碳纳米管复合材料及碳纳米管为模板的纳米管的制备与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管是一种优异的一维纳米材料,具有独特的结构及物理化学特性,被认为是最具有未来应用前景的新材料之一。其中,以碳纳米管材料为基体的纳米复合材料,由于可以充分发挥碳纳米管和与其复合纳米材料的优点逐渐引起研究人员广泛的关注。本文报道了利用碳纳米管作为载体分别制备出了Ni/CNT,空心CoO/CNT, Si/CNT, TiO2/CNT纳米复合材料。以碳纳米管为模板制备出了SnO2/TiO2, SnO2/SiO2复合纳米管材料。并且对所制备的纳米复合材料的结构,形貌和性质进行了研究和表征。其主要内容如下:
     1.对基底增强无电镀沉积法进行了改进,利用此法制备出了纳米Ni/CNT复合材料,并且可通过改变NiSO4溶液的浓度而控制Ni纳米粒子的大小此外,在尝试利用基底增强无电镀沉积法制备Co/CNT复合材料时,我们发现由于柯克达尔效应Co/CNT中的Co纳米粒子转变成空心结构的CoO/CNT复合材料。研究探索利用低温镁热还原法制备Si/CNT复合材料的新路线,发现可以通过控制SiO2/CNT前驱体的SiO2层厚度来控制复合材料中Si纳米粒子的大小
     2.利用两相热法制备出了粒径均一分散均匀的TiO2/CNT复合材料。研究了水油比对TiO2纳米粒子的负载量及反应时间对粒径大小的影响:水油比为1:1时TiO2纳米粒子在碳纳米管上的负载量最多;随着反应时间的增加,TiO2纳米粒子的粒径也随之增加。此外,我们还研究了碳纳米管表面缺陷对TiO2的光催化活性的影响。分别将碳纳米管在浓硝酸中纯化1h,4 h,8 h,12 h以获得具有不同缺陷数量的碳纳米管。碳纳米管表面缺陷数量可以通过XPS测量氧含量进行表征。随着时间的增加,氧含量从约3%增加到8.2%。光催化研究发现,纯化8 h的碳纳米管与TiO2纳米粒子的复合材料具有最高的光催活化性。
     3.以碳纳米管为模板制备出TiO2及SnO2/TiO2复合纳米管,并利用XRD及SEM, TEM, XPS对其显微结构进行了表征。对SnO2/TiO2复合纳米管进行光致发光谱及表面光电压谱的分析测试表明SnO2纳米粒子的复合可以使TiO2纳米管的光生电子-空穴对有效的分离。SnO2/TiO2纳米管表现出了比商业TiO2的P25更强的光催化活性,有望应用于光催化降解污染物领域。
     4.以碳纳米管为模板制备出SnO2/SiO2(in)及SnO2/SiO2(out)两种复合纳米管材料。这两种复合材料都具有窄粒径分布,大比表面积及好的热稳定性。对SnO2/SiO2复合纳米管进行紫外-可见光吸收光谱测试表明,SiO2壳的限制作用使SnO2纳米粒子具有很小的粒径,由于量子尺寸效应引起了吸收谱带的蓝移。我们对SnO2/SiO2(in)及SnO2/SiO2(out)两种复合纳米管材料进行了光催化降解反应研究。结果表明SnO2/SiO2(in)复合纳米管具有和商业P25相同程度的光催化活性。
As an excellent 1D nanomaterial. carbon nanotubes (CNTs) with an unique structure and chem-physical properties have been widely applied in various areas. Among them, carbon nanotube composites have attracted increasing interest because of the combination of the CNTs and other materials may lead to a successful integration of the properties of the components in the new hybrid materials. In our work, a series of carbon nanotube composites such as Ni/CNT, hollow CoO/CNT, Si/CNT and TiO2/CNT have been prepared using carbon nanotubes as supports. Moreover, the SnO2/TiO2, SnO2/SiO2 composite nanotubes have also been fabricated using carbon nanotubes as templates. Furthermore, the structure, morphology and properties of these composite materials have been characterized and studied. The research contents as followed:
     1. The modified substrate enhanced electroless deposition (SEED) process was used for preparing the Ni/CNT composites. The size of the Ni NPs can be controlled by varying the concentration of the NiSO4 solution. Moreover, we found that the Co/CNT composites converted into hollow CoO/CNT composites due to the Kirkendall effect when we tried to prepare the Co/CNT composites by the modified SEED process. A new route for the synthesis of Si/CNT composites by a low-temperature magnesiothermic reduction process was presented. Moreover, the size of the Si NPs could be controlled by varying the silica (SiO2) thickness of SiO2/CNT precursors.
     2. A two-phase thermal approach was used to prepare the TiO2/CNT composites which have TiO2 nanoparticles with a narrow size distribution and a uniform dispersion on the CNT surface. We studied the influence of the ratio of water and oil on the amount of the TiO2 NPs load on the CNTs and the reaction time on the size of the TiO2 NPs. The amount of TiO2 NPs loaded on the CNTs decreased no matter the water content either too much or too little. The size of the TiO2 NPs increased with the increase of reaction time. In addition, we also investigated the influence of the CNTs surface defect on the photo-catalytic activity. In order to get the CNTs with the different number of defect, we treated the CNTs with the concentrated nitric acid for 1 h,4 h,8 h and 12 h. respectively. The number of defects was determined by XPS to measure the oxygen content of the CNTs. The oxygen content increased from raw 1.25% to 8.2% with increasing the acid-treatment time. The composite prepared with the TiO2 and the CNTs (8 h) has the best photo-catalytic activity.
     3. The TiO2 nanotubes and SnO2/TiO2 nanotubes were prepared using CNTs as templates. The structural and morphological characterizations of the TiO2 nanotubes and SnO2/TiO2 nanotubes have been carried out using XRD, SEM, TEM and XPS. The PL spectra and X-ray photoelectron spectroscopy (XPS) method indicated that the separation rate of photo-induced electron-hole pairs was improved through SnO2 NPs combined with the TiO2 nanotubes. The SnO2/TiO2 nanotubes have a higher photo-catalytic activity than P25. suggesting that it would be promising as a new photo-catalytic material in the photo-catalysis area.
     4. The two kinds of composite nanotubes. SnO2/SiO2(in) and SnO2/SiO2(out), were synthesized using CNTs as templates. They all possessed a narrow size distribution, a large specific surface area, and good thermal stability. UV-visible absorption spectra of the SnO2/SiO2 composites present a blue-shift with the decrease of particle size, which could be attributed to the quantum size effect. The photo-catalytic reaction showed that the ) has the same photo-catalytic ability as the P25.
引文
[1]麦亚潘(美)主编,刘忠范等译.碳纳米管-科学与应用[M].北京:科学出版社,2007.
    [2]Sie Chin Tjong. Carbon Nanotube Reinforced Composites [M]. Germany: Wiley-VCH,2009.
    [3]Iijima Sumio. Helical Microtubules of Graphitic Carbon [J]. Nature,1991. 354(6348):56.
    [4]Ebbesen TW, Ajayan PM. Large-scale synthesis of carbon nanotubes [J]. Nature. 1992.358:220-222.
    [5]Colbert PT, Zhang J, Mcclure SM, et al. Growth and sintering of fullerence nanotubes [J]. Science,1994.266:1218-1233.
    [6]Jose-Yacaman M, Miki-Yoshida M, Rendon L. Catalytic growth of carbon microtubules with fullerene structure [J]. Applied.Physics.Letters,1993,62 (6): 657-659.
    [7]Morinobu E, Kenji T, Igarashi S, et al. The production and structure of pyrolytic carbon nanotubes (PCNTs) [J]. Journal of Physics and Chemistry of Solids, 1993,54(12):1841-1848.
    [8]Che G., Lakshmi BB, Martin CR, et al. Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method [J]. Chem. Mater.,1998,10(1):260-267.
    [9]Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes [J]. Science,1996,273(5274):483-487
    [10]GuoT, Nikolaev P, Rinzler AG, et al. Self-assembly of tubular fullerenes [J]. Journal of Physical Chemistry,1995,99(27):10694-10697.
    [11]Udasaka M., Komatsu T., Ichihashi T., et al. Pressure dependence of the structures of carbonaceous deposits formed by laser ablation on targets composed of carbon, nickel, and cobalt [J]. J. Phys. Chem. B.,1998,102 (25): 4892-4896.
    [12]Woo-Seok Cho, Etsuo Hamada,Yukihito Kondo, et al. Synthesis of carbon nanotubes from bulk polymer [J]. Applied Physics Letters,1996,69(2): 278-279.
    [13]Huang S., Cai X., Du C., et al. Oriented long single walled carbon nanotubes on substrates from floating catalysts [J]. J. Phys. Chem. B.,2003,107(28):13251-13254.
    [14]Hou H., Schaper A. K., Weller F., et al. Carbon nanotubes and spheres produced by modified ferrocene pyrolysis [J]. Chem. Mater.,2002,14(9):3990-3994.
    [15]Diener M. D., Nichelson N., Alford JM. Synthesis of single-walled carbon nanotubes in flames [J]. J. Phys. Chem. B.,2000,104(41):9615-9620.
    [16]Li Y, Zhang, X B, Luo, J H, et al. Purification of CVD synthesized single-wall carbon nanotubes by different acid oxidation treatments [J]. Nanotechnology, 2004,15:1645.
    [17]Hou PX, Bai S, Yang QH, et al. Multi-step purification of carbon nanotubes [J]. Carbon,2002,40:81-85.
    [18]Ajayan PM, Ebbesen TW, Ichihashi T, et al. Opening carbon nanotubes with oxygen and implication for filling [J]. Nature,1993,362:522-525.
    [19]Tohji K, Goto T, Takahashi H, et al. Purifying single-walled carbon nanotubes [J]. Nature,1996,383:679.
    [20]Andrews R, Jacques D, Qian D, et al. Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures [J]. Carbon,2001, 39:1681-1687.
    [21]Park T J, Banerjee S, Hemraj-Benny T, et al. Purification strategies and purity visualization techniques for single-walled carbon nanotubes [J]. Mater. Chem., 2006,16:141-154.
    [22]Ebbesen TW, Lezec HJ, Hiura H, et al. Electical conductivity of individual carbon nanotubes[J]. Nature,1996,382:54-56.
    [23]Odom TW, Huang JL, Kim P, et al. Atomic structure and electric properties of single walled carbon nanotubes [J]. Nature,1998,391:62-64.
    [24]Dai H, Wong EW, Lieber CM. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes [J]. Science,1996,272:523-526.
    [25]Chico Leonor, Benedict Lorin X., Louie Steven G., Cohen Marvin L. Quantum conductance of carbon nanotubes with defects [J].Physical Review B,1996,54 (4):2600-2606.
    [26]Frank Stefan, Poncharal Philippe, Wang Z L, Heer Walt A de. Carbon nanotube quantum resistors [J]. Science,1998,280(5370):1744-1746.
    [27]Pederson MR, Broughton JQ. Nanocapillarity in fullerene tubules [J]. Physical Review Letters,1992,69:2689-2692.
    [28]韦进全等.碳纳米管宏观体[M].北京:清华大学出版社.
    [29]Lebedkin S, Hennrich F, Skipa T, et al. Near-infraed photoluminescence of single-walled carbon nanotubes prepared by the laser vaporization method [J]. The Journal of Physical Chemistry B,2003,107:1949-1956.
    [30]Bonard J M, Stockli T, Maier F, et al. Field-emission-induced luminescence from carbon nanotubes [J]. Physical Review Letters,1998,81(7):1441-1444.
    [31]Wei JQ, Zhu HW, Wu DH, et al. Carbon nanotubes filaments in household light bulbs [J]. Applied Physics Letters,2004,84(24):4869-4871.
    [32]Berber S, Kwon YK, Tomanek D. Unusually high thermal conductivity of carbon nanotubes [J]. Phys. ReV. Lett.,2000,84:4613-4616.
    [33]Hone J, Batlogg B, Benes Z, et al. Quantized phonon spectrum of single-wall carbon nanotubes [J]. Science,2000,289:1730-1733.
    [34]Colvert P. Rough guide to the nanoworld [J]. Nature,1996,383(6598):300.
    [35]Akita H, Kobayashi H. Studies on molecular composite. Ⅲ. Nanocomposites consisting of poly(p-phenylene benzobisthiazole) and thermoplastic polyamide [J]. Journal of Polymer Science Part B:Polymer Physics,1999,37(3):209-218.
    [36]张立德等.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [37]Georgakilas V, Gournis D, Tzitzios V, et al. Decorating carbon nanotubes with metal or semiconductor nanoparticles [J]. Mater. Chem.,2007,17:2679-2694.
    [38]Wildgoose GG, Banks CE, Compton RG. Metal nanoparticles and related materials supported on carbon nanotubes:methods and applications [J]. Small, 2006,2:182-193.
    [39]Eder Dominik. Carbon nanotube-inorganic hybrids [J]. Chem. Rev.,2010,110: 1348-1385.
    [40]Chen J, Hamon MA, Hu H, et al. Solution Properties of Single-Walled Carbon Nanotubes [J]. Science 1998,282:95-98.
    [41]Haremza JM, Hahn MA, Krauss TD, et al. Attachment of single CdSe nanocrystals to individual single-walled carbon nanotubes [J]. Nano Lett.,2002, 2:1253-1258.
    [42]Banerjee S, Wong SS. Synthesis and characterization of carbon nanotube nanocrystal heterostructures [J]. Nano Lett.,2002,2:195-200.
    [43]Ravindran S, Chaudhary S, Colburn B, et al. Covalent coupling of quantum dots to multiwalled carbon nanotubes for electronic device applications [J]. Nano Lett.2003,3:447-453.
    [44]Daniel MC, Astruc D. Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J]. Chem. ReV.,2004,104:293-346.
    [45]Azamian BR, Coleman KS, Davis JJ, et al. Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes [J]. Chem. Commun.,2002,4: 366-367.
    [46]Zanella R, Basiuk EV, Santiago P, et al. Deposition of gold nanoparticles onto thiol-functionalized multiwalled carbon nanotubes [J]. J. Phys. Chem. B,2005, 109:16290-16295.
    [47]Wang G.X, Zhang BL, Yu ZL, et al. Manganese oxide/MWNTs composite electrodes for supercapacitors [J].Solid State Ionics 2005,176:1169-1174.
    [48]Liu B, Chen JH, Xiao CH, et al. Preparation of Pt/MgO/CNT Hybrid Catalysts and Their Electrocatalytic Properties for Ethanol Electrooxidation [J]. Energy Fuels 2007,21:1365-1369.
    [49]Kongkanand A, Dominguez RM, Kamat PV. Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. capture and transport of photogenerated electrons [J]. Nano Lett.,2007,7:676-680.
    [50]Juan JC, Jiang Y, Meng X, et al. Supported zirconium sulfate on carbon nanotubes as water-tolerant solid acid catalyst [J]. J. Mater. Res, Bull.,2007, 42:1278-1285.
    [51]Lee CL, Ju YC, Chou PT, et al. Preparation of Pt nanoparticles on carbon nanotubes and graphite nanofibers via self-regulated reduction of surfactants and their application as electrochemical catalyst [J]. Electrochem. Commun. 2004,7:453-458.
    [52]Whitsitt EA, Moore VC, Smalley RE, Barron AR. LPD silica coating of individual single walled carbon nanotubes [J]. Mater. Chem.,2005,15: 4678-4687.
    [53]Whitsitt EA, Barron AR. Silica coated single walled carbon nanotubes [J]. Nano Lett.,2003,3:775-778.
    [54]Han L, Wu W, Kirk FL, et al. A Direct Route toward Assembly of Nanoparticle-Carbon Nanotube Composite Materials [J]. Langmuir 2004, 20,14:6019-6025.
    [55]Ou YY, Huang MH. High-density assembly of gold nanoparticles on mltiwalled carbon nanotubes using 1-pyrenemethylamine as interlinker [J]. J. Phys. Chem. B,2006,110:2031-2036.
    [56]Murakami H, Nomura T, Nakashima N. Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposites [J]. Chem. Phys. Lett.,2003,378: 481-485.
    [57]Eder D, Windle AH. Carbon-inorganic hybrid materials:The carbon nanotube/TiO2 interface [J]. AdV. Mater.,2008,20:1787-1793.
    [58]Mu Y, Liang H, Hu J, et al. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells [J]. J. Phys. Chem. B,2005,109:22212-22216.
    [59]Wang X, Liu Y, Qiu W, et al. Immobilization of tetra-tert-butylphthalocyanines on carbon nanotubes:a first step towards the development of new nanomaterials [J]. J. Mater. Chem.,2002,12:1636-1639.
    [60]Georgakilas V, Tzitzios V, Gournis D, Petridis D. Attachment of Magnetic Nanoparticles on Carbon Nanotubes and Their Soluble Derivatives [J]. Chem. Mater.2005,17,1613-1617.
    [61]Zhou J, Zhou X, Sun X, et al. Interaction between Pt nanoparticles and carbon nanotubes-An X-ray absorption near edge structures (XANES) study [J]. Chem. Phys. Lett.,2007,437:229-232.
    [62]Guldi DM, Taieb H, Rahman G.M, et al. Novel photoactive single-walled carbon nanotube-porphyrin polymer wraps:efficient and long-lived intracomplex charge separation [J]. AdV. Mater,2005,17:871-875.
    [63]Chen H, Donga S. A method to construct polyelectrolyte multilayers film containing gold nanoparticles [J]. Talanta 2006,71,1752-1756.
    [64]Ostranger JW, Mamedov AA, Kotov NA. Two modes of linear layer-by-layer growth of nanoparticle-polylectrolyte multilayers and different interactions in the layer-by-layer deposition [J]. J. Am. Chem. Soc.2001,123:1101-1110.
    [65]Jiang K, Eitan A, Schadler LS, et al. Selective attachment of gold nanoparticles to nitrogen-doped carbon nanotubes [J]. Nano Lett.,2003,3.275-277.
    [66]Correa-Duarte MA, Perez-Juste J, Sanchez-Iglesias A, Giersig, M. Aligning Au Nanorods by Using Carbon Nanotubes as Templates [J]. Angew. Chem. Int. Ed., 2005,44:4375-4378.
    [67]Guo DJ, Li HL. Electrochemical synthesis of Pd nanoparticles on functional MWNT surfaces [J]. Electrochem. Commun.2004,6,999-1003.
    [68]Day TM, Unwin PR, Wilson NR, Macpherson JV. Electrochemical templating of metal nanoparticles and nanowires on single-walled carbon nanotube networks [J]. J. Am. Chem. Soc.,2005,127:10639-10674.
    [69]Quinn BM, Dekker C, Lemay SG. Electrodeposition of noble metal nanoparticles on carbon nanotubes [J]. J. Am. Chem. Soc.,2005,127: 6146-6147.
    [70]Guo DJ, Li HL. High dispersion and electrocatalytic properties of Pt nanoparticles on SWNT bundles [J]. J. Electroanal. Chem,2004,573:197-202.
    [71]Xing Y. Synthesis and electrochemical characterization of uniformly-dispersed high loading Pt nanoparticles on sonochemically-treated carbon nanotubes [J]. J. Phvs. Chem. B 2004,108:19255-19259.
    [72]Lin Y, Cui X, Yen C, Wai CM. Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells [J]. J. Phys. Chem. B,2005,109:14410-14415.
    [73]Cao J, Sun JZ, Hong J, et al. Carbon nanotube/CdS core-shell nanowires prepared by a simple room-temperature chemical reduction method [J]. Adv. Mater.,2004,16:84-87.
    [74]Sivakkumar SR, Ko JM, Kim DY, et al. Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors [J]. Electrochim. Acta 2007,52:7377-7385.
    [75]Robel I, Bunker BA, Kamat PV. Single-walled carbon nanotube-CdS nanocomposites as light-harvesting assemblies:photoinduced charge-transfer interactions [J]. Adv. Mater.,2005,17:2458-2463.
    [76]Li XL, Liu YQ, Fu L, et al. Efficient Synthesis of Carbon Nanotube-Nanoparticle Hybrids [J]. Adv. Funct. Mater.,2006,16:2431-2437.
    [77]Huang B, Huang R, Jin D, Ye D. Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides [J]. Catal. Today 2007,126: 279-283.
    [78]Chen P, Wu X, Lin J, Tan KL. Synthesis of Cu nanoparticles and microsized fibers by using carbon nanotubes as a template [J]. J. Phys. Chem. B,1999,103: 4559-4561.
    [79]Fukunaga A, Chu S, McHenry ME. Using carbon nanotubes for the synthesis of transition metal carbide nanoparticles [J]. J. Mater. Sci. Lett.,1999,18: 431-433.
    [80]Lee CY, Tsai HM, Chuang HJ, et al. Characteristics and electrochemical performance of supercapacitors with manganese oxide-carbon nanotube nanocomposite electrodes [J]. J. Electrochem. Soc.,2005,152:A716.
    [81]Frank O, Kalbac M, Kavan L, et al. Structural properties and electrochemical behavior of CNT-TiO2 nanocrystal heterostructures [J]. Phys. Status Solidi, 2007,244:4040-4045.
    [82]He KX, Wu QF, Zhang XG, Wang XL. Electrodeposition of Nickel and Cobalt Mixed Oxide/Carbon Nanotube Thin Films and Their Charge Storage Properties [J]. J. Electrochem. Soc.2006,153:A1568.
    [83]Choi HC, Shim M, Bangsaruntip S, Dai H. Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes [J]. J. Am. Chem. Soc.,2002,124: 9058-9059.
    [84]Qu L, Dai L. Substrate-enhanced electroless deposition of metal nanoparticles on carbon nanotubes [J]. J. Am. Chem. Soc.,2005,127:10806-10807.
    [85]Brinker CJ, Scherer GW. Sol-Gel Sciences-The physics and chemistry of sol-gel processing; academic Press:New York,1990.
    [86]Song H, Qiu X, Li F, et al. Ethanol electro-oxidation on catalysts with TiO2 coated carbon nanotubes as support [J]. Electrochem. Commun.,2007,9: 1416-1421.
    [87]Han WQ, Zettl A. Coating Single-Walled Carbon Nanotubes with Tin Oxide [J]. Nano Lett.,2003,3:681-683.
    [88]Li Y, Ding J, Chen J, et al. Preparation of ceria nanoparticles supported on carbon nanotubes [J]. Mater. Res. Bull.,2002,37:313-318.
    [89]Arabale G., Wagh D, Kulkarni M, et al. Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide [J]. Chem. Phys. Lett.,2003,376:207-213.
    [90]Lee JY, Liang K, Ana KH, Lee YH. Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance [J]. Synth. Met.,2005,150: 153-157.
    [91]Wu RJ, Wu JG, Yu MR, et al. Promotive effect of CNT on Co3O4-SnO2 in a semiconductor-type CO sensor working at room temperature [J]. Sens. Actuators:B,2008,131:306-312.
    [92]Eder D, Windle AH. Morphology control of CNT-TiO2 hybrid materials and rutile nanotubes [J]. Mater. Chem.,2008,18:2036-2043.
    [93]Bourlinos AB, Georgakilas V, Zboril R, Dallas P. Preparation of a water-dispersible carbon nanotube-silica hybrid [J]. Carbon,2007,45: 2136-2139.
    [94]Cao L, Scheiba F, Roth C, et al. Novel nanocomposite Pt/RuO2·x H2O/carbon nanotube catalysts for direct methanol fuel cells [J]. Angew. Chem., Int. Ed., 2006,45 (32):5315-5445.
    [95]Wei XW, Song XH, Xu J, et al. Coating multi-walled carbon nanotubes with metal sulfides [J]. Mater. Chem. Phys.,2005,92:159-163.
    [96]徐如人.无机合成化学[M].北京:高等教育出版社,1991.
    [97]Du J, Fu L, Liu Z, et al. Facile route to synthesize multiwalled carbon nanotube/zinc sulfide heterostructures:optical and electrical properties [J]. J. Phys. Chem. B 2005,109:12772-12776.
    [98]Yu Y, Ma LL, Huang WY, et al. Coating MWNTs with Cu2O of different morphology by a polyol process [J]. J. Solid State Chem.2005,178: 1488-1494.
    [99]Yu Y, Ma LL, Huang WY, et al. Sonication assisted deposition of Cu2O nanoparticles on multiwall carbon nanotubes with polyol process [J]. Carbon, 2005,43:670-673.
    [100]Jia BP, Gao L, Sun J. Self-assembly of magnetite beads along multiwalled carbon nanotubes via a simple hydrothermal process [J]. Carbon,2007,45: 1476-1481.
    [101]Fu L, Liu ZM, Liu YQ, et al. Coating carbon nanotubes with rare earth oxide multi-walled nanotubes [J]. Adv. Mater.,2004,16:350-352.
    [102]Sun ZY, Zhang XR, Han BX, et al. Coating carbon nanotubes with metal oxides in a supercritical carbon dioxide-ethanol solution [J]. Carbon,2007,45: 2589-2596.
    [103]Sun Z, Liu Z, Han B, An G. Supercritical carbon dioxide-assisted deposition of tin oxide on carbon nanotubes [J]. Mater. Lett.,2007,61:4565-4568.
    [104]Sun Z, Yuan H, Liu Z, et al. A highly efficient chemical sensor material for H2S:α-Fe2O3 nanotubes fabricated using carbon nanotube templates [J]. Adv. Mater.,2005,17:2993-2997.
    [105]Sun Z, Liu Z, Han B, et al. Microstructural and electrochemical characterization of RuO2/CNT composites synthesized in supercritical diethyl amine [J]. Carbon,2006,44:888-893.
    [106]Kim H, Sigmund W. Zinc oxide nanowires on carbon nanotubes [J]. Appl. Phys. Lett,2002,81:2085.
    [107]Zhang Y, Franklin NW, Chen RJ, Dai H. Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction [J]. Chem. Phys. Lett., 2000,331:35-41.
    [108]Ye JS, Cui HF, Liu X, et al. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors [J]. Small,2005, 1:560-565.
    [109]Kim HW, Shim SH, Lee JW. SiOx-sheathed carbon nanotubes prepared via a sputtering technique [J]. Carbon,2007,45:2695-2698.
    [110]Zhu YW, Elim HI, Foo YL, et al. Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching [J]. Adv. Mater., 2006,18:587-592.
    [111]Jin F, Liu Y, Day CM. Barium strontium oxide coated carbon nanotubes as field emitters [J]. Appl. Phys. Lett.2007,90:143114.
    [112]Fang WC, Chyan O, Sun CL, et al. Arrayed CNxNT-RuO2 nanocomposites directly grown on Ti-buffered Si substrate for supercapacitor applications [J]. Electrochem. Commun.,2007,9:239-244.
    [113]Ikuno T, Yasuda T, Honda SI, et al. Coating carbon nanotubes with inorganic materials by pulsed laser deposition [J]. J. Appl. Phys.,2005,98:114305.
    [114]Ikuno T, Katayama M, Kamada K, et al. Insulator-coated carbon nanotubes synthesized by pulsed laser deposition [J]. Jpn. J. Appl. Phys. Lett.,2003,42: L1356-L1358.
    [115]Chrissanthopoulos A, Baskoutas S, Bouropoulos N, et al. Comparative study of CdS/CdTe cells fabricated with and without evaporated Te-layer [J]. Thin Solid Films,2007,515:8524-5827.
    [116]Kuang Q, Li SF, Xie ZX, et al. Controllable fabrication of SnO2-coated multiwalled carbon nanotubes by chemical vapor deposition [J]. Carbon,2006, 44:1166-1172.
    [117]Deng GH, Xiao X, Chen JH, et al. Controlled electrochemical oxidation for enhancing the capacitance of carbon nanotube composites [J]. Carbon,2005,43: 1557-1560.
    [118]Peng HB, Golovchenko JA. Coulomb blockade in suspended Si3N4-coated single-walled carbon nanotubes [J]. Appl. Phys. Lett.,2004,84:5428.
    [119]Pan L, Shoji T, Nagataki A, et al. Field emission properties of titanium carbide coated carbon nanotube arrays [J]. Adv. Eng. Mater.,2007,9:584-587.
    [120]Fan Z, Chen J, Cui K, et al. Preparation and capacitive properties of cobalt-nickel oxides/carbon nanotube composites [J]. Electrochim. Acta,2007, 9:2959-2965.
    [121]Yoon B, Wai CM. Microemulsion-templated synthesis of carbon nanotube-supported Pd and Rh nanoparticles for catalytic applications [J]. J. Am. Chem. Soc.,2005,127:17174-17175.
    [122]Giordano R, Serp P, Kalck P, et al. Preparation of Rhodium Catalysts Supported on Carbon Nanotubes by a Surface Mediated Organometallic Reaction [J]. Eur. J. Inorg. Chem.,2003,4:610-617.
    [123]Yu R, Chen L, Liu Q, et al. Platinum deposition on carbon nanotubes via chemical modification [J]. Chem. Mater.,1998,10:718-722.
    [124]Lin Y, Cui X, Yen C, Wai CM. Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells [J]. J. Phys. Chem. B,2005,109:14410-14415.
    [125]Fu X, Yu H, Peng F, et al. Facile preparation of RuO2/CNT catalyst by a homogenous oxidation precipitation method and its catalytic performance [J]. Appl. Catal., A 2007,321:190-197.
    [126]Pietruszka B, DiGregorio F, Keller N, Keller V. High-efficiency WO3/carbon nanotubes for olefin skeletal isomerization [J]. Catal. Today,2005,102-103: 94-100.
    [127]Yang HM, Liao PH. Preparation and activity of Cu/ZnO-CNTs nano-catalyst on steam reforming of methanol [J]. Appl. Catal.:A,2007,317:226-233.
    [128]Juan JC, Jiang Y, Meng X, et al. Supported zirconium sulfate on carbon nanotubes as water-tolerant solid acid catalyst [J]. J. Mater. Res. Bull.,2007,42: 1278-1285.
    [129]Ou Y, Lin J, Fang S, Liao D. MWNT-TiO2:Ni composite catalyst:a new class of catalyst for photocatalytic H2 evolution from water under visible light illumination [J]. Chem. Phys. Lett.,2006,429:199-203.
    [130]Wang W, Serp P, Kalck P, et al. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method [J]. Journal of Molecular Catalysis A:Chemical.2005,235:194-199.
    [131]Yu Y, Yu JC, Yu J, et al. Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes [J]. Applied Catalysis A:General,2005,289: 186-196.
    [132]Lee SH, Pumprueg S, Moudgil B, Sigmund W. Inactivation of bacterial endospores by photocatalytic nanocomposites [J]. Colloids Surf.:B,2005,40: 93-98.
    [133]Liu Bin, Chun Zeng. Carbon nanotubes supported mesoporous mesocrystals of anatase TiO2 [J].Chem. Mater.,2008,20:2711-2718.
    [134]Yen Chuanyu, Lin Yufeng, Hung CH, et al. The effects of synthesis procedures on the morphology and photocatalytic activity of multi-walled carbon nanotubes/TiO2 nanocomposites [J]. Nanotechnology,2008,19:045604.
    [135]Chen Lungchuan, Ho Yching, Guo Weisheng, et al. Enhanced visible light-induced photoelectrocatalytic degradation of phenol by carbon nanotube-doped TiO2 electrodes [J]. Electrochimica Acta,2009,54: 3884-3891.
    [136]Wei BY, Hsu MC, Su PG, et al. A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature [J]. Sens. Actuators:B 2004,101.81.
    [137]Yang An, Tao Xiaoming, Wang Rongxing, et al. Room temperature gas sensing properties of SnO2/multiwall-carbon-nanotube composite nanofibers [J]. Applied physics letters,2007,91:133110.
    [138]Van Hieu N, Thuy LTB, Chien ND. Highly sensitive thin film NH3 gas sensor operating at room temperature based on SnO2/MWCNTs composite [J]. Sens. Actuators:B,2008,129:888-895.
    [139]Liu J, Guo Z, Meng F, et al. A novel antimony-carbon nanotube-tin oxide thin film:carbon nanotubes as growth guider and energy buffer. application for indoor air pollutants gas sensor [J]. J. Phys. Chem. C,2008,112:6119-6125.
    [140]Chen Y, Zhu C, Wang T. The enhanced ethanol sensing properties of multi-walled carbon nanotubes/SnO2 core/shell nanostructures [J]. Nanotechnology,2006,17:3012.
    [141]Niu C, Sichel EK, Hoch R, et al. High power electrochemical capacitors based on carbon nanotube electrodes [J]. Appl. Phys. Lett.,1997,70:1480.
    [142]Lota G, Lota K, Frackowiak E. Nanotubes based composites rich in nitrogen for supercapacitor application [J]. Electrochem. Commun.,2007,9:1828-1832.
    [143]Hughes M, Shaffer MSP, Renouf AC, et al. Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole [J]. Adv. Mater.,2002,14:382-385.
    [144]Hughes M, Chen GZ, Shaffer MSP, et al. Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole [J]. J. Chem. Mater.,2002,14:1610-1613.
    [145]Yi W, Yu SG., Lee WT, et al. Secondary electron emission yields from MgO deposited on carbon nanotubes [J]. J. Appl. Phys.,2001,89;4091.
    [146]Subramanian V, Zhu HW, Wei BQ. Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials [J]. Electrochem. Commun.,2006,8:827-832.
    [147]Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM. Coaxial MnO2/Carbon Nanotube Array Electrodes for High-Performance Lithium Batteries [J]. Nano Lett.,2009,9:1002-1006.
    [148]Park JH, Ko JM, Parka OO. Carbon nanotube/RuO2 nanocomposite electrodes for supercapacitors [J]. J. Electrochem. Soc.,2003,150, A864.
    [149]Kim IH, Kim JH, Lee YH, Kim KB. Synthesis and characterization of electrochemically prepared ruthenium oxide on carbon nanotube film substrate for supercapacitor applications [J]. J. Electrochem. Soc.,2005,152:A2170.
    [150]Kang KS, Meng YS, Breger J, et al. Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries [J]. Science.2006.311:977-980.
    [151]Larcher D, Beattie S, Morcrette M, et al. Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries [J]. J. Mater. Chem.,2007,17:3759-3772.
    [152]Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for Rechargeable Lithium Batteries [J]. Angew. Chem., Int. Ed.2008,47:2930-2946.
    [153]Kim MG., Cho J. Reversible and High-Capacity Nanostructured Electrode Materials for Li-Ion Batteries [J]. Adv. Funct. Mater.,2009,19:1497-1514.
    [154]Xie J, Varadan VK. Synthesis and characterization of high surface area tin oxide/functionalized carbon nanotubes composite as anode materials [J]. Mater. Chem. Phys.,2005,91:274-280.
    [155]Zhenyao Wang, Ge Chen, Dingguo Xia. Coating of multi-walled carbon nanotube with SnO2 films of controlled thickness and its application for Li-ion battery [J]. Journal of Power Sources,2008,184:432-436.
    [156]Xu Chaohe, Sun Jing, Gao Lian. Synthesis of multiwalled carbon nanotubes that are both filled and coated by SnCb nanoparticles and their high performance in lithium-ion batteries [J]. J. Phys. Chem. C,2009,113: 20509-20513.
    [157]Du Ning, Zhang Hui, Chen Bindi, et al. Synthesis of polycrystalline SnO2 nanotubes on carbon nanotube template for anode material of lithium-ion battery [J]. Materials Research Bulletin,2009,44:211-215.
    [158]Fu Yanbao, Ma Ruobiao, Shu Ye, et al. Preparation and characterization of SnO2/carbon nanotube composite for lithium ion battery applications [J]. Materials Letters,2009,63:1946-1948.
    [159]Yang Shubin, Song Huaihe, Yi Haixia, et al. Carbon nanotube capsules encapsulating SnO2 nanoparticles as an anode material for lithium ion batteries [J]. Electrochimica Acta,2009,55:521-527.
    [160]Moon JS, Alegaonkar PS, Han JH, et al. Enhanced field emission properties of thin-multiwalled carbon nanotubes:Role of SiOx coating [J]. J. Appl. Phys, 2006,100:104303.
    [161]Yan X, Tay BK. Miele P. Field emission from ordered carbon nanotube-ZnO heterojunction arrays [J]. Carbon,2008,46:753-758.
    [162]Huo K, Outlaw RA, Wang S, et al. Uniform and enhanced field emission from chromium oxide coated carbon nanosheets [J]. Appl. Phys. Lett.2008,92: 133112.
    [163]Heo JN, Kim WS, Jeong TW, et al. Effect of MgO film thickness on secondary electron emission from MgO-coated carbon nanotubes [J]. Physica B,2002, 323:174-176.
    [164]Jin F, Liu Y, Day CM, Little SA. Enhanced electron emission from functionalized carbon nanotubes with a barium strontium oxide coating produced by magnetron sputtering [J]. Carbon,2007,45:587-593.
    [165]Pan L, Shoji T, Nagataki A, Nakayama Y. Field Emission Properties of Titanium Carbide Coated Carbon Nanotube Arrays [J]. Adv. Eng. Mater.2007, 9:584-587.
    [166]Ajayan PM, Stephan O, Redlich P, Colliex C. Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures [J]. Nature 1995, 375:564-567.
    [167]Satishkumar BC, Govindaraj A, Vogl EM, et al. Oxide nanotubes prepared using carbon nanotubes as templates [J]. J. Mater. Res.1997,12:604-606.
    [168]Kim M, Hong J, Lee J, et al. Fabrication of silica nanotubes using silica coated multi-walled carbon nanotubes as the template [J]. J. Colloid Interface Sci., 2008,322:321-326.
    [169]Rao CNR, Satishkumar BC, Govindaraj A. Zirconia nanotubes [J]. Chem. Commun.1997,16:1581-1582.
    [170]Satishkumar BC, Govindaraj A, Nath M, Rao CNR. Synthesis of metal oxide nanorods using carbon nanotubes as templates [J]. J. Mater. Chem.,2000,10: 2115-2119.
    [171]Eder D, Motta MS, Kinloch IA, Windle AH. Anatase nanotubes as support for platinum nanocrystals [J]. Physica E,2007,37:245-249.
    [172]Yoganarasinhan SR, Rao CNR. Mechanism of crystal structure transformations. Part 3.-Factors affecting the anatase-rutile transformation [J]. Trans. Faraday Soc.,1962,58:1579.
    [173]Du N, Zhang H, Chen B, et al. Porous indium oxide nanotubes:layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH3 gas sensors [J]. Adv. Mater.2007,19:1641-1645.
    [174]Du N, Zhang H, Chen B, et al. Porous CO3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates:a highly efficient material for Li-battery applications [J]. Adv. Mater.,2007,19:4505-4509.
    [175]Yang H, Zhang D, Shi L. Synthesis and strong red photoluminescence of europium oxide nanotubes and nanowires using carbon nanotubes as templates [J]. Acta Mater.,2008,56:955-967.
    [176]Jia Yong, He Lifang, Guo Zheng et al. Preparation of porous tin oxide nanotubes using carbon nanotubes as templates and their gas-sensing properties [J]. J. Phys. Chem. C,2009,113:9581-9587.
    [177]Eder D, Motta M, Windle A H. Iron-doped Pt-TiO2 nanotubes for photocatalytic water splitting [J]. Nanotechnology,2009,20:055602.
    [1]Saito Y, Uemura S. Field emission from carbon nanotubes and its application to electron sources [J]. Carbon,2000,38:169-82.
    [2]Prokudina NA, Shishchenko ER, Joo OS, Hyung KH, Han SH. A carbon nanotube film as a radio frequency filter [J]. Carbon,2005,43:1815-9.
    [3]Chen WX, Tu JP, Wang LY, Gan HY, Xu ZD, Zhang XB. Tribological application of carbon nanotubes in a metal-based composite coating and composites [J]. Carbon,2003,41:215-22.
    [4]Asedegbega-Nieto E, Guerrero-Ruiz A, Rodriguez-Ramos I. Modification of the stereo-selectivity in the citral hydrogenation by application of carbon nanotubes as support of the Pt particles [J]. Carbon,2006,44:799-823.
    [5]Li W, Liang CH, Zhou WJ, Qiu JS, Li HQ, Sun GQ, et al. Homogeneous and controllable Pt particles deposited on multi-wall carbon nanotubes as cathode catalyst for direct methanol fuel cells [J]. Carbon,2004,42:436-9.
    [6]Yang GW, Gao GY, Wang C, Xu CL, Li HL. Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation [J]. Carbon,2008,46:747-52.
    [7]Sun J, Iwasa M, Gao L, Zhang QH. Single-walled carbon nanotubes coated with titania nanoparticles [J]. Carbon,2004,42:895-9.
    [8]Li CS, Tang YP, Yao KF, Zhou F, Ma Q, Lin H, et al. Decoration of multiwall nanotubes with cadmium sulfide nanoparticles [J]. Carbon,2006,44:2021-6.
    [9]Moghaddam M. J., Taylor S., Gao M., Huang S., Dai L., McCall M. J.. Highly Efficient Binding of DNA on the Sidewalls and Tips of Carbon Nanotubes Using Photochemistry [J]. Nano Lett.,2004,4:89-93.
    [10]Quinn, B., Dekker, C., Lemay, S. Electrodeposition of Noble Metal Nanoparticles on Carbon Nanotubes [J]. J. Am. Chem. Soc.,2005,127: 6146-6147.
    [11]Li J., Moskovits M., Haslett T. L.. Nanoscale Electroless Metal Deposition in Aligned Carbon Nanotubes [J]. Chem. Mater,1998,10:1963-1967.
    [12]Choi H. C.,Shim M., Bangsaruntip S., Dai H.. Spontaneous Reduction of Metal Ions on the Sidewalls of Carbon Nanotubes [J]. J. Am. Chem. Soc.,2002,124: 9058-9059.
    [13]Xing, Y. C. Synthesis and Electrochemical Characterization of Uniformly Dispersed High Loading Pt Nanoparticles on Sonochemically-Treated Carbon Nanotubes [J]. J. Phys. Chem. B,2004,108:19255-19259.
    [14]Kim B., Sigmund W. M.. Functionalized Multiwall Carbon Nanotube/Gold Nanoparticle Composites [J]. Langmuir,2004,20:8239-8242.
    [15]Choi H. C., Shim M., Bangsaruntip S., Dai H.. Spontaneous Reduction of Metal Ions on the Sidewalls of Carbon Nanotubes [J]. J. Am. Chem. Soc.,2002,124: 9058-9059.
    [16]Qu L. T..,Dai L., Substrate-Enhanced Electroless Deposition of Metal Nanoparticles on Carbon Nanotubes [J]. J. Am. Chem. Soc.,2005,127: 10806-10807.
    [17]Graetz J, Ahn CC, Yazami R, Fultz B. Highly reversible lithium storage in nanostructured silicon [J]. Electrochem Solid-State Lett,2003,6:A194-197.
    [18]He T, Lu M, Yao J, He JL, Chen B, Tour JM, et al. Reversible modulation of conductance in silicon devices via UV/visible-light irradiation [J]. Adv Mater, 2008,20:1-6.
    [19]Kang ZH, Tsang CHA, Wong NB, Zhang ZD, Lee ST. Silicon quantum dots:a general photocatalyst for reduction, decomposition, and selective oxidation reactions [J]. J Am Chem Soc 2007,129:12090-12091.
    [20]Wang YH, Li YN, Lu J, Zang JB, Huang H. Microstructure and thermal characteristic of Si-coated multi-walled carbon nanotubes [J]. Nanotechnology 2006,17:3817-3821.
    [21]Pan XW, Liu N, Zheng DX, Shi MM, Wu G, Wang M, et al. Foster resonance energy transfer in solution processed Si-nanoparticle/carbon nanotube nanocomposites [J]. Nanotechnology,2009,20:415605.
    [22]Liu M, Lu GH, Chen JH. Synthesis, assembly, and characterization of Si nanocrystals and Si nanocrystal carbon nanotube hybrid structures [J]. Nanotechnology,2008,19:p.265705/1-5.
    [23]Bao ZH, Weatherspoon MR, Shian S, Cai Y, Graham PD, Allan SM, et al. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas [J]. Nature,2007,446:172-5.
    [24]Yin YD, Rioux R M., Erdonmez C K., Hughes S, Somorjai G A., Alivisatos A P. Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect [J]. Science,2004,304:711-714.
    [25]Tracy J B, Weiss D N, Dinega D P, Bawendi G. Exchange biasing and magnetic properties of partially and fully oxidized colloidal cobalt nanoparticles [J]. Physical Review B,2005,72:064404.
    [26]Takenaka Sakae, Arike Takafumi, Matsune Hideki, Tanab Eishi, Kishida Masahiro. Preparation of carbon nanotube-supported metal nanoparticles coated with silica layers [J]. Journal of Catalysis,2008,257:345-355.
    [27]Li Xianglong, Liu Yunqi, Fu Lei, Cao Lingchao, Wei Dacheng, Wang Yu. Efficient Synthesis of Carbon Nanotube-Nanoparticle Hybrids [J]. Adv. Funct. Mater.,2006,16:2431-2437.
    [28]Ding Kunlun, Hu Baoji, Xie Yun, An Guimin, Tao Ranting, Zhang Hongye, et al. A simple route to coat mesoporous SiO2 layer on carbon nanotubes [J]. J. Mater. Chem.,2009,19:3725-3731.
    [29]Semenov AV, Puzikov VM, Dobrotvorskaya MV, Fedorov AG, Lopin AV. Nanocrystalline SiC films prepared by direct deposition of carbon and silicon [J]. Thin Solid Films,2008,516:2899-2903.
    [30]Shi YF, Zhang F, Hu YS, Su XH, Zhang YC, Stucky GD, et al. Low-temperature pseudomorphic transformation of ordered hierarchical macro-mesoporous SiO2/C nanocomposite to SiC via magnesiothermic reduction [J]. J Am Chem Soc 2010,132:5552-5553
    [31]Luo Yongsong, Heng Yaofu, Dai Xiaojun, Chen Wenquan, Li Jialin. Preparation and photocatalytic ability of highly defective carbon nanotubes [J]. Journal of Solid State Chemistry,2009,182:2521-2525.
    [32]Nesheva D, Raptis C, Perakis A, Bineva I, Aneva Z, Levi Z, et al. Raman scattering and photoluminescence from Si nanoparticles in annealed SiOx thin films [J]. Journal of Applied Physics,2002,92(8):4678-4683.
    [33]Wang RP, Zhou GW, Liu YL, Pan SH, Zhang HZ, Yu DP, et. al. Raman spectral study of silicon nanowires:High-order scattering and phonon confinement effects [J]. Physical Review B,2000.61:16827-16832.
    [34]Piscanec S, Cantoro M, Ferrari A C, et al. Raman spectroscopy of silicon nanowires [J]. Phys. Rev. B,2003,68:241312.
    [35]Konstantinovic M J, Bersier S, Wang X, et al. Raman scattering in cluster-deposited nanogranular silicon films [J]. Phys. Rev. B,2002,66: 161311.
    [36]Canham L. T.. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers [J]. Appl. Phys. Lett.,1990.57:1046.
    [37]Holmes J. D., Ziegler K. J., Doty C., Pell L. E., Johnston K. P., Korgel B. A., Highly Luminescent Silicon Nanocrystals with Discrete Optical Transitions [J]. J. Am. Chem. Soc.,2001,123:3743-3748.
    [38]Sankaran R M, Holunga D, Flagan R C, Giapis K P. Synthesis of Blue Luminescent Si Nanoparticles Using Atmospheric-Pressure Microdischarges [J]. Nanoletters,2005,5(3):537-541.
    [39]Ray M, Sarkar S, Bandyopadhyay N R, Hossain S M, Pramanick A K. Silicon and silicon oxide core-shell nanoparticles:Structural and photoluminescence characteristics [J]. Journal of Applied Physics,2009,105:074301.
    [40]Kymakis E., Amaratunga G. A.. Single-wall carbon nanotube/conjugated polymer photovoltaic devices [J]. J. Appl. Phys. Lett.,2002,80:112.
    [41]Cao L., Chen H. Z., Zhou H. B., Zhu L., Sun J. Z., Zhang X. B., Xu J. M., Wang M.. Carbon-Nanotube-Templated Assembly of Rare-Earth Phthalocyanine Nanowires [J]. Adv. Mater.,2003,15:909-913.
    [42]Maciej Olek, Thomas Bulsgen, Michael Hilgendorff, and Michael Giersig. Quantum Dot Modified Multiwall Carbon Nanotubes [J]. J. Phys. Chem. B, 2006,110:12901-12904.
    [1]Chen Huan, Chen Shuo, Quan Xie, Yu Hongtao, Zhao Huimin, Zhang Yaobin. Fabrication of TiO2-Pt Coaxial Nanotube Array Schottky Structures for Enhanced Photocatalytic Degradation of Phenol in Aqueous Solution. [J]. J. Phys. Chem. C,2008,112:9285-9290.
    [2]Zhang Lili, Lv Fujian, Zhang Weiguang, Li Rongqing, Zhong Hui, Zhao Yijiang, Photo degradation of methyl orange by attapulgite-SnO2-TiO2 nanocomposites [J]. Journal of Hazardous Materials,2009,171:294-300.
    [3]Tua Yafang, Huang Shengyou, Sang Jianping, Zou Xianwu. Synthesis and photocatalytic properties of Sn-doped TiO2 nanotube arrays [J]. Journal of Alloys and Compounds,2009,482:382-387.
    [4]Hameed A., Gondal M. A. Laser induced photocatalytic generation of hydrogen and oxygen over NiO and TiO2 [J]. J. Mol. Catal. A Chem,2004,219:109-119.
    [5]Eder D, Motta M, Windle A H. Iron-doped Pt-TiO2 nanotubes for photo-catalytic water splitting [J]. Nanotechnology,2009,20:055602 (6pp).
    [6]Zakrzewska K. Radecka M. TiO2-SnO2 system for gas sensing-Photodegradation of organic contaminants [J].
    [7]Llobet E, Espinos E H, Sotter E, Ionescu R, Vilanova X, Torres J, et al. Carbon nanotube-TiO2 hybrid films for detecting traces of O2[J]. Nanotechnology, 2008,19:375501 (llpp)
    [8]Thelakkat M, Schmitz C, Schmidt H W. Fully Vapor-Deposited Thin-Layer Titanium Dioxide Solar Cells [J]. Adv. Mater.,2002,14:577-.
    [9]Turhan I, Tepehan F Z, Tepehan G G. Effect of V2O5 content on the optical, structural and electrochromic properties of TiO2 and ZrO2 thin films [J]. J. Mater. Sci., 2005,40:1359-1362.
    [10]Saito Y, Uemura S. Field emission from carbon nanotubes and its application to electron sources [J]. Carbon,2000,38:169-182.
    [11]Prokudina NA, Shishchenko ER, Joo OS, Hyung KH, Han SH. A carbon nanotube film as a radio frequency filter [J]. Carbon,2005,43:1815-1819.
    [12]Chen WX, Tu JP, Wang LY, Gan HY, Xu ZD, Zhang XB. Tribological application of carbon nanotubes in a metal-based composite coating and composites [J]. Carbon,2003,41:215-222.
    [13]Asedegbega-Nieto E, Guerrero-Ruiz A, Rodriguez-Ramos I. Modification of the stereo-selectivity in the citral hydrogenation by application of carbon nanotubes as support of the Pt particles [J]. Carbon,2006,44:799-823.
    [14]Liu Bin, Zeng Huachun. Carbon Nanotubes Supported Mesoporous Mesocrystals of Anatase TiO2 [J]. Chem. Mater.,2008,20:2711-2718.
    [15]Guirado-Lo'pez R A, Sa'nchez M, Rinco'n M E. Interaction of Acetone Molecules with Carbon-Nanotube-Supported TiO2 Nanoparticles:Possible Applications as Room Temperature Molecular Sensitive Coatings [J]. J. Phys. Chem. C.2007,111:57-65.
    [16]Yang Yaodong, Qu Liangti, Dai Liming, Kang T S, Durstock M. Electrophoresis Coating of Titanium Dioxide on Aligned Carbon Nanotubes for Controlled Syntheses of Photoelectronic Nanomaterials [J]. Adv. Mater.,2007,19: 1239-1243
    [17]Hsieh C T, Chang C C, Chen Weiyun, Hung Weiming. Electrochemical capacitance from carbon nanotubes decorated with titanium dioxide nanoparticles in acid electrolyte [J]. Journal of Physics and Chemistry of Solids, 2009,70:916-921.
    [18]Eder D, Windle A H. Carbon-Inorganic Hybrid Materials:The Carbon-Nanotube/TiO2 Interface [J]. Adv. Mater.,2008,20:1787-1793.
    [19]Xia Xiaohong, Jia Zhijie, Yu Ying, Liang Ying, Wang Zhuo, Ma Lili. Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O [J]. Carbon,2007,45: 717-721.
    [20]Dai Ke, Peng Tianyou, Ke Dingning, Wei Bingqing. Photocatalytic hydrogen generation using a nanocomposite of multi-walled carbon nanotubes and TiO2 nanoparticles under visible light irradiation [J]. Nanotechnology,2009,20: 125603 (6pp).
    [21]Yen Chuanyu, Lin Yufeng, Hung C H, Tseng Y H, Chen-Chi M Ma, Chang Minchao et al. The effects of synthesis procedures on the morphology and photocatalytic activity of multi-walled carbon nanotubes/TiO? nanocomposites [J]. Nanotechnology,2008,19:045604 (11pp).
    [22]Li Jing, Tang Songbai, Lu Li, Zeng Huachun. Preparation of Nanocomposites of Metals. Metal Oxides, and Carbon Nanotubes via Self-Assembly [J]. J. Am. Chem. Soc.,2007,129:9401-9409.
    [23]Wang Wendong, Serp Philippe, Kalck Philippe, Joaquim Lu'is Faria. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method [J]. Journal of Molecular Catalysis A:Chemical, 2005,235:194-199.
    [24]Yu Ying, Yu Jimmy C, Yu Jiaguo, Kwok Yuk-Chun, Che Yanke, Zhao Jincai, et al. Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes [J]. Applied Catalysis A:General.2005,289:186-196.
    [25]Liu Bin, Chun Zeng. Carbon nanotubes supported mesoporous mesocrystals of anatase TiO2 [J].Chem. Mater.,2008,20:2711-2718.
    [26]Chen Lungchuan, Ho Yching, Guo Weisheng, Huang Chaoming, Pan Tingchung. Enhanced visible light-induced photoelectrocatalytic degradation of phenol by carbon nanotube-doped TiO2 electrodes [J]. Electrochimica Acta, 2009,54:3884-3891.
    [27]Luo Yongsong, Heng Yaofu, Dai Xiaojun, Chen Wenquan, Li Jialin. Preparation and photocatalytic ability of highly defective carbon nanotubes [J]. Journal of Solid State Chemistry,2009,182:2521-2525.
    [28]Pan Daocheng, Zhao Nana, Wang Qiang, Jiang Shichun, Ji Xiangling, An Lijia. Facile synthesis and characterization of luminescent TiO2 nanocrystals [J]. Adv. Mater.,2005,17:1991-1995.
    [29]Matos J, Laine J, Herrmann J M. Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon [J]. Appl. Catal. B Environ.,1998,18:281-291.
    [30]Hoffmann M. R., Martin S. T., Choi W. Y., Bahnemann D. W. Environmental Applications of Semiconductor Photocatalysis [J]. Chem. Rev.,1995,95:69-96.
    [31]Wang W. D., Serp P., Kalck P., Faria J. L. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method [J]. J. Mol. Catal. A:Chem.,2005,235:194-199.
    [32]G. Pyrgiotakis, S. H. Lee, W. M. Sigmund,"Advanced Photocatalysis with Anatase Nano-Coated Multi-Walled Carbon Nanotubes", presented at MRS Spring Meeting. San Francisco, CA2005.
    [33]Woan K, Pyrgiotakis G, Sigmund W. Photocatalytic Carbon-Nanotube-TiO2 Composites [J]. Adv. Mater.,2009,21:2233-2239.
    [34]Fang H T, Sun X, Qian L H, Wang D W,Li F, Chu Y, et al. Synthesis of Tin (Ⅱ or Ⅳ) Oxide Coated Multiwall Carbon Nanotubes with Controlled Morphology [J]. J. Phys. Chem. C,2008,112:5790-5794.
    [35]Jia Yong, He Lifang, Guo Zheng, Chen Xing, Meng Fanli, Luo Tao, et al. Preparation of Porous Tin Oxide Nanotubes Using Carbon Nanotubes as Templates and Their Gas-Sensing Properties [J]. J. Phys. Chem. C,2009,113: 9581-9587.
    [1]Wilcoxon JP. Catalytic Photooxidation of pentachlorophenol using semiconductor nanoclusters [J]. J. Phys. Chem. B.2000,104:7334-7343.
    [2]Masahiro Miyauchi, Akira Nakajima, Toshiya Watanabe, Kazuhito Hashimoto. Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films [J]. Chem. Mater.,2002,14:2812-2816.
    [3]Zakrzewska K, Radecka M. TiO2-SnO2 system for gas sensing-photodegradation of organic contaminants [J]. Thin Solid Films,2007, 515:8332-8338.
    [4]Lin Cheng-Fang, Wu Chung-Hsin, Onn Zong-Nan. Degradation of 4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 systems [J]. Journal of Hazardous Materials,2008,154:1033-1039.
    [5]Wei TY, Wan CC. Heterogeneous photocatalytic oxidation of phenol with titanium dioxide powders [J]. Ind. Eng. Chem. Res.,1991,30:1293-1300.
    [6]Zhang T, Oyama T, Horikoshi S, Zhao J, Serpone N, Hidaka H. Photocatalytic decomposition of the sodium dodecylbenzene sulfonate surfactant in aqueous titania suspensions exposed to highly concentrated solar radiation and effects of additives [J]. Appl. Catal. B:Environmental,2003,42:13-24.
    [7]San N, Hatipoglu A, Kocturk G, Cinar Z. Photocatalytic degradation of 4-nitrophenol in aqueous TiO2 suspensions:Theoretical prediction of the intermediates [J]. J. Photochem. Photobiol. A:Chem,2002,146:189-197.
    [8]Zhou MH, Yu JG, Liu SW, Zhai PC, Jiang L. Effects of calcination temperatures on photocatalytic activity of SnO2/TiO2 composite films prepared by an EPD method [J]. J. Hazard. Mater.,2008,154:1141-1148.
    [9]Shan Z, Wu J, Xu F, Huang F, Ding H. Highly effective silver/semiconductor photocatalytic composites prepared by a silver mirror reaction [J]. J. Phys. Chem. C,2008,112:15423-15428.
    [10]Buso D, Pacifico J, Martucci A, Mulvaney P. Gold-nanoparticle-doped TiO2 semiconductor thin films:optical characterization [J]. Adv. Funct. Mater,2007, 17:347-354.
    [11]Wang X, Yu JC, Yip HY, Wu L, Wong PK, Lai SY. A mesoporous Pt/TiO2 nanoarchitecture with catalytic and photocatalytic functions [J]. Chem. Eur. J., 2005,11:2997-3004.
    [12]Mohapatra SK, Kondamudi N, Banerjee S, Misra M. Functionalization of self-organized TiO2 nanotubes with Pd nanoparticles for photocatalytic decomposition of dyes under solar light illumination [J]. Langmuir,2008,24: 11276-11281.
    [13]Banerjee S, Mohapatra SK, Das PP, Misra M. Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS [J]. Chem. Mater.2008, 20,6784-6791.
    [14]Ratanatawanate C, Xiong C, Balkus KJ, Jr. Fabrication of PbS Quantum Dot Doped TiO2 Nanotubes [J]. ACS Nano.2008.2:1682-1688.
    [15]Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental applications of semiconductor photocatalysis [J]. Chem. Rev.,1995,95:69-96.
    [16]Cao Yaan, Zhang Xintong, Yang Wensheng, Du Hui, Bai Yubai, Li Tiejin, Yao Jiannian. A bicomponent TiO2/SnO2 particulate film for photocatalysis [J]. Chem. Mater.2000,12,3445-3448.
    [17]Hiroaki Tada, Akihiko Hattori, Yoshifumi Tokihisa, Kiyohisa Imai. Noboru Tohge, Seishiro Ito. A Patterned-TiO2/SnO2 bilayer type photocatalyst [J]. J. Phys. Chem. B,2000,104:4585-4587.
    [18]El-Maghraby EM, Nakamura Y, Rengakuji S. Composite TiO2-SnO2 nanostructured films prepared by spin-coating with high photocatalytic performance [J]. Catalysis Communications,2008,9:2357-2360.
    [19]Liu Zhaoyang, Sun Darren Delai, Guo Peng, Leckie James O. An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method [J]. Nano Lett.,2007,7:1081-1085.
    [20]Wang Changhua, Shao Changlu, Zhang Xintong. Liu Yichun. SnO2 nanostructures-TiO2 nanofibers heterostructures:controlled fabrication and high photocatalytic properties [J]. Inorg. Chem.2009,48:7261-7268
    [21]Sasikala R, Shirole A, Sudarsan V, Sakuntala T, Sudakar C, Naik R, Bharadwaj SR. Highly dispersed phase of SnO2 on TiO2 nanoparticles synthesized by polyol-mediated route:photocatalytic activity for hydrogen generation [J]. International Journal of Hydrogen Energy,2009,34:3621-3630.
    [22]Liu Shunqiang, Li Yanxing, Xie Mingjiang, Guo Xuefeng, Ji Weijie, Ding Weiping. One-pot synthesis of intestine-like SnO2/TiO2 hollow nanostructures [J]. Materials Letters,2010,64:402-404.
    [23]Du Ning, Zhang Hui, Chen Bindi, Ma Xiangyang, Liu Zhihong, Wu Jianbo, Yang Deren. Porous indium oxide nanotubes:layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH3 gas sensors [J]. Adv. Mater.2007,19:1641-1645.
    [24]Jia Yong, He Lifang, Guo Zheng et al. Preparation of porous tin oxide nanotubes using carbon nanotubes as templates and their gas-sensing properties [J]. J. Phys. Chem. C,2009,113:9581-9587.
    [25]Eder D, Windle AH. Carbon-inorganic hybrid materials:the carbon-nanotube/ TiO2 interface [J]. Adv. Mater.2008,20:1787-1793.
    [26]Cao Feifei, Guo Yuguo, Zheng Shufa, Wu Xinglong, Jiang Lingyan, Bi Rongrong, Wan Lijun, Maier Joachim. Symbiotic coaxial nanocables:facile synthesis and an efficient and elegan tmorphological solution to the lithium storage problem [J]. Chem. Mater.,2010,22:1908-1914.
    [27]Zou Xiaoxin, Li Guodong, Guo Mingyi, Li Xinhao, Liu Dapeng, Su Juan, Chen Jiesheng. Heterometal alkoxides as precursors for the preparation of porous Fe-and Mn-TiO2 photocatalysts with high efficiencies [J]. Chem. Eur. J.2008,14: 11123-11131.
    [28]Liu Bin, Zeng Huachun. Carbon nanotubes supported mesoporous mesocrystals of anatase TiO2 [J]. Chem. Mater.2008,20:2711-2718.
    [29]Jing L, Fu H, Wang B, Wang D, Xin B, Li S. Effects of Sn dopant on the photoinduced charge property and photocatalytic activity of TiO2 nanoparticles [J]. Applied Catalysis B:Environmental.2006.62:282-291.
    [30]Cao Y.,Zhang X., Yang W., Hui D., Bai Y., Li T., Yao J. A bicomponent TiO2/SnO2 particulate film for photocatalysis [J]. Chem. Mater,2000,12: 34453448.
    [31]Zhang Lili, Lva Fujian, Zhang Weiguang, Lia Rongqing, Zhong Hui, ZhaoYijiang, Zhang Yu, WangXin. Photo degradation of methyl orange by attapulgite-SnO2-TiO2 nanocomposites [J]. Journal of Hazardous Materials, 2009,171:294-300.
    [32]Shen Qianhong, Yang Hui, Xu Qiang, Zhu Yang, Hao Rong. In-situ preparation of TiO2/SnO2 nanocrystalline sol for photocatalysis [J]. Materials Letters,2010, 64:442-444.
    [1]Huang J, Matsunaga N, Shimanoe K, Yamazoe N,| Kunitake T. Nanotubular SnO2 templated by cellulose fibers:synthesis and gas sensing [J]. Chem. Mater.,2005, 17:3513-3518.
    [2]Jia Yong, He Lifang, Guo Zheng, Chen Xing, Meng Fanli, Luo Tao, Li Minqiang, Liu Jinhuai. Preparation of porous tin oxide nanotubes using carbon nanotubes as templates and their gas-sensing properties [J]. J. Phys. Chem. C,2009,113: 9581-9587
    [3]Wen Zhenhai, Wang Qiang, Zhang Qian, Li Jinghong. In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes:a novel composite with porous-tube structure as anode for lithium batteries [J]. Adv. Funct. Mater.,2007, 17:2772-2778.
    [4]Du Ning, Zhang Hui, Chen Bindi, Ma Xiangyang, Huang Xiaohua, Tu Jiangping, Yang Deren. Synthesis of polycrystalline SnO2 nanotubes on carbon nanotube template for anode material of lithium-ion battery [J]. Materials Research Bulletin,2009,44:211-215.
    [5]Wilcoxon J P. Catalytic photooxidation of pentachlorophenol using semiconductor nanoclusters [J]. J. Phys. Chem. B,2000,104:7334-7343.
    [6]Ferrere S, Zaban A, Gregg B A. Dye sensitization of nanocrystalline tin oxide by perylene derivatives [J]. J. Phys. Chem. B,1997,101:4490-4493.
    [7]Zhou Weichang, Liu Ruibin, Wan Qiang, Zhang Qinglin, Pan A. L., Guo Lin, Zou Bingsuo. Bound exciton and optical properties of SnO2 one-dimensional nano-structures [J]. J. Phys. Chem. C,2009,113:1719-1726.
    [8]Chandra D, Mukherjee N, Mondal A, Bhaumik A. Design and synthesis of nanostructured porous SnO2 with high surface areas and their optical and dielectric properties [J]. J. Phys. Chem. C,2008,112:8668-8674.
    [9]Rothschild A, Komem Y. The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors [J]. J. Appl. Phys.,2004,95:6374-6380.
    [10]Kim C, Noh M, Choi M, Cho J, Park B. Critical size of a nano SnO2 electrode for Li-secondary battery [J]. Chem. Mater.,2005,17:3297-3301.
    [11]Cao Lixin, Spiess F J, Huang Aimin, Suib S L. Heterogeneous photocatalytic oxidation of 1-butene on SnO2 and TiO2 films [J]. J. Phys. Chem. B,1999,103: 2912-2917.
    [12]Kotsikau D, Ivanovskayaa M, Orlika D, Falasconi M. Gas-sensitive properties of thin and thick film sensors based on Fe2O3-SnO2 nanocomposites [J]. Sensors and Actuators B,2004,101:199-206.
    [13]Ling T R, Tsai C M. Influence of nano-scale dopants of Pt, CaO and SiO2, on the alcohol sensing of SnO2 thin films [J]. Sensors and Actuators B,2006,119: 497-503.
    [14]Tricoli A, Graf M, Pratsinis S E. Optimal doping for enhanced SnO2 sensitivity and thermal stability [J]. Adv. Funct. Mater.,2008,18:1969-1976.
    [15]Chen Fanglin, Shi Zhong, Liu Meilin. Preparation of mesoporous SnO2-SiO2 composite as electrodes for lithium batteries [J]. Chem. Commun.,2000, 2095-2096.
    [16]Zhang J., Chen L. B., Li C. C., Wang T. H. Amorphous SnO2-SiO2 thin films with reticular porous morphology for lithium-ion batteries [J]. Applied Physics Letters,2008,93:264102.
    [17]Gole J L, Wang Z L. SnOx nanocrystallites supported by silica nanostructures [J]. Nano Lett.,2001,1:449-451
    [18]Li Zhijie, Shen Wenzhong, Wang Zhiguo, Xiang Xia, Zu Xiaotao, Wei Qiangmin, Wang Lumin. Direct formation of SiO2/SnO2 composite nanoparticles with high surface area and high thermal stability by sol-gel-hydrothermal process [J]. J Sol-Gel Sci Technol,2009,49:196-201.
    [19]Wang Lifeng, Shan Zhichao, Zhang Zhe, Wei Fei, Xiao Feng-Shou. One-pot hydrothermal synthesis of mesostructured silica nanotube [J]. Journal of Colloid and Interface Science,2009,335:264-267.
    [20]Pei Xianfeng, Zhang Juan, Wang Sibing, Chen Yuxia, Wu Xiaojian, Li Yi, et. al. Organization of helical mesoporous silica nanotubes [J]. J Sol-Gel Sci Technol, 2009,50:397-402.
    [21]Geng Baoyou, Meng Guowen, Zhang Lide, Wang Guozhong, Peng Xinsheng. CdSe-Filled silica nanotubes [J]. Chem. Commun.,2003,2572-2573.
    [22]Yu J, Bai X, Suh J, Lee S B, Son S J. Mechanical Capping of Silica Nanotubes for Encapsulation of Molecules [J]. J. Am. Chem. Soc.,2009, 131:15574-15575.
    [23]Kapoor S, Bhattacharyya A J. Ultrasound-triggered controlled drug delivery and biosensing using silica nanotubes [J]. J. Phys. Chem. C,2009,113:7155-7163.
    [24]Wang JieXin, Wen LiXiong, Wang ZhiHui, Wang Min, Shao Lei, Chen JianFeng. Facile synthesis of hollow silica nanotubes and their application as supports for immobilization of silver nanoparticles [J]. Scripta Materialia,2004, 51:1035-1039.
    [25]Rena L, Guo L, Wark M, Hou Y. Self-integration of aligned cobalt nanoparticles into silica nanotubes [J]. Appl. Phys. Lett.,2005,87:212503
    [26]Lu H, Ballato J. Synthesis and Characterization of Eu3+-doped sol-gel silica containing vanadium oxide nanotubes [J]. J. Am. Ceram. Soc.,2006,89: 3573-3576.
    [27]Jung J H, Rim J A, Lee S J, Cho S J, Kim S Y, Kang J K, et. al. Pd-doped double-walled silica nanotubes as hydrogen storage material at room temperature [J]. J. Phys. Chem. C,2007, 111:2679-2682.
    [28]Lee J B, Lee S C, Lee S M, Kim H J. Hydrogen adsorption characteristics of Li-dispersed silica nanotubes [J]. Chemical Physics Letters,2007,436: 162-166.
    [29]Bae D R, Lee S J, Han S W, Lim J M, Kang D, Jung J H. Au-doped magnetic silica nanotube for binding of cysteine-containing proteins [J]. Chem. Mater., 2008,20:3809-3813.
    [30]Yang YunJie, Tao Xia, Hou Qian, Chen JianFeng. Fluorescent mesoporous silica nanotubes incorporating CdS quantum dots for controlled release of ibuprofen [J]. Acta Biomaterialia,2009,5:3488-3496.
    [31]Ma H, Tarr J, DeCoster M A, McNamara J, Caruntu D, Chen J F, O'Connor C J, Zhou W L. Synthesis of magnetic porous hollow silica nanotubes for drug delivery [J]. J. Appl. Phys.,2009.105:07B309.
    [32]Liu Zhaoyang, Sun D D, Guo Peng, Leckie J O. One-step fabrication and high photocatalytic activity of porous TiO2 hollow aggregates by using a low-temperature hydrothermal method without templates [J]. Chem. Eur. J., 2007,13:1851-1855.
    [33]Qu S C, Zhou W H, Liu F Q, Chen N F, Wang Z G, Pan H Y, Yu D P. Photoluminescence properties of Eu3+-doped ZnS nanocrystals prepared in a water/methanol solution [J]. Appl. Phys. Lett.,2002,80:3605.
    [34]Wang Changhua, Shao Changlu, Zhang Xintong, Liu Yichun. SnO2 nanostructures-TiO2 nanofibers heterostructures:controlled fabrication and high photocatalytic properties [J]. Inorg. Chem.,2009,48:7261-7268.
    [35]Lin Yulan, Wang Tingjie, Jin Yong. Surface characteristics of hydrous silica-coated TiO2 particles [J]. Powder Technology,2002,123:194-198.
    [36]Sheen S, Yang S, Jun K, Choi M. One-step flame method for the synthesis of coated composite nanoparticles [J]. J Nanopart Res,2009,11:1767-1775.
    [37]Wang Y D, Ma C L, Li H D, Zhang S. Synthesis and characterization of the composite of SnO2 nanoparticles coated on SiO2 microspheres [J]. Materials Chemistry and Physics,2008,107:248-253.
    [38]Feng Y S, Zhou S M, Li Y, Zhang L D. Preparation of the SnO2/SiO2 xerogel with a large specific surface area [J]. Materials Letters,2003,57:2409-2412.
    [39]Hu Jinsong, Ren Lingling, Guo Yuguo, Liang Hanpu, Cao Anmin, Wan Lijun, Bai Chunli. Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles [J]. Angew. Chem. Int. Ed.,2005,44:1269-1273.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.