Res. 2000; 33: 667-76.
    [28] Arts IC, Sesink AL, Faassen-Peters M, Hollman PC. The type of sugar moiety is a major determinant of the small intestinal uptake and subsequent biliary excretion of dietary quercetin glycosides. Br J Nutr. 2004; 91: 841-7.
    [29] Crespy V, Morand C, Besson C, Manach C, Demigne C, Remesy C. Comparison of the intestinal absorption of quercetin, phloretin and their glucosides in rats. J. Nutr. 2001; 131: 2109-14.
    [30] Ioku K, Pongpiriyadacha Y, Konishi Y, Takei Y, Nakatani N, Terao J. Beta-Glucosidase activity in the rat small intestine toward quercetin monoglucosides. Biosci. Biotechnol. Biochem. 1998; 62: 1428-31.
    [31] Day AJ, Canada FJ, Diaz JC, Kroon PA, Mclauchlan R, Faulds CB, Plumb GW, Morgan MR, Williamson G. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett. 2000; 468: 166-70.
    [32] Manach C, Morand C, Demigne C, Texier O, Regerat F, Remesy C. Bioavailability of rutin and quercetin in rats. FEBS Lett. 1997; 409: 12-6.
    [33] Crespy V, Morand C, Besson C, Manach C, Demigne C, Remesy C. Quercetin, but not its glycosides, is absorbed from the rat stomach. J. Agric. Food Chem. 2002; 50:618-21.
    [34] Crespy V, Morand C, Manach C, Besson C, Demigne C, Remesy C. Part of quercetin absorbed in the small intestine is conjugated and further secreted in the intestinal lumen. Am. J. Physiol. 1999; 277: G120-6.
    [35] Matsumoto M, Chiji H, Hara H. Intestinal absorption and metabolism of a soluble flavonoid, alphaG-rutin, in portal cannulated rats. Free Radic. Res. 2005; 39: 1139-46.
    [36] Manach C, Texier O., Regerat F., Agullo G, Demigne C, Remesy C. Dietary quercetin is recovered in rat plasma as conjugated derivatives of isorhamnetin and quercetin. J. Nutr. Biochem. 1996; 7: 375-80
    [37] O'Leary KA, Day AJ, Needs PW, Sly WS, O'Brien NM, Williamson G. Flavonoid glucuronides are substrates for human liver beta-glucuronidase. FEBS Lett. 2001; 503: 103-6.
    [38] Day AJ, Mellon F, Barron D, Sarrazin G, Morgan MR, Williamson G Human metabolism of dietary flavonoids: identification of plasma metabolites of quercetin. Free Radic. Res. 2001; 35: 941-52.
    [39] Hong YJ, Mitchell AE. Metabolic profiling of flavonol metabolites in human urine by liquid chromatography and tandem mass spectrometry. J. Agric. Food Chem. 2004; 52: 6794-801.
    [40] Mullen W, Graf BA, Caldwell ST, Hartley RC, Duthie GG Edwards CA, Lean ME, Crozier A. Determination of flavonol metabolites in plasma and tissues of rats by HPLC-radiocounting and tandem mass spectrometry following oral ingestion of [2-(14)C]quercetin-4'-glucoside. J Agric. Food Chem. 2002; 50: 6902-9.
    [41] Mullen W, Hartley RC, Crozier A. Detection and identification of ~(14)C-labelled flavonol metabolites by high-performance liquid chromatography-radiocounting and tandem mass spectrometry. J. Chromatogr. A. 2003; 1007: 21-9. [42] Wittig J, Herderich M, Graefe EU, Veit M. Identification of quercetin glucuronides in human plasma by high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B. 2001; 753: 237-43. [43] Day AJ, Bao Y, Morgan MR, Williamson G Conjugation position of quercetin glucuronides and effect on biological activity. Free Radic. Biol. Med. 2000; 29: 1234-43.
    [44] van der Woude H, Boersma MG Vervoort J, Rietjens IM. Identification of 14 quercetin phase II mono- and mixed conjugates and their formation by rat and human phase II in vitro model systems. Chem. Res. Toxicol. 2004; 17: 1520-30.
    [45] Liu Y, Liu Y, Dai Y, Xun L, Hu M. Enteric disposition and recycling of flavonoids and ginkgo flavonoids. J. Altern. Complement Med. 2003; 9: 31-40.
    [46] Morand C, Crespy V, Manach C, Besson C, Demigne C, Remesy C. Plasma metabolites of quercetin and their antioxidant properties. Am. J. Physiol. 1998; 275: R212-9.
    [47] Zhu BT, Ezell EL, Liehr JG. Catechol-O-methyltransferase-catalyzed rapid O-methylation of mutagenic flavonoids. Metabolic inactivation as a possible reason for their lack of carcinogenicity in vivo. J. Biol. Chem. 1994; 269: 292-9.
    [48] van der Woude H, Boersma MG, Alink GM, Vervoort J, Rietjens IM. Consequences of quercetin methylation for its covalent glutathione and DNA adduct formation. Chem. Biol. Interact. 2006; 160: 193-203.
    [49] Ader P, Wessmann A, Wolffram S. Bioavailability and metabolism of the flavonol quercetin in the pig. Free Radic. Biol. Med. 2000; 28: 1056-67.
    
    [50] Day AJ, Bao Y, Morgan MR, Williamson G. Conjugation position of quercetin glucuronides and effect on biological activity. Free Radic. Biol. Med. 2000; 29: 1234-43.
    [51] Matsumoto H, Dcoma Y, Sugiura M, Yano M, Hasegawa Y. Identification and quantification of the conjugated metabolites derived from orally administered hesperidin in rat plasma. /. Agric. Food Chem. 2004; 52: 6653-9.
    [52] Moon JH, Tsushida T, Nakahara K, Terao J. Identification of quercetin 3-O-beta-D-glucuronide as an antioxidative metabolite in rat plasma after oral administration of quercetin. Free Radic. Biol. Med. 2001; 30: 1274-85.
    [53] Manach C, Texier O, Morand C, Crespy V, Regerat F, Demigne C, Remesy C. Comparison of the bioavailability of quercetin and catechin in rats. Free Radic. Biol. Med. 1999; 27: 1259-66.
    [54] Morand C, Manach C, Crespy V, Remesy C. Respective bioavailability of quercetin aglycone and its glycosides in a rat model. Biofactors. 2000; 12: 169-74.
    [55] Fiorani M, Accorsi A. Dietary flavonoids as intracellular substrates for an erythrocyte trans-plasma membrane oxidoreductase activity. Br. J. Nutr. 2005; 94: 338-45.
    [56] Ablajan K, Abliz Z, Shang XY, He JM, Zhang RP, Shi JG. Structural characterization of flavonol 3, 7-di-O-glycosides and determination of the glycosylation position by using negative ion electrospray ionization tandem mass spectrometry. J. Mass Spectrom. 2006; 41: 352-60.
    [57] Li B, Abliz Z, Tang M J, Fu GM, Yu SS. Rapid structural characterization of triterpenoid saponins in crude extract from Symplocos chinensis using liquid chromatography combined with electrospray ionization tandem mass spectrometry. J. Chromatogr. A. 2006; 1101: 53-62.
    [58] Li B, Abliz Z, Fu GM, Tang MJ, Yu SS. Characteristic fragmentation behavior of some glucuronide-type triterpenoid saponins using electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2005; 19: 381-90.
    [59] Cui LJ, Abliz Z, Xia M, Zhao LY, Gao S, He W, Xiang Y, Liang F, Yu SS. On-line identification of phenanthroindolizidine alkaloids in a crude extract from Tylophora atrofolliculata by liquid chromatography combined with tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2004; 18: 184-90.
    [60] Liu Y, Liang F, Cui L, Xia M, Zhao L, Yang Y, Shi J, Abliz Z. Multi-stage mass spectrometry of furostanol saponins combined with electrospray ionization in positive and negative ion modes. Rapid Commun. Mass Spectrom. 2004; 18: 235-8.
    [61] 阿布拉江博士毕业论文,中国医学科学院/协和医科大学.2006
    [62] 李斌博士毕业论文,中国医学科学院/协和医科大学.2005
    [1] Shahat AA, Cuyckens F, Wang W, Abdel-Shafeek KA, Husseiny HA, Apers S, Van Miert S, Pieters L, Vlietinck AJ, Claeys M. Structural characterization of flavonol di-O-glycosides from Farsetia aegyptia by electrospray ionization and collision-induced dissociation mass spectrometry. Rapid Commun. Mass Spectrom. 2005; 19: 2172-2178.
    [2] March RE, Miao XS, Metcalfe CD, Stobiecki M, Marczak L. A fragmentation study of an isoflavone glycoside, genistein-7-O-glucoside, using electrospray quadmpole time-of-flight mass spectrometry at high mass resolution. Int. J. Mass Spectrom. 2004; 232: 171-183.
    [3] Hvattum E. Determination of phenolic compounds in rose hip (Rosa canina) using liquid chromatography coupled to electrospray ionisation tandem mass spectrometry and diode-array detection. Rapid Commun. Mass Spectrom. 2002; 16: 655-662.
    [4] Ablajan K, Abliz Z, Shang XY, He JM, Zhang RP, Shi JG. Structural characterization of flavonol 3, 7-di-O-glycosides and determination of the glycosylation position by using negative ion electrospray ionization tandem mass spectrometry. J. Mass Spectrom. 2006; 41: 352-360.
    [5] Cuyckens F, Claeys M. Determination of the glycosylation site in flavonoid mono-O-glycosides by collision-induced dissociation of electrospray-generated deprotonated and sodiated molecules. J. Mass Spectrom. 2005; 40: 364-372.
    [6] Hvattum E, Ekeberg D. Study of the collision-induced radical cleavage of flavonoid glycosides using negative electrospray ionization tandem quadrupole mass spectrometry. J. Mass Spectrom. 2003; 38: 43-49.
    [7] March RE, Lewars EG, Stadey CJ, Miao XS, Zhao XM, Metcalfe CD. A comparison of flavonoid glycosides by electrospray tandem mass spectrometry. Int. J. Mass Spectrom. 2006; 248: 61-85.
    [8] Hager JW, Yves Le Blanc JC. Product ion scanning using a Q-q-Q linear ion trap (QTRAP) mass spectrometer. Rapid Commun Mass Spectrom. 2003; 17: 1056-64.
    [9] 阿布拉江博士毕业论文,中国医学科学院/协和医科大学.2006
    [10] 李斌博士毕业论文,中国医学科学院/协和医科大学.2005
    [1] 李斌博士毕业论文,中国医学科学院/协和医科大学.2005.
    [2] Domon B, Costello CE. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 1988; 5: 397-409.
    [3] Ablajan K, Abliz Z, Shang XY, He JM, Zhang RP, Shi JG. Structural characterization of flavonol 3, 7-di-O-glycosides and determination of the glycosylation position by using negative ion electrospray ionization tandem mass spectrometry. J. Mass Spectrom. 2006; 41: 352-60.
    [4] Hvattum E; Ekeberg D. Study of the collision-induced radical cleavage of flavonoid glycosides using negative electrospray ionization tandem quadrupole mass spectrometry. J. Mass Spectrom., 2003; 38: 43-49.
    [5] Ferreres F, Llorach R, Gil-Izquierdo A. Characterization of the interglycosidic linkage in di-, tri-, tetra- and pentaglycosylated flavonoids and differentiation of positional isomers by liquid chromatography/electrospray ionization tandem mass spectrometry. J. Mass Spectrom., 2004; 39: 312-21.
    [6] Cuyckens F, Rozenberg R, de Hoffmann E, Claeys M. Structure characterization of flavonoid O-diglycosides by positive and negative nano-electrospray ionization ion trap mass spectrometry. J. Mass Spectrom., 2001; 36: 1203-10.
    [7] Ma YL, Cuyckens F, Van den Heuvel H, Claeys M. Mass spectrometric methods for the characterisation and differentiation of isomeric O-diglycosyl flavonoids. Phytochem. Anal 2001; 12: 159-65.
    [8] 阿布拉江博士毕业论文,中国医学科学院/协和医科大学.2006.
    [9] 曾苏.药物代谢学.杭州:浙江大学出版社.2004;7.
    [10] Williamson G, Day AJ, Plumb GW, Couteau D. Human metabolic pathways of dietary flavonoids and cinnamates. Biochem. Soc. Trans.. 2000; 28: 16-22.
    [11] Graf BA, Ameho C, Dolnikowski GG, Milbury PE, Chen CY, Blumberg JB. Rat gastrointestinal tissues metabolize quercetin. /. Nutn. 2006; 136:39-44.
    [12] Graf BA, Mullen W, Caldwell ST, Hartley RC, Duthie GG, Lean ME, Crozier A, Edwards CA. Disposition and metabolism of [2-14C]quercetin-4'-glucoside in rats. Drug Metab. Dispos.. 2005; 33:1036-43.
    [13] Pelzer LE, Guardia T, Juarez AO, Guerreiro E. Acute and chronic antiinflammatory effects of plant flavonoids. Farmaco. 1998; 53: 421-4.
    [14] Nijveldt RJ, van Nood E, van Hoorn DEC, Boelens PG, van Norren K, van Leeuwen PAM. Flavonoids: a review of probable mechanisms of actions and potential applications. Am. J. Clin. Nutr. 2001; 74: 418-25.
    [15] Cook NC, Samman S. Flavonoids-chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem. 1996; 7: 66-76.
    [16] Crespy V, Morand C, Besson C, Manach C, Demigne C, Remesy C. Comparison of the intestinal absorption of quercetin, phloretin and their glucosides in rats. J. Nutr. 2001; 131: 2109-14.
    [17] Day AJ, Gee JM, DuPont MS, Johnson IT, Williamson G. Absorption of quercetin-3-glucoside and quercetin-4'-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Biochem Pharmacol. 2003; 65: 1199-206.
    [18] Sesink AL, Arts IC, Faassen-Peters M, Hollman PC. Intestinal uptake of quercetin-3-glucoside in rats involves hydrolysis by lactase phlorizin hydrolase. J Nutr. 2003; 133: 773-6.
    [19] Mazzarino M, Botre F. A fast liquid chromatographic/mass spectrometric screening method for the simultaneous detection of synthetic glucocorticoids, some stimulants, anti-oestrogen drugs and synthetic anabolic steroids. Rapid Commun. Mass Spectrom. 2006; 20: 3465-76.
    [20] Hong YJ, Mitchell AE. Metabolic profiling of flavonol metabolites in human urine by liquid chromatography and tandem mass spectrometry. J. Agric. Food Chem. 2004; 52: 6794-801.
    [21] Qiao JP, Abliz Z, Chu FM, Hou PL, Zhao LY, Xia M, Chang Y, Guo ZR. Microdialysis combined with liquid chromatography-tandem mass spectrometry for the determination of 6-aminobutylphthalide and its main metabolite in the brains of awake freely-moving rats. J. Chromatogr. B. 2004; 805: 93-9.
    [22] Papac DI, Shahrokh Z. Mass spectrometry innovations in drug discovery and development. Pharm. Res. 2001; 18: 131-45.
    [23] Mullen W, Boitier A, Stewart AJ, Crozier A. Flavonoid metabolites in human plasma and urine after the consumption of red onions: analysis by liquid chromatography with photodiode array and full scan tandem mass spectrometric detection. J. Chromatogr. A. 2004; 1058: 163-8.
    [24] Day AJ, Bao Y, Morgan MR, Williamson G. Conjugation position of quercetin glucuronides and effect on biological activity Free Radic. Biol. Med. 2000; 29: 1234-43.
    [25] van der Woude H, Boersma MG, Alink GM, Vervoort J, Rietjens IM. Consequences of quercetin methylation for its covalent glutathione and DNA adduct formation. Chem. Biol. Interact. 2006; 160: 193-203.
    [26] Zhu BT, Ezell EL, Liehr JG Catechol-O-methyltransferase-cataIyzed rapid. O-methylation of mutagenic flavonoids. Metabolic inactivation as a possible reason for their lack of carcinogenicity in vivo. J. Biol. Chem. 1994; 269: 292-9.
    [27] Hollman, P. C. H, Arts I. C. W. Flavonols, flavones and flavanols - nature, occurrence and dietary burden. J. Sci. Food Agric. 2000; 80: 1081-93.
    [28] 李新,余应年.药物的Ⅱ相代谢与酶系及其进展.中国临床药理学杂志.2000:16:458-64.
    [29] Justesen U. Collision-induced fragmentation of deprotonated methoxylated flavonoids, obtained by electrospray ionization mass spectrometry. J. Mass Spectrom. 2001; 36: 169-78.
    [30] Radominska-Pandya A, Czemik PJ, Little JM, Battaglia E, Mackenzie PI. Structural and functional studies of UDP-glucuronosyltransferases. Drug Metab Rev. 1999; 31: 817-99.
    [31] Davis BD, Needs PW, Kroon PA, Brodbelt JS. Collision-induced dissociation of metal complexes to identify isomeric flavonoid glucuronide metabolites. ASMS Conference 2006
    [32] Davis BD, Needs PW, Kroon PA, Brodbelt JS. Identification of isomeric flavonoid glucuronides in urine and plasma by metal complexation and LC-ESI-MS/MS. J Mass Spectrom. 2006; 41: 911-20.
    [33] van der Woude H, Boersma MG, Vervoort J, Rietjens IM. Identification of 14 quercetin phase II mono- and mixed conjugates and their formation by rat and human phase II in vitro model systems. Chem. Res. Toxicol. 2004; 17: 1520-30.
    [34] Day AJ, Mellon F, Barron D, Sarrazin G, Morgan MR, Williamson G. Human metabolism of dietary flavonoids: identification of plasma metabolites of quercetin. Free Radic Res. 2001; 35: 941-52.
    [35] Cuyckens F, Claeys M. Mass spectrometry in the structural analysis of flavonoids. J. Mass Spectrom. 2004; 39: 1-15.
    [36] Ma YL, Vedernikova I, Van den Heuvel H, Claeys M. Internal glucose residue loss in protonated O-diglycosyl flavonoids upon low-energy collision-induced dissociation. J. Am. Soc. Mass Spectrom., 2000, 11: 136-144.
    [37] Ma YL, Cuyckens F, Van den Heuvel H, Claeys M. Mass spectrometric methods for the characterisation and differentiation of isomeric O-diglycosyl flavonoids. Phytochem. Anal, 2001,12: 159-65.
    [38] Li QM, Claeys M. Characterization and differentiation of diglycosyl flavonoids by positive ion fast atom bombardment and tandem mass spectrometry. Biol Mass Spectrom. 1994; 23: 406-16.
    [39] O'Leary KA, Day AJ, Needs PW, Mellon FA, O'Brien NM, Williamson G. Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: the role of human beta-glucuronidase, sulfotransferase, catechol-O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism. Biochem. Pharmacol. 2003; 65: 479-91.
    [40] Wittig J, Herderich M, Graefe EU, Veit M. Identification of quercetin glucuronides in human plasma by high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B. 2001; 753: 237-43.
    [41] Nemeth K, Plumb GW, Berrin JG, Juge N, Jacob R, Nairn HY, Williamson G, Swallow DM, Kroon PA. Deglycosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur. J. Nutr. 2003; 42: 29-42.
    [42] Crespy V, Morand C, Manach C, Besson C, Demigne C, Remesy C. Part of quercetin absorbed in the small intestine is conjugated and further secreted in the intestinal lumen. Am. J. Physiol. 1999; 277: G120-6.
    [43] Crespy V, Morand C, Besson C, Cotelle N, Vezin H, Demigne C, Remesy C. The splanchnic metabolism of flavonoids highly differed according to the nature of the compound. Am. J. Physiol. Gastrointest. Liver Physiol. 2003; 284: G980-8.
    [1] 王广基.药物代谢动力学.北京:化学工业出版社,2006;23.
    [2] Choudhury R, Srai SK, Debnam E, Rice-Evans CA. Urinary excretion of hydroxycinnamates and flavonoids after oral and intravenous administration. Free Radic Biol Med. 1999; 27: 278-86.
    [3] 李云峰,郭长江.槲皮素代谢的研究进展.生理科学进展,2002;33:53-55.
    [4] Graf BA, Mullen W, Caldwell ST, Hartley RC, Duthie GG, Lean ME, Crozier A, Edwards CA. Disposition and metabolism of [2-14C]quercetin-4'-glucoside in rats. Drug Metab. Dispos. 2005; 33: 1036-43.
    [5] 曾苏.药物代谢学.杭州:浙江大学出版社.2004;7.
    [6] 李新,余应年.药物的Ⅱ相代谢与酶系及其进展.中国临床药理学杂志志.2000;16:458-64.
    [1] 曾苏.药物代谢学.杭州:浙江大学出版社.2004;66.
    [2] O'Leary KA, Day AJ, Needs PW, Mellon FA, O'Brien NM, Williamson G. Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: the role of human beta-glucuronidase, sulfotransferase, catechol-O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism. Biochem. Pharmacol. 2003; 65: 479-91.
    [3] Nemeth K, Plumb GW, Berrin JG, Juge N, Jacob R, Naim HY, Williamson G, Swallow DM, Kroon PA. Deglycosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur. J. Nutr. 2003; 42: 29-42.
    [4] Day AJ, Gee JM, DuPont MS, Johnson IT, Williamson G. Absorption of quercetin-3-glucoside and quercetin-4'-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Biochem. Pharmacol. 2003; 65: 1199-206.
    [5] Spencer JP, Chowrimootoo G, Choudhury R, Debnam ES, Srai SK, Rice-Evans C. The small intestine can both absorb and glucuronidate luminal flavonoids. FEBS Lett. 1999; 458: 224-30.
    [6] Ader P, Wessmann A, Wolffram S. Bioavailability and metabolism of the flavonol quercetin in the pig. Free Radic Biol Med. 2000; 28: 1056-67.
    [7] Crespy V, Morand C, Manach C, Besson C, Demigne C, Remesy C. Part of quercetin absorbed in the small intestine is conjugated and further secreted in the intestinal lumen. Am. J. Physiol. 1999; 277: G120-6.
    [8] Morand C, Crespy V, Manach C, Besson C, Demigne C, Remesy C. Plasma metabolites of quercetin and their antioxidant properties. Am J Physiol. 1998; 275: R212-9.
    [9] van der Woude H, Boersma MG, Vervoort J, Rietjens IM. Identification of 14 quercetin phase Ⅱ mono- and mixed conjugates and their formation by rat and human phase Ⅱ in vitro model systems. Chem. Res. Toxicol. 2004; 17: 1520-30.
    [10] Arts IC, Sesink AL, Faassen-Peters M, Hollman PC. The type of sugar moiety is a major determinant of the small intestinal uptake and subsequent biliary excretion of dietary quercetin glycosides. Br J Nutr. 2004; 91: 841-7.
    [11] Day AJ, Bao Y, Morgan MR, Williamson G. Conjugation position of quercetin glucuronides and effect on biological activity Free Radic. Biol. Med. 2000; 29: 1234-43.
    [12] 阿布拉江博士毕业论文,中国医学科学院/协和医科大学.2006.
    [13] Manach C, Morand C, Demigne C, Texier O, Regerat F, Remesy C. Bioavailability of rutin and quercetin in rats. FEBS Lett. 1997; 409: 12-6.
    [14] Manach C.; Texier O.; Regerat F.; Agullo G.; Demigne C.; Remesy C. Dietary quercetin is recovered in rat plasma as conjugated derivatives of isorhamnetin and quercetin. J Nutr Biochem. 1996; 7: 375-80
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.