基于形貌可控纳米材料的电化学传感研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随纳米科学和纳米技术的迅猛发展,将形貌可控的功能纳米材料引入到电化学传感研究中,实现新颖传感界面的构建和调控以解决环境监测、疾病早期诊断等领域存在的疑难问题,已经成为未来电分析化学发展的必然趋势之一。本论文采用化学法、电沉积法和生物法,制备了形貌独特的金属、非金属及其复合纳米材料,并构置了十三种新型电化学传感器,研究了蛋白质(酶)的直接电化学及其对小分子物质的电催化,建立了测定葡萄糖、过氧化氢、肼和亚硝酸盐的分析新方法。该研究可为蛋白质的直接电化学研究提供借鉴,拓展了电化学传感和纳米材料的研究内容。全文共分五章,作者的主要贡献如下:
     1、采用化学法制备了三种功能化石墨烯材料,构置了Nafion/Hb-IL-GE/CCE、 Hb-IL-AuNPs-GE/CCE和Hb-Fe3O4-GE/CCE传感器,研究了Hb直接电化学和电催化行为,建立了测定过氧化氢的分析新方法。研究表明,IL改善了GE在电极表面的固载性能,提高其稳定性,AuNPs改善了GE与蛋白之间的相互作用,Fe304克服了GE自身缺陷,同时提高了目标电极的稳定性和电催化性能。三种传感器中,Ib-Fe3O4-GE/CCE的分析性能最佳,其对H202的电催化还原响应时间<3s,线性范围为1.5×10-6-5.9×10-4mol·L-1,检出限为5×10-7mol·L-1(S/N=3),重复性和稳定性良好。
     采用水热法制备了卷发梳状碳CLC,构置了Hb/{CLC-PDDA/AuNPs}3/PDA/ITO传感器,研究了Hb在传感界面上的电化学行为,建立了测定H202的分析新方法。在最佳的实验条件下,该传感器测定H2O2响应时间<2s,线性范围为6.0×10-8~1.6×10-3mol·L-1,检出限为3.0×10-8mol·L-1(S/N=3)。
     采用气/液界面反应,制备了纳米四氧化三铁,构置了i-Fe3O4/CCE传感器,建立了肼测定的新方法。与传统方法比较,该方法反应条件温和、无需填充惰性气体保护所制备的Fe304形成三维网状膜结构;该传感器测定N2H4响应时间<2s,线性范围为1.0×10-7~6.0×10-4mol·L-1,灵敏度为152μA-(1.0×10-3mol·L-1)-1·cm-2,检出限为5.0×10-8mol·L-1(S/N=3)。
     2、采用模板牺牲电沉积法制备了PtNPs和PdNPs,构置了PtNPs/nanoZnO/GCE和t-PdNPs/GCE传感器,建立了测定N2H4的分析新方法。实验表明,nanoZnO纳米孔结构控制了氢气泡的释放使得形成的PtNPs纳米簇孔径分布均匀,而Ethaline的加入,有效抑制了牺牲模板中气泡的干扰,形成的PdNPs具有高度分散性的特性;与i-Fe3O4/CCE和PtNPs/nanoZnO/GCE相比较,t-PdNPs/GCE测定N2H4的检出限更低,达到3.0×10-8mol·L-1(S/N=3)。
     采用超声辅助电沉积制备了Co-GE和Cu-GE,构置了Co-GE/GCE和Cu-GE/GCE传感器,建立了测定肼和葡萄糖的分析新方法。研究表明,络合作用使得石墨烯和纳米钴在电极表面上分步沉积,形成花状的Co-GE异质体,构置的传感器测定N2H4的灵敏度高达562.5μA·(1.0×10-3mol·L-1)-1·cm-2; Ethaline的加入,使得石墨烯和纳米铜在电极上同步沉积,形成了花状Cu-GE复合物,构置的传感器测定葡萄糖的过电位降低到0.3V左右,响应时间<3s,线性范围为5.0×10-6~10-4mol·L-1和9.0×10-4~1.1×10-2mol·L-1,检出限为1.0×10-6mol·L-1(S/N=3)。
     将一锅法与电沉积相结合,通过苯胺的电聚合过程将Hb携裹式固载于ITO,构置了Hb-PANI/ZnO-AuNPs/ITO传感器,建立了测定过氧化氢的分析新方法。研究表明,ZnO、AuNPs和PANI的协同作用,使得Hb稳定固载并有效保持原有生物活性,构置的传感器与本论文上述提及的H202电化学生物传感器相比较,电子转移速率极大的提高,ks为4.4s-1。
     3、以鸡蛋蛋清为模板制备纳米金,构置了Mb-Cys-AuD/GCE传感器,建立了测定亚硝酸盐的分析新方法。研究表明,蛋清模板使得纳米金形成过程中扩散受阻,从而形成晶枝状结构。构置的传感器优于文献报道,测定NO2-的线性范围为5.0×10-7-4.0×10-4mol·L-1,检出限为3.0×10-7mo1.L-1(S/N=3),KMapp为2.0x10-4mo1.L-1
     采用葡萄糖氧化酶催化葡萄糖氧化反应在GOx-CLC/PGE和GOx/DNA-GE/GCE上诱导生成金纳米粒子,构置了两种葡萄糖电化学生物传感器,建立了测定葡萄糖的分析新方法。研究表明,生物催化本身具有的富集作用与CLC、DNA-GE和AuNPs信号放大效应产生协同作用。与文献已有方法相比较,构置的葡萄糖传感器灵敏度高达2.44×104μA-(1.0×10-3mol·L-1)-1,提高了1.2~4000倍,检出限低至3.0×10-8mol·L-1(S/N=3),降低了1-3个数量级。
With the rapid development of nanoscience and nanotechnology, the inctoudition of morphology controllable functionized nanomaterials into the investigation of electrochemical sensing, can achieve the fabrication and control of novel electrochemical sensing interfaces to slove the existing problems in environmental monitoring, early disease diagnosis and so on. It becomes one of the inevitable trends of electroanalytical chemistry's development. In this thesis, chemical method, electrodeposition method and biological method were used to synthetize metal, nonmetal and composite nanomaterials with unique morphology and thirteen novel electrochemical sensors were also fabricated. Electrochemical behavior of redox proteins(enzymes) and the biocatalysis towards small molecular substances were investigated and new electeochemical analytical methods for the determination of H2O2, glucose, N2H4as well as NO2were established. These researches provided guidance for the investigation of the direct electrochemistry of proteins(enzymes) and enriched the research contens of electrochemical sensors and namomaterials. There are five chapters in the thesis, and the main contributions of the author are summarized and presented as follows:
     1. Three kinds of fonctionilized graphene(GE):IL-GE, AuNPs-GE. Fe3O4-GE were prepared by chemical reduction method, Nafion/Hb-IL-GE/CCE, Hb-IL-AuNPs-GE/CCE, Hb-Fe3O4-GE/CCE sensors were fabricated for the investigation of direct electrochemistry and electrocatalysis of Hb, thereby, new electeochemical analytical methods for the determination of H2O2were established. IL improved the stripping of GE from the electrode surface, AuNPs enhanced the interaction between GE and protein, Fe3O4not only overcome inherent defect of GE, but also improved stability and electrocatalytic performance. of the proposed electrode. Among them, Hb-Fe3O4-GE/CCE exhibited the best analytical performance for the determination of H2O2, the response time was less than3s and linearity range was1.5×10-6~5.9×10-4mol·L-1with a detection limit of5×10-7mol·L-1(S/N=3). It also showed good repeatability and stability.
     By controlling conditions of hydrothermal reactions, a new kind of carbon nanomaterial with comb-Like morphology (CLC) was prepared. Based on this, Hb/{PDDA-CLC/AuNPs}3/PDA/ITO sensor was fabricated by layer-by-layer assembling and employed for the investigation of electrochemistry behaviors of Hb, thereby, a new analysis method was established for the determination of H2O2. Under optimized experimental condition, the linearity range for the determination of H2O2was6.0×10-8~1.6×10-3mol·L-1with a detection limit of3.0×10-8mol·L-1(S/N=3). Furthermore, the biosensor also showed a fast response (within2s) and a high stability.
     i-Fe3O4of3D network was successfully prepared via a simple chemical precipitation at the gas/liquid interface with ammonia vapor. Based on this, a novel sensor was successfully fabricated for the determination of N2H4. Comparing with typical preparation method of Fe3O4,the gas/liquid interface reaction can take place without the protection of any inert gas and a film of i-Fe3O4floating at the interface was obtained. The sensor displayed a response time less than2s, a sensitivity of152μA·(1.0×10-3mol·L-1)-1·cm-2and the linearity of1.0×10-7~6.0×10-4mol·L-1with a detection limit of5.0×10-8mol·L-1(S/N=3).
     2. With the novel concept that coalition of replacement action and template assisted electrodeposition, PtNPs and PdNPs were prepared by electrodeposition, thereby, a new analysis method was established for the determination of N2H4. The results indicated that nanopore structure of nanoZnO effectively controlled the release of the hydrogen bubble to form PtNPs clusters with uniform pore size distribution, the addition of Ethaline, can restrain the hydrogen bubble on sacrificial templates to form highly decentralized PdNPs. Comparing with i-Fe3O4/CCE and PtNPs/nanoZnO/GCE, for the determination of N2H4, t-PdNPs/GCE had a lower detection limit of3.0×10-8mol·L-1(S/N=3).
     Co-GE and Cu-GE were preaprted by ultrasonic assisted eledtrodposition, Co-GE/GCE and Cu-GE/GCE were fabricated, thereby, new electeochemical analytical methods for the determination of N2H4and glucose were established. The results indicated that complexationmade the successive electrodeposition of GE and Co to form hierarchical flower-like Co grown on petalage-like GE. Based on this, the fabricated sensor showed high sensetivity of562.5μA·(1.0×10-3mol·L-1)-1·cm-2for the determination of N2H4; The addition of Ethaline led to GE and CuNPs electrodepose simultaneously and formed flower-like Cu-GE composite. Based on this, the fabricated sensor showed a lower overpotential of0.3V for the determination of glucose. The sensor displayed a response time less than3s, the linearity of5.0×10-6~9.0×10-4mol·L-1and9.0×10-4~1.1×10-2mol·L-1with a detection limit of1.0×10-6mol·L-1(S/N=3).
     One-pot electrodepostion was used to wrap Hb onto ITO and Hb-PANI/ZnO-AuNPs/ITO was fabricated for the investigation of direct electrochemistry and electrocatalysis of Hb, thereby, new electeochemical analytical method for the determination of H2O2was established. The results indicated the synergistic effects of ZnO, AuNPs and PANI made Hb keep the original bioactivity effectively. Comparing with H2O2mentioned above, the electron transfer rate was greatly increased, ks was4.4s-1.
     3. Gold dendrites(AuD) were synthesized with egg white as the soft template and a novel nitrite(NO2) biosensor was fabricated by assembly of a myoglobin (Mb)-L-cysteamine(Cys)-AuD biological hybrid. The results indicated diffusion limited aggregation processes lead to the formation of complicated shapes qualitatively similar to real dendrites. Compering with literatures, the sensor was high performance.It displayed the linearity of5.0×10-7~4.0×10-4mol·L-1with a detection limit of3.0×10-7mol·L-1(S/N=3), KappMwas2.0×10-4mol·L-1.
     Two kinds of glucose biosensors were fabricated by GOx biocatalytical induced deposition and accumulation of AuNPs on the surface of GOx-CLC/PGE and GOx/DNA-GE/GCE. The results indicated the synergistic effects of the advantages of biocatalysis itself, such as the accumulation, amplification effects and the signal amplification of CLC, DNA-GE and AuNPs, led to the high sensitivity and low detection limit of the fabricated biosensors. Compared with other methods, the glucose biosensors showed sensitivity that higher1.2-4000times of2.44×104μA·(1.0×10-3mol·L-1)-1and detection limit that lower one to three orders of magnitude of3.0×10-8mol·L-1(S/N=3).
引文
[1]蒋文,袁若.纳米材料在电化学电化学生物传感器及生物电分析领域中的应用[J].分析测试学报,2011,30(11):1200-1206
    [2]Yan K.Y., Xue Q.Z., Xia D., et al. Core/Shell Composite Nanowires Produced by Self-scrolling Carbon Nanotubes onto Copper Nanowires[J]. ACS Nano,2009,3(8):2235-2240
    [3]Guo S.J., Wang E.K. Noble Metal Nanomaterials:Controllable Synthesis and Application in Fuel Cells and Analytical Sensors[J]. Nano Today,2011,6(3):240-264
    [4]Zeng H.C. Integrated Nanocatalysts[J]. Accounts of Chemical Research,2013,46(2):226-235
    [5]Vidotti M., Carvalhal R.F., Mendes R.K., et al. Biosensors Based on Gold Nanostructures[J]. Journal of the Brazilian Chemical Society,2011,22(1):3-20
    [6]Kulys J., Stupak R. Glucose Biosensor Based on Chitosan-gold and Prussian Blue-gold Nanoparticles[J]. The Open Nanoscience Journal,2008, (2):34-38
    [7]Guo S., Dong S. Biomolecule-nanoparticle Hybrids for Electrochemical Biosensors[J]. TrAC Trends in Analytical Chemistry,2009,28(1):96-109
    [8]Zhou M., Guo J.D., Guo L.P., et al. Electrochemical Sensing Platform Based on the Highly Ordered Mesoporous Carbon-fullerene System[J]. Analytical Chemistry,2008,80(12):4642-4650
    [9]Oja S.M., Wood M., Zhang B. Nanoscale Electrochemistry[J]. Analytical Chemistry,2012,85(2): 473-486
    [10]Dalton T. Elucidating the Structure-dependent Photocatalytic Properties of Bi2WO6:a Synthesis Guided Investigation[J].2012,41(26):7939-7945
    [11]Xiao F., Mo Z.R., Zhao F.Q., et al. Ultrasonic-electrodeposition of Gold-platinum Alloy Nanoparticles on Multi-walled Carbon Nanotubes-ionic Liquid Composite Film and Their Electrocatalysis towards the Oxidation of Nitrite[J]. Electrochemistry Communications,2008,10(11): 1740-1743
    [12]霍洪媛,仝玉萍,李玉河.纳米材料[M].中国水利水电出版社,2010
    [13]张耀君,王亚超,刘礼才.纳米材料基础(双语版)[M].化学工业出版社,2011
    [14]Shortell M.P., Liu H.W., Zhu H.y., et al. Formation of One-dimensional Capped ZnO Nanoparticle Assemblies at the Air/Water Interface[J]. Langmuir 2010,26(18):14472-14478
    [15]Qin Y., Song Y., Sun N.J., et al. Ionic Liquid-assisted Growth of Single-crystalline Dendritic Gold Nanostructures with a Three-fold Symmetry[J]. Chemistry of Materials,2008,20(12):3965-3972
    [16]Sau T.K., Murphy C.J. Room Temperature, High-yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution[J]. Journal of the American Chemical Society,2004,126(28): 8648-8649
    [17]Li Y., Liu Q.Y., Shen W.J. Morphology-dependent Nanocatalysis:Metal Particles[J]. Dalton Transactions,2011,40(22):5811-5826
    [18]Ju Z.C., Wang T.T., Wang L.C., et al. A Simple Pyrolysis Route to Synthesize Leaf-like Carbon Sheet[J]. Carbon,2010,48 (12):3420-3426
    [19]Krishnadas K.R., Sajanlal P.R., Pradeep T. Pristine and Hybrid Nickel Nanowires:Template-, Magnetic Field-, and Surfactant-free Wet Chemical Synthesis and Raman Studies[J]. The Journal of Physical Chemistry C,2011,115(11):4483-4490
    [20]Mahima S., Karthik, C., Garg S., et al. Branched Copper Nanocrystal Corals by Room-temperature Galvanic Displacement[J]. Crystal Growth & Design,2010,10(9):3925-3928
    [21]Zhang L.B., Guo S.J., Dong S.J., et al. Pd Nanowires as New Biosensing Materials for Magnified Fluorescent Detection of Nucleic Acid[J]. Analytical Chemistry,2012,84(8):3568-3573
    [22]Shan J., Tenhu H. Recent Advances in Polymer Protected Gold Nanoparticles:Synthesis, Properties and Applications[J]. Chemical Communications,2007, (44):4580-4598
    [23]Barbosa S., Agrawal A., Rodriguez-Lorenzo L., et al. Tuning Size and Sensing Properties in Colloidal Gold Nanostars[J]. Langmuir,2010,26(18):14943-14950
    [24]Sun J., Bi H. Facile Fabrication of Superhydrophobic Flower-like Polyaniline Architectures by Using Valine as a Dopant in Polymerization[J]. Applied Surface Science,2012,258(10):4276-4282
    [25]Xu S., Wang Z.L. One-dimensional ZnO Nanostructures:Solution Growth and Functional Properties[J]. Nano Reseach,2011,4(11):1013-1098
    [26]孙玉绣,张大伟,金政伟.纳米材料的制备方法及其应用[M].中国纺织出版社,2010
    [27]Wang C, Han X.J., Zhang X.L., et al. Controlled Synthesis and Morphology-dependent Electromagnetic Properties of Hierarchical Cobalt Assemblies[J]. The Journal of Physical Chemistry C,2010,114(35):14826-14830
    [28]Liu Q.S., Yan Z., Henderson N.L., et al. Synthesis of CuPt Nanorod Catalysts with Tunable Lengths[J]. Journal of the American Chemical Society,2009,131(16):5720-5721
    [29]Guo S., Li J., Ren W., et al. Carbon Nanotube/silica Coaxial Nanocable as a Three-dimensional Support for Loading Diverse Ultra-high-density Metal Nanostructures:Facile Preparation and Use as Enhanced Materials for Electrochemical Devices and SERS[J]. Chemistry of Materials,2009,21(11): 2247-2257
    [30]Guo S.J., Dong S.J., Wang E.K. Polyaniline/Pt Hybrid Nanofibers:High-efficiency Nanoelectrocatalysts for Electrochemical Devices[J]. Small,2009,5(16):1869-1876
    [31]Li W.J., Ma H.Y., Zhang J.T., et al. Fabrication of Gold Nanoprism Thin Films and Their Applications in Designing High Activity Electrocatalysts[J]. The Journal of Physical Chemistry C,2009,113(5): 1738-1745
    [32]Di Carlo G, Curulli A., Toro R.G, et al. Green Synthesis of Gold-chitosan Nanocomposites for Caffeic Acid Sensing[J]. Langmuir,2012,28(12):5471-5479
    [33]Wei Q., Xiang Z., He J., et al. Dumbbell-like Au-Fe3O4 Nanoparticles as Label for the Preparation of Electrochemical Immunosensors[J]. Biosensors and Bioelectronics,2010,26(2):627-631
    [34]Chen A., Holt-Hindle P. Platinum-based Nanostructured Materials:Synthesis, Properties, and Applications [J]. Chemical Reviews,2010,110 (6):3767-3804
    [35]Wang L., Yamauchi Y. Block Copolymer Mediated Synthesis of Dendritic Platinum Nanoparticles [J]. Journal of the American Chemical Society,2009,131 (26):9152-9153
    [36]Mazumder V., Lee Y., Sun S. Recent Development of Active Nanoparticle Catalysts for Fuel Cell Reactions[J]. Advanced Functional Materials,2010,20(8):1224-1231
    [37]Michael E. Grass, Robert M. Rioux, Gabor A. Somorjai. Dependence of Gas-phase Crotonaldehyde Hydrogenation Selectivity and Activity on the Size of Pt Nanoparticles (1.7-7.1 nm) Supported on SBA-15 Find out How to Access Preview-only Content[J]. Catalysis Letters,2009,128(1/2):1-8
    [38]Bigall N.C., Hartling T., Klose M., et al. Monodisperse Platinum Nanospheres with Adjustable Diameters from 10 to 100 nm:Synthesis and Distinct Optical Properties A[J]. Nano Letters,2008, 8(12):4588-4592
    [39]Rathod D., Dickinson C, Egan D., et al. Platinum Nanoparticle Decoration of Carbon Materials with Applications in Non-enzymatic Glucose Sensing[J]. Sensors and Actutors B:Chemical,2010,143(2): 547-554
    [40]Song Z.J., Yuan R., Chai Y.Q., et al. Simultaneous Immobilization of Glucose Oxidase on the Surface and Cavity of Hollow Gold Nanospheres as Labels for Highly Sensitive Electrochemical Immunoassay of Tumor Marker[J]. Biosensors and Bioelectronics,2011,26(5):2776-2780
    [41]Yu D.J., Zeng Y.B., Qi Y.X., et al. A Novel Electrochemical Sensor for Determination of Dopamine Based on AuNPs@SiO2 Core-shell Imprinted Composite[J]. Biosensors and Bioelectronics,2012, 38(1):270-277
    [42]Fang P.P., Duan S., Lin X.D., et al.Tailoring Au-core Pd-shell Pt-cluster Nanoparticles for Enhanced Electrocatalytic Activity[J]. Chemical Science,2011,2(3):531-539
    [43]Wan Y., Qi P., Zhang D., et al. Manganese Oxide Nanowire-mediated Enzyme-linked Immunosorbent Assay[J]. Biosensors and Bioelectronics,2012,33(1):69-74
    [44]Liu A.H. Towards Development of Chemosensors and Biosensors with Metal-oxide-based Nanowires or Nanotubes[J]. Biosensors and Bioelectronics,2008,24(2):167-177
    [45]Meng H., Xie F.Y., Chen J., et al. Morphology Controllable Growth of Pt Nanoparticles/nanowires on Carbon Powders and Its Application as Novel Electrocatalyst for Methanol Oxidation[J]. Nanoscale, 2011,3(12):5041-5048
    [46]Bae C., Yoo H. Kim S., et al. Template-directed Synthesis of Oxide Nanotubes:Fabrication, Characterization, and Applications[J]. Chemistry of Materials,2008,20(3):756-767
    [47]Chu H.B., Shen Y.H., Lin L., et al. Ionic-liquid-assisted Preparation of Carbon Nanotube-supported Uniform Noble Metal Nanoparticles and Their Enhanced Catalytic Performance[J]. Advanced Functional Materials,2010,20(21):3747-3752
    [48]Guo S.J., Dong S.J., Wang E.K. Ultralong Pt-on-Pd Bimetallic Nanowires with Nanoporous Surface: Nanodendritic Structure for Enhanced Electrocatalytic Activity [J]. Chemical Communications,2010, 46(11):1869-1871
    [49]Li E., Cheng Z.X., Xu J.Q., et al. Indium Oxide with Novel Morphology Synthesis and Application in C2H5OH Gas Sensing[J]. Crystal Growth & Design,2009,9(5):2146-2151
    [50]Lai Y.T., Ganguly A., Chen L.C. Direct Voltammetric Sensing of L-Cysteine at Pristine GaN Nanowires Electrode[J]. Biosensors and Bioelectronics,2010,26(4):1688-1691
    [51]Feng J.J., Zhang P.P., Wang A.J., et al. One-pot Hydrothermal Synthesis of Uniform β-MnO2 Nanorods for Nitrite Sensing[J]. Journal of Colloid and Interface Science,2011,359(1):1-8
    [52]Zhu W.L., Zhou Y, Zhang J.R. Direct Electrochemistry and Electrocatalysis of Myoglobin Based on Silica-coated Gold nanorods/room Temperature Ionic Liquid/Silica Sol-gel Composite Film[J]. Talanta,2009,80(1):224-230
    [53]Aussawasathien D., Dong J.H., Dai L. Electrospun Polymer Nanofibers Sensors[J]. Synthetic Metals, 2005,154(1):37-40
    [54]Chen Z.B., Cummins D., Reinecke B.N., et al. Core-shell M003-MoS2 Nanowires for Hydrogen Evolution:a Functional Design for Electrocatalytic Materials[J]. Nano Letters.2011,11(10): 4168-4175
    [55]Ganguly A., Ahmad T., Ganguli A.K. Silica Mesostructures:Control of Pore Size and Surface Area Using a Surfactant-templated Hydrothermal Process[J]. Langmuir,2010,26(18):14901-14908
    [56]Song, Y.J., Garcia R.M., Dorin R.M., et al. Synthesis of Platinum Nanowire Networks Using a Soft Template[J]. Nano Letters,2007,7(12):3650-3655
    [57]高振华,田骅飞,孙瑾.纳米材料在电化学电化学生物传感器中的应用进展[J].化学工程师,2012,205(10):33-35
    [58]Novoselov K.S., Geim A.K., Morozov S.V., et al. Electric Field Effect in Atomically Thin Carbon Films[J]. Science,2004,306(5996):666-669
    [59]Srinivasan C. Graphene-Mother of All Graphitic Materials[J]. Current Science,2007,92(10): 1338-1339
    [60]Hou S.F., Kasner M.L., Su S.J., et al. Highly Sensitive and Selective Dopamine Biosensor Fabricated with Silanized Graphene[J]. The Journal of Physical Chemistry C,2010,114(35):14915-14921
    [61]Mohanty N., Berry V. Graphene-based Single-bacterium Resolution Biodevice and DNA Transistor: Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents[J]. Nano Letters, 2008,8(12):4469-4476
    [62]Zhou M., Zhai Y., Dong S. Biosensing Platform Based on Chemically Reduced Graphene Oxide[J]. Analytical Chemistry,2009,81(14):5603-5613
    [63]Kim Y.R., Bong S., Kang Y.J., et al. Electrochemical Detection of Dopamine in the Presence of Ascorbic Acid Using Graphene Modified Electrodes[J]. Biosensors and Bioelectronics,2010,25(10): 2366-2369
    [64]Dong X.C., Huang W., Chen P. In Situ Synthesis of Reduced Graphene Oxide and Gold Nanocomposites for Nanoelectronics and Biosensing[J]. Nanoscale Reseach Letters,2011,6:60-66
    [65]Kuila T., Bose S., Khanra P., et al. Recent Advances in Graphene-based Biosensors[J]. Biosensors and Bioelectronics,2011,26(12):4637-4648
    [66]Li X.R., Kong F.Y., Liu J., et al. Synthesis of Potassium-modified Graphene and Its Application in Nitrite-selective Sensing[J]. Advanced Functional Materials,2012,22(9):1981-1988
    [67]Zhang Y., Wang L., Lu D., et al. Sensitive Determination of Bisphenol a Base on Arginine Functionalized Nanocomposite Graphene Film[J]. Electrochimica Acta,2012,80(1):77-83
    [68]Wang Y., Zhang S., Chen H. One-pot Facile Decoration of Graphene Nanosheets with Ag Nanoparticles for Electrochemical Oxidation of Methanol in Alkaline Solution[J]. Electrochemistry Communications,2012,17(1):63-66
    [69]Yang S.L., Xu B.F., Zhang J.Q., et al. Controllable Adsorption of Reduced Graphene Oxide onto Self-assembled Alkanethiol Monolayers on Gold Electrodes:Tunable Electrode Dimension and Potential Electrochemical Applications[J]. The Journal of Physical Chemistry C,2010,114(10): 4389-4393
    [70]Zhang L., Zhang A.D., Du D. Biosensor Based on Prussian Blue Nanocubes/reduced Graphene Oxide Nanocomposite for Detection of Organophosphorus Pesticides[J]. Nanoscale,2012,4(15):4674-4679
    [71]Sun Y.Y., Ren Q.X., Liu X., et al. A Simple Route to Fabricate Controllable and Stable Multilayered All-MWNTs Films and Their Applications for the Detection of NADH at Low Potentials[J]. Biosensors and Bioelectronics,2013,39(1):289-295
    [72]Kimmel D.W., LeBlanc G, Meschievitz M.E., et al. Electrochemical Sensors and Biosensors[J]. Analytical Chemistry,2012,84(2):685-707
    [73]Hsieh C.T., Liu Y.Y., Roy A.K. Pulse Electrodeposited Pd Nanoclusters on Graphene-based Electrodes for Proton Exchange Membrane Fuel Cells[J]. Electrochimica Acta,2012,64(1):205-210
    [74]Moghaddam R.B., Pickup P.G Support Effects on the Oxidation of Ethanol at Pt Nanoparticles[J]. Electrochimica Acta,2012,65(1):210-215
    [75]Chai S.H., Howe J.Y., Wang X.Q., et al. Graphitic Mesoporous Carbon as a Support of Promoted Rh Catalysts for Hydrogenation of Carbon Monoxide to Ethanol[J]. Cabron,2012,50(4):1574-1582
    [76]Shang Y.Y., Li Y.B., He X.D., et al. Highly Twisted Double-helix Carbon Nanotube Yarns[J]. ACS Nano,2013,7(2):1446-1453
    [77]Song Y.J., Dorin R.M., Garcia R.M., et al. Synthesis of Platinum Nanowheels Using a Bicellar Template[J]. Journal of the American Chemical Society,2008,130(38):12602-12603
    [78]Guo Y.Q., Tan R.Q., Li Y., et al. Solution Route to SnO2 Crystals with Controllable Morphology[J]. Applied Surface Science,2012,258(6):1958-1963
    [79]Yin J., Jia J.B., Zhu L.D., Double-template Synthesis of Platinum Nanomaterials for Oxygen Reduction[J]. Microchim Acta,2009,166(1/2):151-156
    [80]Fang B. Gu, A.X., Wang G.F., et al. Silver Oxide Nanowalls Grown on Cu Substrate as an Enzymeless Glucose Sensor[J]. ACS Applied Materials & Interfaces,2009,1(12):2829-2834
    [81]Li C.L., Su Y., Lv X., et al. Controllable Anchoring of Gold Nanoparticles to Polypyrrole Nanofibers by Hydrogen Bonding and Their Application in Nonenzymatic Glucose Sensors[J]. Biosensors and Bioelectronics,2012,38(1):402-406
    [82]Wei L., Lei Y.L., Fu H.B., et al. Fullerene Hollow Microspheres Prepared by Bubble-templates as Sensitive and Selective Electrocatalytic Sensor for Biomolecules[J]. ACS Applied Materials & Interfaces,2012,4(3):1594-1600
    [83]Li F., Wang Z., Chen W, et al. A Simple Strategy for One-step Construction of Bienzyme Biosensor by in-situ Formation of Biocomposite Film Through Electrodeposition[J]. Biosensors and Bioelectronics,2009,24(10):3030-3035
    [84]Fu C.P., Zhou H.H., Peng W.C., et al. Fabrication of Nano-copper/carbon Nanotubes/chitosan Film by One-step Electrodeposition and Its Sensitive Determination of Nitrite[J]. Electrochemistry Communications,2008,10(2):806-809
    [85]Su L., Jia W.Z., Zhang L.C., et al. Facile Synthesis of a Platinum Nanoflower Monolayer on a Single-walled Carbon Nanotube Membrane and Its Application in Glucose Detection[J]. The Journal of Physical Chemistry C,2010,114(42):18121-18125
    [86]Budi S., Daud A.R., Radiman S., et al. Effective Eectrodeposition of Co-Ni-Cu Alloys Nanoparticles in the Presence of Alkyl Polyglucoside Surfactant[J]. Applied Surface Science,2010,257(3): 1027-1033
    [87]Liu X.W., Mao J.J., Liu P.D., et al. Fabrication of Metal-graphene Hybrid Materials by Electroless Deposition[J]. Carbon,2011,49(2):477-483
    [88]Liu L.C., Yoo S.H., Lee S.A.. Wet-chemical Synthesis of Palladium Nanosprings[J]. Nano Letters. 2011,11(9):3979-3982
    [89]Chen D.J., Lu Y.H., Wang A.J., et al, Facile Synthesis of Ultra-long Cu Microdendrites for the Electrochemical Detection of Glucose[J]. Journal of Solid State Electrochemistry,2012,16(4): 1313-1321
    [90]Yao X., Xu L., Jiang L. Fabrication and Characterization of Superhydrophobic Surfaces with Dynamic Stability[J]. Advanced Functional Materials,2010,20(19):3343-3349
    [91]Siril P.F., Ramos L., Beaunier P., et al, Synthesis of Ultrathin Hexagonal Palladium Nanosheets[J]. Chemistry of Materials,2009,21(21):5170-5175
    [92]Lin T.H., Lin C.W., Liu H.H., el al. Potential-controlled Electrodeposition of Gold Dendrites in the Presence of Cysteine[J]. Chemical Communications,2011,47(7):2044-2046
    [93]Zhao Y.R., Wu Y., Zhang Y. Electrocatalytic Behavior and Amperometric Detection of Orphine on ITO Electrode Modified with Directly Electrodeposited Gold NanoparticlesfJ]. Electroanalysis,2009, 21(8):939-943
    [94]Wang Z.D., Sun S.B., Hao X.G., et al. A Facile Electrosynthesis Method for the Controllable Preparation of Electroactive Nickel Hexacyanoferrate/polyaniline Hybrid Films for H2O2 DetectionfJ]. Sensors and Actuators B:Chemical,2012,171-172(1):1073-1080
    [95]Xiao F., Li Y.Q., Zan X.L., et al. Growth of Metal-Metal Oxide Nanostructures on Freestanding Graphene Paper for Flexible Biosensors[J]. Advanced Functional Materials,2012,22(12):2487-2494
    [96]Dudin P.V., Snowden M.E., Macpherson J.V., et al. Electrochemistry at Nanoscale Electrodes: Individual Single-walled Carbon Nanotubes(SWNTs) and SWNT-templated Metal Nanowires[J]. ACS Nano,2011,5(12):10017-10025
    [97]Ndangili P.M., Waryo T.T., Muchindu M., et al. Ferrocenium Hexafluorophosphate-induced Nanofibrillarity of Polyaniline-polyvinyl Sulfonate Electropolymer and Application in an Amperometric Enzyme Biosensor[J]. Electrochimical Acta,2010,55(14):4267-4273
    [98]Chen D., Wang G, Li J.H. Interfacial Bioelectrochemistry:Fabrication, Properties and Applications of Functional Nanostructured Biointerfaces[J]. The Journal of Physical Chemistry C,2007,111(6): 2351-2367
    [99]Sundaram R.S., Gomez-Navarro C., Balasubramanian K., et al. Electrochemical Modification of Graphene[J]. Advanced Materials,2008,20(16):3050-3053
    [100]Syu M.J., Chang Y.S. Ionic Effect Investigation of a Potentiometric Sensor for Urea and Surface Morphology Observation of Entrapped Urease/polypyrrole Matrix[J]. Biosensors and Bioelectronics, 2009,24(8):2671-2677
    [101]Liu N., Luo F., Wu H. X., et al. One-step Ionic-liquid-assisted Electrochemical Synthesis of Ionic-liquid-functionalized Graphene Sheets Directly from Graphite[J]. Advanced Functional Materials,2008,18(10):1518-1525
    [102]Chen L.Y., Tang Y.H., Wang K., et al. Direct Electrodeposition of Reduced Graphene Oxide on Glassy Carbon Electrode and Its Electrochemical Application[J]. Electrochemistry Communications,2011, 13(2):133-137
    [103]Sheng Q.L., He Y.P., Zhang D.W., et al. Ultrasonic-electrodeposition of Flower-like Graphene Nanosheets in Ionic Liquid and Its Sensing for Ascorbic Acid[J]. Journal of the Chinese Chemical Socirty,2013,60(2):199-203
    [104]Gyawali G, Cho S.H., Woo D.J., et al. Pulse Electrodeposition and Characterization of Ni-SiC Composite Coatings in Presence of Ultrasound[J]. Transactions of the Institute of Metal Finishing, 2012,90(5):274-280
    [105]Lin D.J., Wu J., Wang M., et al. Triple Signal Amplification of Graphene Film, Polybead Carried Gold Nanoparticles as Tracing Tag and Silver Deposition for Ultrasensitive Electrochemical Immunosensing[J]. Analytical Chemistry,2012,84(8):3662-3668
    [106]Li Z.J., Sun X.L., Xia Q.F. et al. Green and Controllable Strategy to Fabricate Well-dispersed Graphene-gold Nanocomposite Film as Sensing Materials for the Detection of Hydroquinon and Resorcinol with Electrodeposition[J]. Electrochimica Acta,2012,85(1):42-48
    [107]Jiang Y.Y., Lu Y.Z., Li F.H., et al. Facile Electrochemical Codeposition of "clean" Graphene-Pd Nanocomposite as an Anode Catalyst for Formic Acid Electrooxidation[J]. Electrochemistry Communications,2012,19(1):21-24
    [108]Gong J.M., Miao X.J., Wan H.F., et al. Facile Synthesis of Zirconia Nanoparticles-decorated Graphene Hybrid Nanosheets for an Enzymeless Methyl Parathion Sensor[J]. Sensors and Actuators B: Chemical,2012,162(1):341-347
    [109]Yang J., Deng S.Y., Lei J.P., et al. Electrochemical Synthesis of Reduced Graphene Sheet-AuPd Alloy Nanoparticle Composites for Enzymatic Biosensing[J]. Biosensors and Bioelectronics,2011, 29(1):159-166
    [110]Yang J.H., Myoung N., Hong H.G Facile and Controllable Synthesis of Prussian Blue on Chitosan-functionalized Graphene Nanosheets for the Electrochemical Detection of Hydrogen Peroxide[J]. Electrochimica Acta,2012,81(1):37-43
    [111]Feng L.D., Shen J.M., Li X.H., et al, Electrochemical Controllable Synthesis of Bismuth Hexacyanoferrate(II) Nanoplates and Its Application in Electrocatalysis[J]. The Journal of Physical Chemistry C,2008,112(20):7617-7623
    [112]Liu A.P., Ren Q.H., Xu T., et al. Morphology-controllable Gold Nanostructures on Phosphorus Doped Diamond-like Carbon Surfaces and Their Electrocatalysis for Glucose Oxidation[J]. Sensors and Actuators B:Chemical,2012,162(1):135-142
    [113]Qin X., Miao Z.Y., Fang Y.X., et al, Preparation of Dendritic Nanostructures of Silver and Their Characterization for Electroreduction[J]. Langmuir,2012,28(11):5218-5226
    [114]Yang X., Lv Z.Z., Wang E.K., et al, Electrodeposition-based Controllable Construction of Film of Nano-roughened, Hierarchical Au Microstructures on Indium Tin Oxide(ITO) Surface and Its Application Towards the Catalytic Oxidation of H2O2[J]. Journal of Electroanalytical Chemistry,2011, 656(1):17-22
    [115]Zhao Y, Hong B., Fan L.Z. Electrodeposition of Gold Nanoparticle Clusters on Multi-wall Carbon Nanotubes and the Direct Electrochemistry of Hemoglobin[J]. Acta Chimica Sinica,2013,71(2): 239-245
    [116]Guo M.Q., Hong H.S., Tang X.N., et al. Ultrasonic Electrodeposition of Platinum Nanoflowers and Their Application in Nonenzymatic Glucose Sensors[J]. Electrochimica Acta,2012,63(1):1-8
    [117]Tong X.L., Zhao G.H., Liu M.C., Fabrication and High Electrocatalytic Activity of Three-dimensional Porous Nanosheet Pt/Boron-doped Diamond Hybrid Film[J]. The Journal of Physical Chemistry C, 2009,113(31):13787-13792
    [118]Ott A., Jones L.A., Bhargava S.K. Direct Electrodeposition of Porous Platinum Honeycomb Structures[J]. Electrochemistry Communications,2011,13(11):1248-1251
    [119]王蕊.Pt-Pb纳米花修饰无酶葡萄糖传感器的研究[D].天津:天津大学材料学院,2010
    [120]Jia W., Su L., Lei Y., et al. Pt Nanoflower/polyaniline Composite Nanofibers Based Urea Biosensor[J]. Biosensors and Bioelectronics,2011,30(1):158-164
    [121]Ahmad M., Pan C.F., Gan L. Highly Sensitive Amperometric Cholesterol Biosensor Based on Pt-incorporated Fullerene-like ZnO Nanospheres[J]. The Journal of Physical Chemistry C,2010, 114(1):243-250
    [122]Tong S.F., Xu Y.H. Zhang Z.X., et al, Dendritic Bimetallic Nanostructures Supported on Self-assembled Titanate Films for Sensor Application[J]. The Journal of Physical Chemistry C,2010, 114(49):20925-20931
    [123]Kwi N.H., Cheng A.L., Minh-Phuong N.B., et al. Control of ZnO Morphologies on Carbon Nanotube Electrodes and Electrocatalytic Characteristics Toward Hydrazine[J]. Chemical Communications, 2011,47(3):938-940
    [124]Liu M.C., Zhao G.H., Tang Y.T., et al. Simple, Stable and Picomole Level Lead Sensor Fabricated on DNA-based Carbon Hybridized TiO2Nanotube Arrays[J]. Environental Science & Technology,2010, 44(11):4241-246
    [125]Yang T., Feng Y.Y., Zhang W., et al. Synergistic Membrane of ZrO2/self-doped Polyaniline Nanofibres Fabricated by Controllable Electrodeposition for DNA Hybridization Detection[J]. Journal of Electroanalytical Chemistry,2011,656(1):140-146
    [126]Yang S., Jia W.Z., Qian Q.Y., et al. Simple Approach for Efficient Encapsulation of Enzyme in Silica Matrix with Retained Bioactivity[J]. Analytical Chemistry,2009,81(9):3478-3484
    [127]Xie J., Lee J.Y., Wang D.I.C, et al. Silver Nanoplates:From Biological to Biomimetic Synthesis[J]. ACS Nano,2007,1(5):429-439
    [128]Mandal D., Bolander M.E., Mukhopadhyay D., et al. The Use of Microorganisms for the Formation of Metal Nanoparticles and Their Application[J]. Applied Microbiology Biotechnolology,2006,69(5): 485-492
    [129]Pugazhenthiran N., Anandan S., Kathiravan G, et al. Microbial Synthesis of Silver Nanoparticles by Bacillus sp[J]. Journal ofNanoparticle Research,2009,11(7):1811-1815
    [130]Mishra A.N., Bhadauria S., Gaur M.S., et al. Extracellular Microbial Synthesis of Gold Nanoparticles Using Fungus Hormoconis Resinae[J]. Precious Metals Extraction,2010,62(11):46-48
    [131]Sharma V.K., Yngard A.R., Lin Y. Silver Nanoparticles:Green Synthesis and Their Antimicrobial Activities[J]. Advances in Colloid and Interface Science,2009,145(5):83-96
    [132]Jain D., Daima H.K., Kachhwaha S., et al. Nanoparticles Using Papaya Fruit Extract and Evaluation of Their Antimicrobial Activity[J]. Digest Journal of Nanomaterials and Biostructures,2009,4(3): 557-563
    [133]Singh A.K., Talat M., Singh D.P., et al. Biosynthesis of Gold and Silver Nanoparticles by Natural Precursor Clove and Their Functionalized with Amine GroupfJ]. Journal of Nanoparticle Research, 2010,12(5):1667-1675
    [134]Sangh R., Verma P. pH Dependant Fungal Proteins in the"green" Synthesis of Gold Nanoparticles[J]. Advanced Materials Letters,2010,1(3):193-199
    [135]Nagaraj B., Krishnamurthy N.B., Liny P. Biosynthesis of Gold Nanoparticles of Ixora Coccinea Flower Extract & Their Antimicrobial Activity[J]. International Journal of Pharma and Biosciences, 2011,2(4):557-565
    [136]Nagaraj B., Agnieszka S.K., Dagmara M. Plant Mediated Synthesis of Gold Nanoparticles Using Fruit Extracts of Ananas Comosus(L.) (pineapple) and Evaluation of Biological Activities[J]. Advanced Materials Letters,2013,4(5):332-337
    [137]Sumit. S.L., Nayak P.L. Green Synthesis of Gold Nanoparticles Using Various Extract of Plants and Spices[J]. International Journal of Science Innovations and Discoveries,2012,2(3):325-350
    [138]Menon D., Basanth A., Retnakumari A. Green Synthesis of Biocorapatible Gold Nanocrystals with Tunable Surface Plasmon Resonance Using Garlic Phytochemicals[J]. Journal of Biomedial Nanotechnology,2012,8(6):901-911
    [139]Haverkamp R.G, Marshall A.T., Agterveld D. Pick your Carats:Nanoparticles of Gold-silver-copper Alloy Produced in Vivo[J]. Journal of Nanoparticle Research,2007,9(4):697-700
    [140]Philip D. Low-dimensional Systems and Nanostructures[J]. Physica E,2010,42(5):1417-1424
    [141]Philip D., Unni C., Aromal S.A., et al. Murraya Koenigii Leaf-assisted Rapid Green Synthesis of Silver and Gold Nanoparticles[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2011,78(2):899-904
    [142]Philip D. Mangifera Indica Leaf-assisted Biosynthesis of Well-dispersed Silver Nanoparticles[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2011,78(1):327-331
    [143]Philip D., Unni C. Extracellular Biosynthesis of Gold and Silver Nanoparticles Using Krishna Tulsi (Ocimum sanctum) Leaf[J]. Physica E,2011,43(7):1318-1322
    [144]Dubey S.P., Lahtinen M., Sillanp M. Green Synthesis and Characterizations of Silver and Gold Nanoparticles Using Leaf Extract of Rosa Rugosa[J]. Colloids and Surfaces A,2010,364(42):34-41
    [145]Dubey S.P., Lahtinen M., Sillanp M. Tansy Fruit Mediated Greener Synthesis of Silver and Gold Nanoparticles[J]. Process Biochemistry,2010,45(7):1065-1071
    [146]Sheny D.S., Mathew J., Philip D. Synthesis Characterization and Catalytic Action of Hexagonal Gold Nanoparticles Using Essential Oil Extracted from Anacardium Occidentale[J]. Spectrochimical Acta A Molecule Biomolecule Spectroscopy,2012,13(97):306-310
    [147]Aromal S.A., Philip D. Green Synthesis of Gold Nanoparticles Using Trigonella Foenum-graecum and Its Size-dependent Catalytic Activity[J]. Spectrochimical Acta A Molecule Biomolecule Spectroscopy,2012,6(97):1-5
    [148]Maya Z., Ronan B., Inna P., et al. Biocatalytic Growth of Au Nanoparticles:From Mechanistic Aspects to Biosensors Design[J]. Nano Letters,2005,5(1):21-25
    [149]Chen Z.P., Peng Z.F., Luo,Y., et al. Successively Amplified Electrochemical Immunoassay Based on Biocatalytic Deposition of Silver Nanoparticles and Silver Enhancement[J]. Biosensors and Bioelectronics,2007,23(4):485-491
    [150]Huang Y, Wen Q., Jiang J.H., et al. A Novel Electrochemical Immunosensor Based on Hydrogen Evolution Inhibition by Enzymatic Copper Deposition on Platinum Nanoparticle-modified Electrode[J]. Biosensors and Bioelectronics,2008,24(4):600-605
    [151]Saa L., Pavlov V. Enzymatic Growth of Quantum Dots:Applications to Probe Glucose Oxidase and Horseradish Peroxidase and Sense Glucose[J]. Small,2012,8(22):3381-3537
    [152]Zhang T., Wang W, Zhang D., et al. Biotemplated Synthesis of Gold Nanoparticle-bacteria Cellulose Nanofiber Nanocomposites and Their Application in Biosensing[J]. Advanced Functional Materials, 2010,20(7):1152-1160
    [153]Gorzny M.L., Walton A.S., Evans S.D. Synthesis of High-surface-area Platinum Nanotubes Using a Viral TemplatefJ]. Advanced Functional Materials,2010,20(8):1295-1300
    [154]Wang S., Xue J., Ge X., et al. Biomimetic Synthesis of Silica Nanostructures with Controllable Morphologies and Sizes Through Tuning Interfacial Interactions[J]. Chemical Communications,2012, 48(75):9415-9417
    [155]Sheng Q., Zheng J. Bienzyme System for the Biocatalyzed Deposition of Polyaniline Templated by Multiwalled Carbon Nanotubes:a Biosensor Design[J]. Biosensors and Bioelectronics,2009,24(6): 1621-1628
    [156]Li J.H., Kuang D.Z., Feng Y.L., et al. Green Synthesis of Silver Nanoparticles-graphene Oxide Nanocomposite and Its Application in Electrochemical Sensing of Tryptophan[J]. Biosensors and Bioelectronics,2013,42(1):198-206
    [157]Zhang Y.W., Liu S., Wang L., et al. One-pot Green Synthesis of Ag Nanoparticles-graphene Nanocomposites and Their Applications in SERS, H2O2, and Glucose Sensing[J]. RSC Advances, 2012,2(2):538-545
    [158]Tang Q., Tang Z., Wu J., et al. A Facile Route to a Macroporous Silver Network for Methanol Oxidation[J]. RSC Advances,2011,1(8):1453-1456
    [159]Sheng Q., Wang J., Zheng J., et al. Ultrasensitive Electrical Biosensing of Syphilis DNA Using Target-guided Formation of Polyaniline Based on Enzyme-catalyzed Polymerization[J]. Biosensors and Bioelectronics,2010,25(9):2071-2077
    [160]Meng Z.C., Zheng J.B., Sheng Q.L., et al. In Situ Synthesis of Thulium (Ⅲ) Hexacyanoferrate(Ⅱ) Nanoparticles and Its Application for Glucose Detection[J]. Analytica Chimica Acta,2011,689 (1): 47-51
    [1]Novoselov K.S., Geim A.K., Morozov S.V., et al. Electric Field Effect in Atomically Thin Carbon Films[J]. Science,2004,306(5696):666-669
    [2]Srinivasan C. Graphene-mother of All Graphitic Materials[J]. Current Science,2007,92(10): 1338-1339
    [3]Tang L.H., Wang Y., Li Y.M., et al. Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films[J]. Advanced Functional. Matererial,2009,19(17):2782-2789
    [4]Pour S. Elastic Buckling of Single-layered Graphene Sheetom Putational[J]. Material Science,2009, 45(2):266-270
    [5]Chen D., Tang L.H., Li J.H. Graphene-based Materials in Electrochemistry Chemical Society Reviews[J].2010,39(8):3157-3180
    [6]Hou S.F., Kasner M.L., Su S.J., et al. Highly Sensitive and Selective Dopamine Biosensor Fabricated with Silanized Graphene[J]. The Journal of Physical Chemistry C,2010,114(35):14915-14921
    [7]Luo J., Jiang S.S., Zhang H.Y., et al. A Novel Non-enzymatic Glucose Sensor Based on Cu Nanoparticle Modified Grapheme Sheets Electrode[J]. Analytica Chimica Acta,2012,709:47-53
    [8]Xu Y.X., Bai H., Lu G.W., et al. Flexible Graphene Films via the Filtra tion of Water-soluble Noncovalent Functionalized Graphene Sheets[J]. Journal of the American Chemical Society,2008, 130(18):5856-5857
    [9]Liu L., Ryu S., Tomasik M.R., et al. Graphene Oxidation:Thickness-dependent Etching and Strong Chemical Doping[J]. Nano Letters,2008,8(7):1965-1970
    [10]Tsoukleri G., Parthenios J., Papagelis K., et al. Subjecting a Graphene Monolayer to Tension and Compression[J]. Small,2009,5(21):2397-2402
    [11]Li J., Guo S.J., Zhai Y.M., et al. Nafion-graphene Nanocomposite Film as Enhanced Sensing Platform for Ultrasensitive Determination of Cadmium[J]. Electrochemistry Communications,2009,11(5): 1085-1088
    [12]Fowler J.D., Allen M.J., Tung V.C., et al. Weiller Practical Chemical Sensors from Chemically Derived Graphene[J]. ACS Nano,2009,3(2):301-306
    [13]Zhou M., Zhai Y.M., Dong S.J. Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide[J]. Analytical Chemistry,2009,81(14):5603-5613
    [14]Niyogi S., Bekyarova E., Itkis M.E., et al. Solution Properties of Graphite and Graphene[J]. Journal of the American Chemical Society,2006,128(24):7720-7721
    [15]Li F.H., Song J.F., Yang H.F., et al. One-step synthesis of graphene/SnO2 Nanocomposites and Its Application in Electrochemical Supercapacitors[J]. Nanotechnology,2009,20(45):445602
    [16]Zeng GH., Xing Y.B., Gao J., et al. Unconventional Layer-by-layer Assembly of Graphene Multilayer Films for Enzyme-based Glucose and Maltose Biosensing[J]. Langmuir,2010,26(18): 15022-15026
    [17]Kimmel D.W., LeBlanc G, Meschievitz M.E., et al. Electrochemical Sensors and BiosensorsfJ]. Analytical Chemistry,2012,84(2):685-707
    [18]Qiao N.Q., Zheng J.B. Nonenzymatic Glucose Sensor Based on Glassy Carbon Electrode Modified with a Nanocomposite Composed of Nickel Hydroxide and Graphene[J]. Microchimica Acta,2012, 177(1/2):103-109
    [19]Wang X., Song L., Yang H.Y., et al. Cobalt oxide/graphene Composite for Highly Efficient CO Oxidation and Its Application in Reducing the Fire Hazards of Aliphatic Polyesters[J]. Journal of Material Chemistry,2012,22(8):3426-3431
    [20]Shen Q.M., Zhou S.W., Zhao X.M., et al. Anatase T1O2 Nanoparticle-graphene Nanocomposites: One-step Preparation and Their Enhanced Direct Electrochemistry of Hemoglobin[J]. Analytical Methods,2012,4(3):619-622
    [21]Xu H.F., Dai H., Chen G.N. Direct Electrochemistry and Electrocatalysis of Hemoglobin Protein Entrapped in Graphene and Chitosan Composite Film[J]. Talanta,2010,81(1/2):334-338
    [22]Shan C.S., Yang H.F., Song J.F., et al. Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene[J]. Analytical Chemistry,2009,81(6):2378-2382
    [23]Shan C.S., Yang H.F., Han D.X., et al. Graphene/AuNPs/chitosan Nanocomposites Film for Glucose Biosensing[J]. Biosensors and Bioelectronics,2010,25(5):1070-1074
    [24]Hou S.F., Kasner M.L., Su S.J., et al. Highly Sensitive and Selective Dopamine Biosensor Fabricated with Silanized Graphene[J]. The Journal of Physical Chemistry C,2010,114(35):14915-14921
    [25]Liu X.Y., Zeng X.D., Mai N.N., et al. Amperometric Glucose Biosensor with Remarkable Acid Stability Based on Glucose Oxidase Entrapped in Colloidal Gold-modified Carbon Ionic Liquid Electrode[J]. Biosensors and Bioelectronics,2010,25(12):2675-2679
    [26]Haerens K., Matthijs E., Binnemans K., et al. Electrochemical decomposition of choline chloride based ionic liquid analogues[J]. Green Chemistry,2009,11(9):1357-1365
    [27]刘庆彬,张占辉,张福军.离子液体中的生物催化反应[J].化学进展,2005,17(6):1060-1066
    [28]Guo X.H., Hu N.F. Increment of Density of Au Nanoparticles Deposited in Situ within Layer-by-layer Films and Its Enhancement on the Electrochemistry of Ferrocenecarboxylic Acid and Bioelectrocatalysis[J]. The Journal of Physical Chemistry C,2009,113(22):9831-9837
    [29]Zhao Y.R., Wu Y., Zhang Y., et al. Electrocatalytic Behavior and Amperometric Detection of Morphine on ITO Electrode Modified with Directly Electrodeposited Gold Nanoparticles[J]. Electroanalysis, 2009,21(8):939-943
    [30]Novoselov K.S., Jiang D., Schedin F., et al. Two-dimensional Atomic Crystals[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(30):10451-10453
    [31]Vago E.R., Calvo E.J. Electrocatalysis of Oxygen Reduction at Fe3O4 Oxide Electrodes in Alkaline Solutions[J]. Journal of Electroanalytical Chemistry,1992,339(1):41-67
    [32]Zhang Y, Tan Y.W., Stormer H.L., et al. Experimental Observation of the Quantum Hall Effect and Berry's Phase in Graphene[J]. Nature,2005,438(7065):201-204
    [33]Cong H.P., He J.J., Lu Y, et al. Water-soluble Magnetic-functionalized Reduced Graphene Oxide Sheets:in Situ Synthesis and Magnetic Resonance Imaging Applications[J]. Small,2010,6(2): 169-173
    [34]Lewandowski A., Galinski M. Carbon-ionic Liquid Double-layer Capacitors[J]. Journal of Physics and Chemistry of Solids,2004,65(2):281-286
    [35]Tsionsky M., Gun G, Glezer V., et al. Sol-gel-derived Ceramic-carbon Composite Electrodes: Introduction and Scope of Applications[J]. Analytical Chemistry,1994,66(10):1747-1753
    [36]Hummers W.S., Offeman R.E. Preparation of Graphitic Oxide[J]. Journal of the American Chemical Society,1958,80(6):1339-1339
    [37]Ferrari A.C., Robertson J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon[J]. Physical Review. B,2000,61(20):14095-14107
    [38]Wang L., Wang, E.K. Direct Electron Transfer Between Cytochrome c and a Gold Nanoparticles Modified Electrode[J]. Electrochemistry Communication,2004,6(1):49-54
    [39]Sheng Q.L., Zheng J.B., ShangGuan X.D., et al. Direct Electrochemistry and Electrocatalysis of Hemeproteins Immobilized in Porous Carbon Nanofiber/room-temperature Ionic Liquid Composite Film[J]. Electrochimica Acta,2010,55(9):3185-3191
    [40]Li X.Q., Wang Y., Sun X.Y., et al. Direct Electrochemistry of Hemoglobin Entrapped in Dextran Film on Carbon Ionic Liquid Electrode[J]. Journal of Chemical Sciences,2010,122(2):271-278
    [41]Zhao X., Mai Z., Kang X., et al. Clay-chitosan-gold Nanoparticle Nanohybrid:Preparation and Application for Assembly and Direct Electrochemistry of Myoglobin[J]. Electrochimica Acta,2008, 53(14):4732-4739
    [42]Laviron E. General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusionless Electrochemical Systems[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1979,101(1):19-28
    [43]Lu X., Zhang H., Ni Y., et al. Porous Nanosheet-based ZnO Microspheres for the Construction of Direct Electrochemical Biosensors[J]. Biosensors and Bioelectronics,2008,24(1):93-98
    [44]Achord J.M., Hussey C.L. Determination of Dissolved Oxygen in Nonaqueous Electrochemical Solvents[J]. Analytical Chemistry,1980,52(3):601-602
    [45]Zong S., Cao Y., Zhou Y, et al. Hydrogen Peroxide Biosensor Based on Hemoglobin Modified Zirconia Nanoparticles-grafted Collagen Matrix[J]. Analytical Chimica Acta,2007,582(2):361-366
    [46]Shu F.R., Wilson GS. Rotating Ring-disk Enzyme Electrode for Surface Catalysis Studies[J]. Analytical Chemistry,1976,48(12):1679-1686
    [47]Gao R., Shangguan X., Qiao G, et al. Direct Electrochemistry of Hemoglobin and Its Electrocatalysis Based on Hyaluronic Acid and Room Temperature Ionic Liquid[J]. Electroanalysis,2008,20(23): 2537-2542
    [48]Lawson G, Gonzaga F., Huang J., et al. Au-carbon Nanotube Composites from Self-reduction of Au3+ upon Poly(ethylene imine) Functionalized SWNT Thin Films[J]. Journal of Materials Chemistry, 2008,18(14):1694-1702
    [49]Yang J., Park S.B., Yoon H.G, et al. Preparation of Poly Epsilon-caprolactone Nanoparticles Containing Magnetite for Magnetic Drug Carrier[J]. International Journal of Pharmaceutics,2006, 324(2):185-190
    [50]Wang C.L., Ma D., Bao X.H. Transformation of Biomass into Porous Graphitic Carbon Nanostructures by Microwave Irradiation[J]. The Journal of Physical Chemistry C,2008,112(45): 17596-17602
    [51]Dong C.K., Li X., Zhang Y., et al. Fe3O4 Nanoparticles Decorated Multi-walled Carbon Nanotubes and Their Sorption Properties[J]. Chemical Research in Chinese Universites,2009,25(6):936-940
    [52]Pei S.P., Qu S., Zhang Y.M. Direct Electrochemistry and Electrocatalysis of Hemoglobin at Mesoporous Carbon Modified Electrode[J]. Sensors,2010,10(2):1279-1290
    [53]Liu S.Q., Lin B.P., Yang X.D., et al. Carbon Nanotube Enhanced Direct Electron-transfer Reactivity of Hemoglobin Immobilized on Polyurethane Elastomer Film[J]. The Journal of Physical Chemistry B, 2007,111(5):1182-1188
    [54]Sun W., Gao R.F., Jiao K. Electrochemistry and Electrocatalysis of Hemoglobin in Nafion/nano-CaCO3 Film on a New Ionic Liquid BPPF6 Modified Carbon Paste Electrode[J]. The Journal of Physical Chemistry B,2007,111(17):4560-4567
    [55]Zhang H., Fan L.Z., Yang S.H., Significantly Accelerated Direct Electron Transfer Kinetics of Hemoglobin in a C60-MWCNT Nanocomposite FilmfJ]. Chemistry-A European Journal,2006,12(27): 7161-7166
    [56]Guo C., Hu F., Li C.M., et al. Direct Electrochemistry of Hemoglobin on Carbonized Titania Nanotubes and Its Application in a Sensitive Reagentless Hydrogen Peroxide Biosensor[J]. Biosensors and Bioelectronics,2008,24(4):819-824
    [57]Yang M., Qu F., Li Y, et al. Direct Electrochemistry of Hemoglobin in Gold Nanowire Array[J]. Biosensors and Bioelectronics,2007,23(3):414-420
    [58]Qureshi A., Kang W.P., Davidson J.L., et al. Review on Carbon-derived, Solid-state, Micro and Nanosensors for Electrochemical Sensing Applications[J]. Diamond and Related Materials,2009, 18(12):1401-1420
    [59]Iijima S. Helical Microtubules of Graphitic Carbon[J]. Nature,1991,354(6348):56-58
    [60]Lu Y., Zhu Z., Su D., et al. Formation of Bamboo-shape Carbon Nanotubes by Controlled Rapid Decomposition of Picric Acid[J]. Carbon,2004,42(15):3199-3207
    [61]Vilatela J.J., Windle A.H. Yarn-like Carbon Nanotube Fibers[J]. Advanced Materials,2010,22(44): 4959-4963
    [62]Kuo P.L., Hsu C.H., Li W.T., et al. Sea Urchin-like Mesoporous Carbon Material Grown with Carbon Nanotubes as a Cathode Catalyst Support for Fuel Cells[J]. Journal of Power Sources.2010,195(24): 7983-7990
    [63]Ohtani M., Saito K. Fukuzumi S. Synthesis, Characterization, Redox Properties, and Photodynamics of Donor-acceptor Nanohybrids Composed of Size-controlled Cup-shaped Nanocarbons and Porphyrins[J]. Chemistry-A European Journal,2009,15(36):9160-9168
    [64]Zhang C.G., Li J.J., Shi C.S., et al. The Efficient Synthesis of Carbon Nano-onions Using Chemical Vapor Deposition on an Unsupported Ni-Fe Alloy Catalyst[J]. Carbon,2011,49(4):1151-1158
    [65]Lu X.B., Zhou J.H., Lu W., et al. Graphitized Macroporous Carbon Microarray With Hierarchical Mesopores as Host for the Fabrication of Electrochemical BiosensorfJ]. Biosensors and Bioelectronics, 2008,23(1):1236-1243
    [66]Lu X., Xiao Y, Lei Z., et al. A Promising Electrochemical Biosensing Platform Based on Graphitized Ordered Mesoporous Carbon[J]. Journal of Materials Chemistry,2009,19(27):4707-4714
    [67]Liu X., Li Y., Zheng J., et al. Carbon Nanotube-enhanced Electrochemical Aptasensor for the Detection of Thrombin[J]. Talanta,2010,81(4):1619-1624
    [68]Xiao Y, Li C.M. Nanocomposites:from Fabrications to Electrochemical Bioapplications[J]. Electroanalysis,2008,20(6):648-662
    [69]Tang D., Xia B., Zhang Y Direct Electrochemistry and Electrocatalysis of Hemoglobin in a Multilayer {nanogold/PDDA}n Inorganic-organic Hybrid Film[J]. Microchimica Acta,2008,160(3):367-374
    [70]Liu Z., Zhou X., Qian Y Synthetic Methodologies for Carbon Nanomaterials[J]. Advanced Materials, 2010,22(17):1963-1966
    [71]Liu S., Tian J.Q., Wang L., et al. Preparation of Photoluminescent Carbon Nitride Dots from CCl4 and 1,2-ethylenediamine:a Heat-treatment-based Strategy[J]. Journal of Materials Chemistry,2011, 21(32):11726-11729
    [72]Nyamori V.O., Coville N.J. Effect of Ferrocene/carbon Ratio on the Size and Shape of Carbon Nanotubes and Microspheres[J]. Organometallics,2007,26(16):4083-4085
    [73]Shen J.M., Xu L., Liu Y.G, et al. Wet Chemistry Self-seeded Surface-deposition Process toward Amorphous Carbon Nanotubes and Their Electrochemical Application[J]. Chemistry of Materials, 2008,20(9):3034-3041
    [74]Gao R., Zheng J., Qiao L. Direct Electrochemistry of Hemoglobin in Layer-by-layer Films Assembled with DNA and Room Temperature Ionic Liquid[J]. Electroanalysis,2010,22(10): 1084-1089
    [75]Lu X., Xiao Y,. Lei Z., et al. Graphitized Macroporous Carbon Microarray with Hierarchical Mesopores as Host for the Fabrication of Electrochemical Biosensor[J]. Biosensors and Bioelectronics, 2009,25(1):244-247
    [76]Dai Z., Xiao Y, Yu X., et al. Direct Electrochemistry of Myoglobin Based on Ionic Liquid Biosensors and Bioelectronics, Clay Composite Films[J]. Biosensors and Bioelectronics,2009,24(6):1629-1634
    [77]Liu C.Y, Hu J.M. Hydrogen Peroxide Biosensor Based on the Direct Electrochemistry of Myoglobin Immobilized on Silver Nanoparticles Doped Carbon Nanotubes Film[J]. Biosensors and Bioelectronics,2009,24(7):2149-2154
    [78]Chen Y, Yang X.J., Guo L.R., et al. Direct Electrochemistry and Electrocatalysis of Hemoglobin at Three-dimensional Gold Film Electrode Modified with Self-assembled Monolayers of 3-mercaptopropylphosphonic Acid[J]. Analytica Chimica Acta,2009,644(1):83-89
    [79]Yang G, Yuan R., Chai YQ. A High-sensitive Amperometric Hydrogen Peroxide Biosensor Based on the Immobilization of Hemoglobin on Gold Colloid/1-cysteine/gold colloid/nanoparticles Pt-chitosan Composite Film-modified Platinum Disk Electrode[J]. Colloids and Surfaces B:Biointerfaces,2008, 61(1):93-100
    [80]Liu S., Tian J., Zhai J., et al. Titanium Silicalite-1 Zeolite Microparticles for Enzymeless H2O2 Detection[J]. Analyst,2011,136(10):2037-2039
    [81]Liu S., Tian J., Wang L., et al. Stable Aqueous Dispersion of Graphene Nanosheets:Noncovalent Functionalization by a Polymeric Reducing Agent and Their Subsequent Decoration with Ag Nanoparticles for Enzymeless Hydrogen Peroxide Detection[J]. Macromolecules,2010,43(23): 10078-10083
    [82]Liu S., Wang L., Tian J., et al. Aniline as a Dispersing and Stabilizing Agent for Reduced Graphene Oxide and Its Subsequent Decoration with Ag Nanoparticles for Enzymeless Hydrogen Peroxide Detection[J]. Journal of Colloid and Interface Science,2011,363(2):615-619
    [83]Chang G., Luo Y., Lu W., et al. Hydrothermal Synthesis of Ultra-highly Concentrated, Well-stable Ag Nanoparticles and Their Application for Enzymeless Hydrogen Peroxide Detection[J]. Journal of Nanoparticle Research,2011,13(7):2689-2695
    [84]Liu S., Tian J., Wang L., et al. A Method for the Production of Reduced Graphene Oxide Using Benzylamine as a Reducing and Stabilizing Agent and Its Subsequent Decoration with Ag Nanoparticles for Enzymeless Hydrogen Peroxide Detection[J]. Carbon,2011,49(10):3158-3164
    [85]Lu W., Luo Y., Chang G., et al. Synthesis of Functional SiO2-coated Graphene Oxide Nanosheets Decorated with Ag Nanoparticles for H2O2 and Glucose Detection[J]. Biosensors and Bioelectronics, 2011,26(12):4791-4797
    [86]Kafi A.K.M., Ahmadalinezhad A., Wang J.P., et al. Direct Growth of Nanoporous Au and Its Application in Electrochemical Biosensing[J]. Biosensors and Bioelectronics,2010,25(11): 2458-2463
    [87]Han L., Xiong P., Bai J., et al. Spontaneous Formation and Characterization of Silica Mesoporous Crystal Spheres with Reverse Multiply Twinned Polyhedral Hollows[J]. Journal of the American Chemical Society,2011,133(16):6106-6109
    [88]Roy S., Gao Z. Nanostructure-based Electrical Biosensors[J]. Nano Today,2009,4(4):318-334
    [89]Zhang F., Zhu A., Luo Y., et al. CuO Nanosheets for Sensitive and Selective Determination of H2S with High Recovery Ability[J]. The Journal of Physical Chemistry C,2010,114(45):19214-19219
    [90]Zhao Y., Fan H., Li W., et al. Incorporation of Polyoxotungstate Complexes in Silica Spheres and in Situ Formation of Tungsten Trioxide Nanoparticles[J]. Langmuir,2010,26(18):14894-14900
    [91]Paul R.K., Ghazinejad M., Penchev M., et al. Synthesis of a Pillared Graphene Nanostructure:A Counterpart of Three-dimensional Carbon Architectures[J]. Small,2010,6(20):2309-2313
    [92]Chen J., Li C., Zhao D.W., et al. A Quantum Dot Sensitized Solar Cell Based on Vertically Aligned Carbon Nanotube Templated ZnO Arrays[J]. Electrochemistry Communications,2010,12(10): 1432-1435
    [93]Devi M., Kumar M., Gaur A.M. Development of Neodymium Oxide(Nd2O3) Doped Nanocomposities Using Sol-gel Method[J]. Advanced Materials Research,2011,159:605-608
    [94]Jia L., Cai W. Micro/nanostructured Ordered Porous Films and Their Structurally Induced Control of the Gas Sensing Performances[J]. Advanced Functional Materials,2010,20(21):3765-3773
    [95]Takahashi Y., Tatsuma T. Electrodeposition of Thermally Stable Gold and Silver Nanoparticle Ensembles Through a Thin Alumina Nanomask[J]. Nanoscale,2010,2(8):1494-1499
    [96]Liu F.K., Huang P.W., Chu T.C., et al. Gold Seed-assisted Synthesis of Silver Nanomaterials Under Microwave Heating[J]. Materials Letters,2005,59(8):940-944
    [97]Duan X., Lian J., Ma J., et al. Shape-controlled Synthesis of Metal Carbonate Nanostructure via Ionic Liquid-assisted Hydrothermal Route:The Case of Manganese Carbonate[J]. Crystal Growth & Design, 2010,10(10):4449-4455
    [98]Sokolov S., Paul B., Ortel E., et al. Template-assisted Electrostatic Spray Deposition as a New Route to Mesoporous, Macroporous, and Hierarchically Porous Oxide Films[J]. Langmuir,2011,27(5): 1972-1977
    [99]Lucky R.A., Medina-Gonzalez Y., Charpentier P.A. Zr Doping on One-dimensional Titania Nanomaterials Synthesized in Supercritical Carbon Dioxide[J]. Langmuir,2010,26(24):19014-19021
    [100]Chu D., Masuda Y., Ohji T., et al. Shape-controlled Growth of In(OH)3/In2O3 Nanostructures by Electrodeposition[J]. Langmuir,2010,26(18):14814-14820
    [101]Chowdhury D., Paul A., Chattopadhyay A. Macroscopic and Mesoscopic Patterns Observed in Thin Films Formed Due to Polymerization of Aniline at the Air-water Interface[J]. Journal of Colloid and Interface Science,2003,265(1):70-76
    [102]Lin Y, Skaff H., Emrick T, et al. Nanoparticle Assembly and Transport at Liquid-liquid Interfaces[J]. Science,2003,299(5604):226-229
    [103]Rao C.N.R., Kulkarni GU., Thomas P.J, et al. Films of Metal Nanocrystals Formed at Aqueous-organic Interfaces[J]. The Journal of Physical Chemistry B,2003,107(30):7391-7395
    [104]Mrudula K.V, Rao T.U.B, Pradeep T. Interfacial Synthesis of Luminescent 7 kDa Silver Clusters[J]. Journal of Materials Chemistry,2009,19(25):4335-4342
    [105]Santos H.A., Chirea M., Garcia-Morales V., et al. Electrochemical Study of Interfacial Composite Nanostructures:Polyelectrolyte/gold Nanoparticle Multilayers Assembled on Phospholipid/dextran Sulfate Monolayers at a Liquid-liquid Interface[J]. The Journal of Physical Chemistry B,2005, 109(43):20105-20114
    [106]Lee K.Y., Cheong G.W., Han S.W. C60 Mediated Self-assembly of Gold Nanoparticles at the Liquid/liquid Interface[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006, 275(1):79-82
    [107]Detsri E., Dubas S.T. Interfacial Polymerization of Water-soluble Polyaniline and Its Assembly Using the Layer-by-layer Technique[J]. Journal of Metals, Materials and Minerals,2009,19(1):39-44
    [108]Saravanan P., Gopalan R., Chandrasekaran V. Synthesis and Characterisation of Nanomaterials[J]. Defence Science Journal,2008,58(4):504-516
    [109]Khomutov GB., Gubin S.P. Interfacial Synthesis of Noble Metal Nanoparticles[J]. Materials Science and Engineering:C,2002,22(2):141-146
    [110]Xin G.Q., Ding H.P., Yang Y.G., et al. Triangular Single-crystalline Nanorings of PbS Formed at the air/water interface[J]. Crystal Growth & Design,2009,9(4):2008-2012
    [111]Xu Q., Kang X., Bogomolni R.A., et al. Controlled Assembly of Janus Nanoparticles[J]. Langmuir, 2010,26(18):14923-14928
    [112]Gupta S., Singh N., Sastry M., et al. Controlling the Assembly of Hydrophobized Gold Nanoparticles at the Air-water Interface by Varying the Interfacial Tension[J]. Thin Solid Films,2010,519(3): 1072-1077
    [113]Zujovic Z.D., Metson J.B. Nanostructured Aniline Oxidation Products:Self-assembled Films at the Air/Liquid Interface[J]. Langmuir,2010,27(12):7776-7782
    [114]Chowdhury D., Paul A., Chattopadhyay A. Macroscopic and Mesoscopic Patterns Observed in Thin Films Formed Due to Polymerization of Aniline at the Air-water Interface[J]. Journal of Colloid and Interface Science,2003,265(1):70-76
    [115]Roca A.G., Marco J.F., Morales M.P., et al. Effect of Nature and Particle Size on Properties of Uniform Magnetite and Maghemite Nanoparticles[J]. The Journal of Physical Chemistry C,2007,111(50): 18577-18584
    [116]Yamada K., Yasuda K., Tanaka H., et al. Effect of Anode Electrocatalyst for Direct Hydrazine Fuel Cell Using Proton Exchange Membrane[J]. Journal of Power Sources,2003,122(2):132-137
    [117]Abbaspour A., Shamsipur M., Siroueinejad A., et al. Renewable-surface Sol-gel Derived Carbon Ceramic-modified Electrode Fabricated by a Newly Synthesized Polypyridil and Phosphine Ru (Ⅱ) Complex and Its Application as an Amperometric Sensor for Hydrazine[J]. Electrochimica Acta,2009, 54(10):2916-2923
    [118]Sanabria-Chinchilla J., Asazawa K., Sakamoto T., et al. Noble Metal-free Hydrazine Fuel Cell Catalysts:EPOC Effect in Competing Chemical and Electrochemical Reaction Pathways[J]. Journal of the American Chemical Society,2011,133(14):5425-5431
    [119]Zheng J., Sheng Q., Li L., et al. Bismuth Hexacyanoferrate-modified Carbon Ceramic Electrodes Prepared by Electrochemical Deposition and Its Electrocatalytic Activity Towards Oxidation of Hydrazine[J]. Journal of Electroanalytical Chemistry,2007,611(1):155-161
    [120]Ivanov S., Lange U., Tsakova V., et al. Electrocatalytically Active Nanocomposite from Palladium Nanoparticles and Polyaniline:Oxidation of Hydrazine[J]. Sensors and Actuators B:Chemical,2010, 150(1):271-278
    [121]Hasanzadeh M., Karim-Nezhad G., Shadjou N., et al. Kinetic Study of the Electro-catalytic Oxidation of Hydrazine on Cobalt Hydroxide Modified Glassy Carbon Electrode[J]. Chinese Journal of Chemistry,2009,27(4):638-644
    [122]Wang Y., Liu L., Zhang D., et al. A New Strategy for Immobilization of Electroactive Species on the Surface of Solid Electrode[J]. Electrocatalysis,2010,1(4):230-234
    [123]Wang C., Zhang L., Guo Z., et al. A Novel Hydrazine Electrochemical Sensor Based on the High Specific Surface Area Graphene[J]. MicrochimicaActa,2010,169(1/2):1-6
    [124]Zare H.R., Shishehbore M.R., Nematollahi D., et al. Electrochemical Behavior of Nano-composite Containing 4-hydroxy-2-(triphenylphosphonio)phenolate and Multi-wall Carbon Nanotubes Spiked in Carbon Paste and Its Application for Electrocatalytic Oxidation of Hydrazine[J]. Sensors and Actuators B:Chemical,2010,151(1):153-161
    [125]Lange U., Mirsky V.M. Chemosensitive Nanocomposite for Conductometric Detection of Hydrazine andNADH[J]. ElectrochimicaActa,2011,56(10):3679-3684
    [126]Chang G, Luo Y., Lu W., et al. Immobilization of Au Nanoparticles on Au Electrode for Hydrazine Detection:Using Thiolated Single-stranded DNA as a Linker[J]. Thin Solid Films,2011,519(18): 6130-6134
    [127]Ding Y., Hou C., Li B., et al. Sensitive Hydrazine Detection Using a Porous Mn2O3 Nanofibers-based Sensor[J]. Electroanalysis,2011,23(5):1245-1251
    [128]Yan X., Meng F., Cui S., et al. Effective and Rapid Electrochemical Detection of Hydrazine by Nanoporous Gold[J]. Journal of Electroanalytical Chemistry,2011,661(1):44-48
    [1]Pradhan D., Leung K.T. Template-free Single-step Electrochemical Synthesis of ZnO Hollow Nanospheres:Self-assembly of Hollow Nanospheres from Nanoparticles[J]. Journal of Materials Chemistry,2009,19(28):4902-4905
    [2]Andreoli E., Annibaldi V., Rooney D.A., et al. Electrochemical Fabrication of Copper-based Hybrid Microstructures and Mechanism of Formation of Related Hierarchical Structures on Polypyrrole Films[J]. The Journal of Physical Chemistry C,2011,115(41):20076-20083
    [3]Bijani S., Schrebler R., Dalchiele E.A., et al. Study of the Nucleation and Growth Mechanisms in the Electrodeposition of Micro-and Nanostructured Cu2O Thin Films[J]. The Journal of Physical Chemistry C,2011,115(43):21373-21382
    [4]Ustarroz J., Ke X.X., Hubin A., et al. New Insights into the Early Stages of Nanoparticle Electrodeposition[J]. The Journal of Physical Chemistry C,2012,116(3):2322-2329
    [5]Fu C.P., Zhou H.H., Peng W.C., et al. Comparison of Electrodeposition of Silver in Ionic Liquid Microemulsions[J]. Electrochemistry Communication,2008,10(5):806-809
    [6]Wang X.X., Yang T., Jiao K. Controllable Fabrication of Au Micro/nanostructures on Self-doped Polyaniline Nanofibers via Electrochemical Deposition and Its Application for DNA Immobilization[J]. Chinese Science Bullent,2010,55(36):4125-4131
    [7]Xu C.W., Wang H., Shen P.K., et al. Highly Ordered Pd Nanowire Arrays as Effective Electrocatalysts for Ethanol Oxidation in Direct Alcohol Fuel Cells[J]. Advanced Materials,2007,19(23):4256-4259
    [8]Hanzu I., Djenizian T., Ortiz G.F., et al. Mechanistic Study of Sn Electrodeposition on TiO2 Nanotube Layers:Thermodynamics, Kinetics, Nucleation, and Growth Modes[J]. The Journal of Physical Chemistry C,2009,113(48):20568-20575
    [9]Ragupathy D., Gopalan A.I., Lee K.P. Electrocatalytic Oxidation and Determination of Ascorbic Acid in the Presence of Dopamine at Multiwalled Carbon Nanotube-silica Network-gold Nanoparticles Based Nanohybrid Modified Electrode[J]. Sensors and Actuators B:Chemical,2010,143(2):696-703
    [10]Mirkhalaf F., Schiffrin D.J. Electrocatalytic Oxygen Reduction on Functionalized Gold Nanoparticles Incorporated in a Hydrophobic Environment J]. Langmuir,2010,26(18):14995-15001
    [11]Dong R., Liu W., Hao J. Soft Vesicles in the Synthesis of Hard Materials[J]. Accounts of Chemical Research,2012,45(4):504-513
    [12]Wu B.H., Kuang Y.J., Zhang X.H., et al. Noble Metal Nanoparticles/Carbon Nanotubes Nanohybrids Synthesis and Applications[J]. Nano Today,2011,6(1):75-90
    [13]Jiang L.Y., Xin S., Wu X.L., et al. Non-sacrificial Template Synthesis of Cr2O3-C Hierarchical Core/shell Nanospheres and Their Application as Anode Materials in Lithium-ion Batteries[J]. Journal of Materials Chemistry,2010,20(35):7565-7569
    [14]Najdovski I., Selvakannan P.R., O'Mullane A.P., et al. Rapid Synthesis of Porous Honeycomb Cu/Pd through a Hydrogen-bubble Templating Method[J]. Chemistry-A European Journal,2011,17(36): 10058-10063
    [15]Chen H.M., Liu R.S. Architecture of Metallic Nanostructures:Synthesis Strategy and Specific Applications[J]. The Journal of Physical Chemistry C,2011,115(9):3513-3527
    [16]Zhang L.H., Jia G., You H.P., et al. Sacrificial Template Method for Fabrication of Submicrometer-sized YPO4:Eu3+Hierarchical Hollow Spheres[J]. Inorganic Chemistry,2010,49(7): 3305-3309
    [17]Bai Z.Y., Yang L., Li L., et al. A Facile Preparation of Hollow Palladium Nanosphere Catalysts for Direct Formic Acid Fuel Cell[J]. The Journal of Physical Chemistry C,2009,113(23):10568-10573
    [18]Zhao H., Yang J., Wang L., et al. Fabrication of a Palladium Nanoparticle/graphene Nanosheet Hybrid via Sacrifice of a Copper Template and Its Application in Catalytic Oxidation of Formic Acid[J]. Chemical Communications,2011,47(7):2014-2016
    [19]Yao X., Xu L., Jiang L. Fabrication and Characterization of Superhy Drophobic Surfaces with Dynamic Stability[J]. Advanced Functional Materials,2010,20(19):3343-3349
    [20]Shin H.C., Dong J., Liu M. Nanoporous Structures Prepared by an Electrochemical Deposition Process[J]. Advanced Materials,2003,15(19):1610-1614
    [21]Cherevko S., Xing X., Chung C.H. Electrodeposition of Three-dimensional Porous Silver Foams[J]. Electrochemistry Communication,2010,12(3):467-470
    [22]Hu F., Chan K.C., Yue T.M., et al. Dynamic Template Assisted Electrodeposition of Porous ZnO Thin Films Using a Triangular Potential Wave Form[J]. The Journal of Physical Chemistry C,2010, 114(13):5811-5816
    [23]Hsu P.C., Seol S.K., Lo T.N., et al. Hydrogen Bubbles and the Growth Morphology of Ramified Zinc by Electrodeposition[J]. Journal of the Electrochemical Society,2008,155(5):400-407
    [24]Cherevko S., Chung C.H. Direct Electrodeposition of Nanoporous Gold with Controlled Multimodal Pore Size Distribution[J]. Electrochemistry Communication,2011,13(1):16-19
    [25]Yin J., Jia J.B., Zhu L.D. Macroporous Pt Modified Glassy Carbon Electrode:Preparation and Electrocatalytic Activity for Methanol Oxidation[J]. International Journal of Hydrogen Energy,2008, 33(10):7444-7447
    [26]Yin J., Jia J.B., Zhu L.D. Double-template Synthesis of Platinum Nanomaterials for Oxygen Reduction[J]. Microchimica Acta,2009,166(1/2):151-156
    [27]Shang F.J., Glennon J.D., Luong J.H.T. Glucose Oxidase Entrapment in an Electropolymerized Poly(tyramine) Film with Sulfobutylether-β-cyclodextrin on Platinum Nanoparticle Modified Boron-doped Diamond Electrode[J]. The Journal of Physical Chemistry C,2008,112(51): 20258-20263
    [28]Bastos R.C., Carvalho J.M.D., BrasileirodaSilveira I.A.F., et al. Determination of Hydrazine in a Meningococcal C Conjugate Vaccine Intermediary Product[J]. Vaccine,2010,28(34):5648-5651
    [29]Bedford N.M. Analysis of 3D Structures of Platinum Nanoparticles by High Energy X-ray Diffraction and Reverse Monte Carlo Simulations[J]. Solid State Communications,2010,150(33):1505-1508
    [30]Lee C.L., Chiou H.P., Syu C.M. Silver Triangular Nanoplates as Electrocatalyst for Oxygen Reduction Reaction[J]. Electrochemistry Communication,2010,12(11):1609-1613
    [31]Sanabria-Chinchilla J., Asazawa K., Sakamoto T., et al. Noble Metal-free Hydrazine Fuel Cell Catalysts:EPOC Effect in Competing Chemical and Electrochemical Reaction Pathways[J]. Journal of the American Chemical Society,2011,133(14):5425-5431
    [32]Zelada-Guillen G.A., Riu J., Duzgun A., et al. Immediate Detection of Living Bacteria at Ultralow Concentrations Using a Carbon Nanotube Based Potentiometric Aptasensor[J]. Angewandte Chemie International Edition,2009,121(39):7335-7337
    [33]Huang J.S., Wang D.W., Hou H.Q., et al. Electrospun Palladium Nanoparticle-loaded Carbon Nanofibers and Their Electrocatalytic Activities Towards Hydrogen Peroxide and NADH[J]. Advanced Functional Materials,2008,18(3):441-448
    [34]Moore E.J., Curtin M., Ionita J., et al. Selective Release of DNA from the Surface of Indium-tin Oxide Thin Electrode Films Using Thiol-disulfide Exchange Chemistry[J]. Analytical Chemistry,2007, 79(5):2050-2057
    [35]Wu C.C., Wuu D.S., Lin P.R. Three-step Growth of Well-aligned ZnO Nanotube Arrays by Self-catalyzed Metalorganic Chemical Vapor Deposition Method[J]. Crystal Growth & Design,2009, 9(10):4555-4561
    [36]Hassan H.B., Abdel Hamid Z. Electrodeposited Cu-CuO Composite Films for Electrochemical Detection of Glucose[J]. International Journal of Electrochemical Science,2011,6:5741-5758
    [37]Khanna P.K., Gaikwad S., Adhyapak P.V., et al. Synthesis and Characterization of Copper Nanoparticles[J]. Materials Letters,2007,61(25):4711-4714
    [38]Ostojic G.N., Liang Y.T., Hersam M.C. Catalytically Active Nanocomposites of Electronically Coupled Carbon Nanotubes and Platinum Nanoparticles Formed via Vacuum Filtration[J]. Nanotechnology,2009,20(43):434019/1-434019/6
    [39]Matsumoto T., Sata N., Mitarai Y.Y. A Novel Amperometric Transducer Electrode with Iridium-niobium Binary Alloys[J]. Electroanalysis,2009,21(20):2263-2266
    [40]Liu S., Tian J.Q., Zhai J.F., et al. Titanium Silicalite-1 Zeolite Microparticles for Enzymeless H2O2 Detection[J]. Analyst,2011,136(10):2037-2039
    [41]Zhang T.T., Yuan R., Chai Y.Q., et al. A Novel Nonenzymatic Hydrogen Peroxide Sensor Based on a Polypyrrole Nanowire-copper Nanocomposite Modified Gold Electrode[J]. Sensors,2008,8(8): 5141-5152
    [42]Xu F.G, Sun Y.J., Zhang Y, et al. Graphene-Pt Nanocomposite for Nonenzymatic Detection of Hydrogen Peroxide with Enhanced Sensitivity[J]. Electrochemistry Communication,2011,13(10): 1131-1134
    [43]Liu S., Tian J.Q., Wang L., et al. A Method for the Production of Reduced Graphene Oxide Using Benzylamine as a Reducing and Stabilizing Agent and Its Subsequent Decoration with Ag Nanoparticles for Enzymeless Hydrogen Peroxide Detection[J]. Carbon,2011,49(10):3158-3164
    [44]Liu S., Wang L., Tian J.Q., et al. Aniline as a Dispersing and Stabilizing Agent for Reduced Graphene Oxide and Its Subsequent Decoration with Ag Nanoparticles for Enzymeless Hydrogen Peroxide Detection[J]. Journal of Colloid and Interface Science,2011,363(2):615-619
    [45]Zhang K.Y., Zhang N., Cai H., et al. A Novel Non-enzyme Hydrogen Peroxide Sensor Based on an Electrode Modified with Carbon Nanorube-wired CuO Nanoflowers[J]. Microchimica Acta,2012, 176(1/2):137-142
    [46]Xiao F., Zhao F.Q., Zhang Y.F., et al. Ultrasonic Electrodeposition of Gold-platinum Alloy Nanoparticles on Ionic Liquid-chitosan Composite Film and Their Application in Fabricating Nonenzyme Hydrogen Peroxide Sensors[J]. The Journal of Physical Chemistry C,2008,113(3): 849-855
    [47]Gao Y., Nie F.Q., Song J.F. Novel Electrochemically Approach for Probing in Situ Self-assembly by Tracking Shift of I-E Curve of Ohmic Circuit[J]. Journal of Electroanalytical Chemistry,2011,650(2): 182-186
    [48]Gao W., Song J.F. Towards Surface Acid-base Property of the Carboxylic Multi-walled Carbon Nanotubes by Zero Current Potentiometry[J]. Electrochemistry Communication,2009,11(6): 1285-1288
    [49]Yamada K., Yasuda K., Tanaka H., et al. Effect of Anode Electrocatalyst for Direct Hydrazine Fuel Cell Using Proton Exchange Membrane[J]. Journal of Power Sources,2003,122(2):132-137
    [50]Chinchilla J.S., Asazawa K., Sakamoto T., et al. Noble Metal-free Hydrazine Fuel Cell Catalysts: EPOC Effect in Competing Chemical and Electrochemical Eeaction Pathways[JJ. Journal of the American Chemical Society,2011,133(14):5425-5431
    [51]Zare H.R., Shishehbore M.R., Nematollahi D., et al. Electrochemical Behavior of Nano-composite Containing 4-hydroxy-2-(triphenylphosphonio)phenolate and Multi-wall Carbon Nanotubes Spiked in Carbon Paste and Its Application for Electrocatalytic Oxidation of Hydrazine[J]. Sensors and Actuators B:Chemical,2010,151(1):153-161
    [52]Paulraj P., Janaki N., Sandhya S., et al. Single Pot Synthesis of Polyaniline Protected Silver Nanoparticles by Interfacial Polymerization and Study Its Application on Electrochemical Oxidation of Hydrazine[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2011,377(1): 28-34
    [53]Ivanov S., Lange U., Tsakova V., et al. Electrocatalytically Active Nanocomposite from Palladium Nanoparticles and Polyaniline:Oxidation of Hydrazine[J], Sensors and Actuators B:Chemical,2010, 150(1):271-278
    [54]Zare H.R., Hashemi S.H., Benvidi A. Electrodeposited Nano-scale Islands of Ruthenium Oxide as a Bifunctional Electrocatalyst for Simultaneous Catalytic Oxidation of Hydrazine and Hydroxylamine[J]. Analytica Chimica Acta,2010,668(2):182-187
    [55]Kamyabi M.A, Narimani O., Monfared H.H. Electrocatalytic Oxidation of Hydrazine Using Glassy Carbon Electrode Modified with Carbon Nanotube and Terpyridine Manganese(II) Complex[J]. Journal of Electroanalytical Chemistry,2010,644(1):67-73
    [56]Hosseini M., Momeni M.M. Silver Nanoparticles Dispersed in Polyaniline Matrixes Coated on Titanium Substrate as a Novel Electrode for Electro-oxidation of Hydrazine[J]. Journal of Materials Science,2010,45(12):3304-3310
    [57]Zheng L., Song J.F. Nickel(II)-baicalein Complex Modified Multiwall Carbon Nanotube Paste Electrode and Its Electrocatalytic Oxidation toward Glycine[J]. Analytical Biochemistry,2009,391(1): 56-63
    [58]Karim-Nezhad G, Jafarloo R., Dorraji P.S. Copper(hydr) Oxide Modified Copper Electrode for Electrocatalytic Oxidation of Hydrazine in Alkaline Media[J]. Electrochimica Acta,2009,54(24): 5721-5726
    [59]Abbott A.P., Barron J.C., Ryder K.S. Electrolytic Deposition of Zn Coatings from Ionic Liquids Based on Choline Chloride[J]. Transactions of the Institute of Metal Finishing,2009,87(4):201-207
    [60]Haerens K., Matthijs E., Binnemans K., et al. Electrochemical Decomposition of Choline Chloride Based Ionic Liquid Analogues[J]. Green Chemistry,2009,11(9):1357-1365
    [61]Yi Q., Niu F., Yu W. Pd-modified TiO2 Electrode for Electrochemical Oxidation of Hydrazine, Formaldehyde and Glucose[J]. Thin Solid Films,2011,519(10):3155-3161
    [62]Fang B., Shen R., Zhang W., et al. Electrocatalytic Oxidation of Hydrazine at a Chromium Hexacyanoferrate/single-walled Carbon Nanotube Modified Glassy Carbon Electrode[J]. MicrochimicaActa,2009,165(1/2):231-236
    [63]Tan X.C., Zhang J.L., Tan S.W., et al. Amperometric Hydrogen Peroxide Biosensor Based on Immobilization of Hemoglobin on a Glassy Carbon Electrode Modified with Fe3O4/chitosan Core-shell Microspheres[J]. Sensors,2009,9(8):6185-6199
    [64]Westervelt R.M. Graphene Nanoelectronics[J]. Science,2008,320(5874):324-325
    [65]Zhang L.M., Diao S., Nie Y.F., et al. Photocatalytic Patterning and Modification of Graphene[J]. Journal of the American Chemical Society,2011,133(8):2706-2713
    [66]Guo F., Mukhopadhyay A., Sheldon B.W. et al. Vertically Aligned Graphene Layer Arrays from Chromonic Liquid Crystal Precursors[J]. Advanced Materials,2011,23(4):508-513
    [67]Vadahanambi S., Jung J.H., Oh I.K. Microwave Syntheses of Graphene and Graphene Decorated with Metal Nanoparticles[J]. Carbon,2011,49(13):4449-4457
    [68]Forzani E.S., Lu D., Leright M.J., et al. A Hybrid Electrochemical-colorimetric Sensing Platform for Detection of Explosives[J]. Journal of the American Chemical Society,2009,131(4):1390-1391
    [69]Xu S., Liu Y, Wang T., et al. Positive Potential Operation of a Cathodic Electrogenerated Chemiluminescence Immunosensor Based on Luminol and Graphene for Cancer Biomarker Detection[J]. Analytical Chemistry,2011,83(10):3817-3823
    [70]Li N., Liu G, Zhen C., et al. Battery Performance and Photocatalytic Activity of Mesoporous Anatase TiO2 Nanospheres/Graphene Composites by Template-free Self-assembly[J]. Advanced Functional Materials,2011,21(9):1717-1722
    [71]Zhou Y.G., Chen J.J., Wang F.B., et al. A Facile Approach to the Synthesis of Highly Electroactive Pt Nanoparticles on Graphene as an Anode Catalyst for Direct Methanol Fuel Cells[J]. Chemical Communications,2010,46(32):5951-5953
    [72]Wang H.L., Liang Y.Y., Li Y.G., et al. Co1-xS-graphene Hybrid:a High-performance Metal Chalcogenide Electrocatalyst for Oxygen Reduction[J]. Angewandte Chemie International Edition, 2011,123(46):11161-11169
    [73]Chai J., Li F.H., Hu Y.W., et al. Hollow Flower-like AuPd Alloy Nanoparticles:One Step Synthesis, Self-assembly on Ionic Liquid-functionalized Graphene, and Electrooxidation of Formic Acid[J]. Journal of Materials Chemistry,2011,21(44):17922-17929
    [74]Wu J.J., Zhang D., Wang Y, et al. Catalytic Activity of Graphene-cobalt Hydroxide Composite for Oxygen Reduction Reaction in Alkaline Media[J]. Journal of Power Sources,2012,198(1):122-126
    [75]Wang H.W., Hu Z.A., Chang Y.Q., et al. Preparation of Reduced Graphene Oxide/cobalt Oxide Composites and Their Enhanced Capacitive Behaviors by Homogeneous Incorporation of Reduced Graphene Oxide Sheets in Cobalt Oxide Matrix[J]. Materials Chemistry and Physics,2011,130(1): 672-679
    [76]Kong F.Y., Li X.R., Zhao W.W., et al. Graphene Oxide-thionine-Au Nanostructure Composites: Preparation and Applications in Non-enzymatic Glucose Sensing[J]. Electrochemistry Communications,2012,14(1):59-62
    [77]Chen Y., Zhang X., Zhang D., et al. High Performance Supercapacitors Based on Reduced Graphene Oxide in Aqueous and Ionic Liquid Electrolytes[J]. Carbon,2011,49(2):573-580
    [78]Okaya K., Yano H., Uchida H., et al. Control of Particle Size of Pt and Pt Alloy Electrocatalysts Supported on Carbon Black by the Nanocapsule Method[J]. ACS Applied Materials & Interfaces, 2010,2(3):888-895
    [79]Wang Y, Zhang S., Du D., et al. Self Assembly of Acetylcholinesterase on a Gold Nanoparticles-graphene Nanosheet Hybrid for Organophosphate Pesticide Detection Using Polyelectrolyte as a Linker[J]. Journal of Materials Chemistry,2011,21(14):5319-5325
    [80]Kundu P., Nethravathi C., Deshpande P.A., et al. Ultrafast Microwave-assisted Route to Surfactant-free Ultrafine Pt Nanoparticles on Graphene:Synergistic Co-reduction Mechanism and High Catalytic Activity[J]. Chemistry of Materials,2011,23(11):2772-2780
    [81]Zhang L.R., Zhao J., Li M., et al. Preparation of Graphene Supported Nickel Nanoparticles and Their Application to Methanol Electrooxidation in Alkaline Medium[J]. New Journal of Chemistry,2012, 36(4):1108-1113
    [82]Chen L.Y., Tang Y.H., Wang K., et al. Direct Electrodeposition of Reduced Graphene Oxide on Glassy Carbon Electrode and Its Electrochemical Application[J]. Electrochemical Communications,2011, 13(2):133-137
    [83]Liu C., Wang K., Luo S., et al. Direct Electrodeposition of Graphene Enabling the One-step Synthesis of Graphene-metal Nanocomposite Films[J]. Small,2011,7(9):1203-1206
    [84]Guo H.L., Wang X.F., Qian Q.Y., et al. A Green Approach to the Synthesis of Graphene Nanosheets[J]. ACS Nano,2009,3(9):2653-2659
    [85]Zhou Y.G., Chen J.J., Wang F., et al. A Facile Approach to the Synthesis of Highly Electroactive Pt Nanoparticles on Graphene as an Anode Catalyst for Direct Methanol Fuel Cells[J]. Chemical Communications,2010,46(32):5951-5953
    [86]Gao Z., Liu J., Xu F., et al. One-pot Synthesis of Graphene-cuprous Oxide Composite with Enhanced Photocatalytic Activity[J]. Solid State Sciences,2012,14(2):276-280
    [87]Gao H., Xiao F., Ching C.B., et al. One-step Electrochemical Synthesis of PtNi Nanoparticle-graphene Nanocomposites for Nonenzymatic Amperometric Glucose Detection[J]. ACS Applied Materials & Interfaces,2011,3(8):3049-3057
    [88]Jiang Y., Lu Y, Li F., et al. Facile Electrochemical Codeposition of "Clean" Graphene-Pd Nanocomposite as An Anode Catalyst for Formic Acid Electrooxidation[J]. Electrochemistry Communications,2012,19(1):21-29
    [89]Gyawali G., Cho S.H., Woo D.J., et al. Pulse Electrodeposition and Characterization of Ni-SiC Composite Coatings in Presence of Ultrasound[J]. Transactions of the Institute of Metal Finishing, 2012,90(5):274-280
    [90]Xiao F., Li Y., Zan X., et al. Growth of Metal-metal Oxide Nanostructures on Freestanding Graphene Paper for Flexible Biosensors[J]. Advanced Functional Materials,2012,22(12):2487-2494
    [91]Xiao F., Zhao F., Zhang Y., et al. Ultrasonic Electrodeposition of Gold-platinum Alloy Nanoparticles on Ionic Liquid-chitosan Composite Film and Their Application in Fabricating Nonenzyme Hydrogen Peroxide Sensors[J]. The Journal of Physical Chemistry C,2008,113(3):849-855
    [92]Garcia-Lecina E., Garcia-Urrutia I., Diez J.A., et al. A Comparative Study of the Effect of Mechanical and Ultrasound Agitation on the Properties of Electrodeposited Ni/Al2O3 Nanocomposite Coatings[J]. Surface and Coatings Technology,2012,206(11):2998-3005
    [93]Sarius N.G., Leisner P., Persson P.O., et al. Influence of Ultrasound and Cathode Rotation on Formation of Intrinsic Stress in Ni Films During Electrodeposition[J]. Transactions of the Institute of Metal Finishing,2011,89(3):137-142
    [94]Xiao F., Zhao F., Mei D., et al. Nonenzymatic Glucose Sensor Based on Ultrasonic-electrodeposition of Bimetallic PtM(M= Ru, Pd and Au) Nanoparticles on Carbon Nanotubes-ionic Liquid Composite Film[J]. Biosensors and Bioelectronics,2009,24(12):3481-3486
    [95]Tang S., Tang Y., Gao F., et al. Ultrasonic Electrodeposition of Silver Nanoparticles on Dielectric Silica Spheres[J]. Nanotechnology,2007,18(29):295607
    [96]Guo M.Q., Hong H.S., Tang X.N., et al. Ultrasonic Electrodeposition of Platinum Nanoflowers and Their Application in Nonenzymatic Glucose Sensors[J]. Electrochimica Acta,2012,63(1):1-8
    [97]Xiao F., Mo Z., Zhao F., et al. Ultrasonic-electrodeposition of Gold-platinum Alloy Nanoparticles on Multi-walled Carbon Nanotubes-ionic Liquid Composite Film and Their Electrocatalysis towards the Oxidation of Nitrite[J]. Electrochemistry Communications,2008,10(11):1740-1743
    [98]Hadi M., Rouhollahi A., Yousefi M. Nanocrystalline Graphite-like Pyrolytic Carbon Film Electrode for Electrochemical Sensing of Hydrazine[J]. Sensors and Actuators B:Chemical,2011,160(1): 121-128
    [99]Asazawa K., Yamada K., Tanaka H., et al. Electrochemical Oxidation of Hydrazine and Its Derivatives on the Surface of Metal Electrodes in Alkaline Media[J]. Journal of Power Sources,2009,191(2): 362-365
    [100]Liu H., Su X., Tian X., et al. Preparation and Electrocatalytic Performance of Functionalized Copper-Based Nanoparticles Supported on the Gold Surface[J]. Electroanalysis,2006,18(21): 2055-2060
    [101]Shi H., Zhang Z., Wang Y., et al. Bimetallic Nano-structured Glucose Sensing Electrode Composed of Copper Atoms Deposited on Gold Nanoparticles[J]. Microchimica Acta,2011,173(1/2):85-94
    [102]Yang J., Jiang L.C., Zhang W.D., et al. A Highly Sensitive Non-enzymatic Glucose Sensor Based on a Simple Two-step Electrodeposition of Cupric oxide(CuO) Nanoparticles onto Multi-walled Carbon Nanotube Arrays[J]. Talanta,2010,82(1):25-33
    [103]Babu T.G.S., Ramachandran T., Nair B. Single Step Modification of Copper Electrode for the Highly Sensitive and Selective Non-enzymatic Determination of Glucose[J]. Microchimica Acta,2010, 169(1/2):49-55
    [104]Hummers W.S., Offeman R.E. Preparation of Graphitic Oxide[J]. Journal of the American Chemical Society,1958,80(6):1339-1339
    [105]Mendoza-Huizar L.H., Reyes, C.H.R., Rivera, M.C. A Voltammetric Study of the Underpotential Deposition of Cobalt onto a Glassy Carbon Electrode[J]. Advances in Technology of Materials and Materials Processing Journal,2006,8(2):152-159
    [106]Sun W., Li X., Qin P., et al. Electrodeposition of Co Nanoparticles on the Carbon Ionic Liquid Electrode as a Platform for Myoglobin Electrochemical Biosensor[J]. The Journal of Physical Chemistry C,2009,113(26):11294-11300
    [107]Wen Z., Li J. Hierarchically Structured Carbon Nanocomposites as Electrode Materials for Electrochemical Energy Storage, Conversion and Biosensor Systems[J]. Journal of Materials Chemistry,2009,19(46):8707-8713
    [108]Grujicic D., Pesic B. Electrochemical and AFM Study of Cobalt Nucleation Mechanisms on Glassy Carbon from Ammonium Sulfate Solutions[J]. Electrochimica Acta,2004,49(26):4719-4732
    [109]Hyde M.E., Compton R.G A Review of the Analysis of Multiple Nucleation with Diffusion Controlled Growth[J]. Journal of Electroanalytical Chemistry,2003,549:1-12
    [110]Soto A.B., Arce E.M., Palomar-Pardave M., et al. Electrochemical Nucleation of Cobalt onto Glassy Carbon Electrode from Ammonium Chloride Solutions[J]. Electrochimica Acta,1996,41(16): 2647-2655
    [111]Yu H., Song S.W., Lian Y.Y., et al. Electrochemical Preparation of Copper Hexacyanoferrate Nanoparticles under the Synergic Action of EDTA and HAuCl4[J]. Journal of Electroanalytical Chemistry,2010,650(1):82-89
    [112]Chang G., Luo Y., Lu W., et al. Immobilization of Au Nanoparticles on Au Electrode for Hydrazine Detection:Using Thiolated Single-stranded DNA as a Linker[J]. Thin Solid Films,2011,519(18): 6130-6134
    [113]Ding Y., Hou C., Li B., et al. Sensitive Hydrazine Detection Using a Porous Mn2O3 Nanofibers-based Sensor[J]. Electroanalysis,2011,23(5):1245-1251
    [114]Wang X., Zhang Y, Jiang S., et al. Cubic Copper Hexacyanoferrates Nanoparticles:Facile Template-free Deposition and Electrocatalytic Sensing Towards Hydrazine[J]. International Journal of Electrochemistry,2011, doi:10.4061/2011/395724
    [115]Yin Z., Liu L., Yang Z. An Amperometric Sensor for Hydrazine Based on Nano-copper Oxide Modified Electrode[J]. Journal of Solid State Electrochemistry,2011,15(4):821-827
    [116]Wei J.X., Periasamy A.P., Chen S.M. Amperometric and Impedimetric Determination of Hydrazine at a Novel Trimethine Cyanine Dye Film Modified Glassy Carbon Electrode[J]. International Journal of Electrochemistry,2011,6:2411-2428
    [117]Gholivand M.B., Azadbakht A. A Novel Hydrazine Electrochemical Sensor Based on a Zirconium Hexacyanoferrate Film-bimetallic Au-Pt Inorganic-organic Hybrid Nanocomposite onto Glassy Carbon-modified Electrode[J]. Electrochimica Acta,2011,56(27):10044-10054
    [118]Umar A., Rahman M.M., Kim S.H., et al. Zinc Oxide Nanonail Based Chemical Sensor for Hydrazine Detection[J]. Chemical Communications,2008 (2):166-168
    [119]Wang Y., Liu L., Zhang D., et al. A New Strategy for Immobilization of Electroactive Species on the Surface of Solid Electrode[J]. Electrocatalysis,2010,1(4):230-234
    [120]Luo J., Jiang S., Zhang H., et al. A Novel Non-enzymatic Glucose Sensor Based on Cu Nanoparticle Modified Graphene Sheets Electrode[J]. Analytica Chimica Acta,2012,709:47-53
    [121]Geng D., Yang S., Zhang Y, et al. Nitrogen Doping Effects on the Structure of GraphenefJ]. Applied Surface Science,2011,257(21):9193-9198
    [122]Wang C., Ma D., Bao X. Transformation of Biomass into Porous Graphitic Carbon Nanostructures by Microwave Irradiation[J]. The Journal of Physical Chemistry C,2008,112(45):17596-17602
    [123]Yang J., Zhang W.D., Gunasekaran S. An Amperometric Non-enzymatic Glucose Sensor by Electrodepositing Copper Nanocubes onto Vertically Well-aligned Multi-walled Carbon Nanotube Arrays[J]. Biosensors and Bioelectronics,2010,26(1):279-284
    [124]Wei H., Sun J.J., Guo L., et al. Highly Enhanced Electrocatalytic Oxidation of Glucose and Shikimic Acid at a Disposable Electrically Heated Oxide Covered Copper Electrode[J]. Chemical Communications,2009 (20):2842-2844
    [125]Kang X., Mai Z., Zou X., et al. A Sensitive Nonenzymatic Glucose Sensor in Alkaline Media with a Copper Nanocluster/multiwall Carbon Nanotube-modified Glassy Carbon Electrode[J]. Analytical Biochemistry,2007,363(1):143-150
    [126]Kumar S.A., Cheng H.W., Chen S.M., et al. Preparation and Characterization of Copper Nanoparticles/zinc oxide Composite Modified Electrode and Its Application to Glucose Sensing[J]. Materials Science and Engineering:C,2010,30(1):86-91
    [127]Fang B., Gu A., Wang G., et al. Silver Oxide Nanowalls Grown on Cu Substrate as An Enzymeless Glucose Sensor[J]. ACS Applied Materials & Interfaces,2009,1(12):2829-2834
    [128]Lu L.M., Zhang L., Qu F.L., et al. A Nano-Ni Based Ultrasensitive Nonenzymatic Electrochemical Sensor for Glucose:Enhancing Sensitivity through a Nanowire Array Strategy[J]. Biosensors and Bioelectronics,2009,25(1):218-223
    [129]Song Y.Y., Zhang D., Gao W, et al. Nonenzymatic Glucose Detection by Using a Three-dimensionally Ordered, Macroporous Platinum Template[J]. Chemistry-A European Journal, 2005,11(7):2177-2182
    [130]Liu Y, Feng X., Shen J., et al. Fabrication of a Novel Glucose Biosensor Based on a Highly Electroactive Polystyrene/Polyaniline/Au Nanocomposite[J]. The Journal of Physical Chemistry B, 2008,112(30):9237-9242
    [131]Zhao M., Wu X., Cai C. Polyaniline Nanofibers:Synthesis, Characterization, and Application to Direct Electron Transfer of Glucose Oxidase[J]. The Journal of physical Chemistry C,2009,113(12): 4987-4996
    [132]Hosseini M., Momeni M.M. Silver Nanoparticles Dispersed in Polyaniline Matrixes Coated on Titanium Substrate as a Novel Electrode for Electro-oxidation of Hydrazine[J]. Journal of Materials Science,2010,45(12):3304-3310
    [133]Sharma B.K., Gupta A.K., Khare N., et al. Synthesis and Characterization of Polyaniline-ZnO Composite and Its Dielectric Behavior[J]. Synthetic Metals,2009,159(5):391-395
    [134]Zhang J., Lei J., Liu Y., et al. Highly Sensitive Amperometric Biosensors for Phenols Based on Polyaniline-ionic Liquid-carbon Nanofiber Composite[J]. Biosensors and Bioelectronics,2009,24(7): 1858-1863
    [135]Hu Z., Xu J., Tian Y., et al. Layer-by-layer Assembly of Poly(sodium 4-styrenesulfonate) Wrapped Multiwalled Carbon Nanotubes with Polyaniline Nanofibers and Its Electrochemistry[J]. Carbon,2010, 48(13):3729-3736
    [136]Dhand C., Sumana G., Datta M., et al. Electrophoretically Deposited Nano-structured Polyaniline Film for Glucose Sensing[J]. Thin Solid Films,2010,519(3):1145-1150
    [137]Bayramoglu G., Metin A.U., Arica M.Y. Surface Modification of Polyacrylonitrile Film by Anchoring Conductive Polyaniline and Determination of Uricase Adsorption Capacity and Activity [J]. Applied Surface Science,2010,256(22):6710-6716
    [138]Zhiani M., Rezaei B., Jalili J. Methanol Electro-oxidation on Pt/C Modified by Polyaniline Nanofibers for DMFC Applications[J]. International Journal of Hydrogen Energy,2010,35(17): 9298-9305
    [139]Yu S., Xi M., Jin X., et al. Preparation and Photoelectrocatalytic Properties of Polyaniline-intercalated Layered Manganese Oxide Film[J]. Catalysis Communications,2010,11(14):1125-1128
    [140]Torres R., Jimenez Y., Arnau A., et al. High Frequency Mass Transfer Responses with Polyaniline Modified Electrodes by Using New AC-electrogravimetry Device[J]. Electrochimica Acta,2010, 55(21):6308-6312
    [141]Zou W., Wang W., He B., et al. Supercapacitive Properties of Hybrid Films of Manganese Dioxide and Polyaniline Based on Active Carbon in Organic Electrolyte[J]. Journal of Power Sources,2010, 195(21):7489-7493
    [142]Li L., Liu E., Yang Y, et al. Nitrogen-containing Carbons Prepared from Polyaniline as Anode Materials for Lithium Secondary Batteries[J]. Materials Letters,2010,64(19):2115-2117
    [143]Lee K.P., Komathi S., Nam N.J., et al. Sulfonated Polyaniline Network Grafted Multi-wall Carbon Nanotubes for Enzyme Immobilization, Direct Electrochemistry and Biosensing of Glucose[J]. Microchemical Journal,2010,95(1):74-79
    [144]Zhang L., Zhang J., Zhang C. Electrochemical Synthesis of Polyaniline Nano-network on a-alanine Functionalized Glassy Carbon Electrode and Its Application for the Direct Electrochemistry of Horse Heart Cytochrome C[J]. Biosensors and Bioelectronics,2009,24(7):2085-2090
    [145]Zhang L., Shi Z., Lang Q., et al. Electrochemical Synthesis of Belt-like Polyaniline Network on p-phenylenediamine Functionalized Glassy Carbon Electrode and Its use for the Direct Electrochemistry of Horse Heart Cytochrome C[J]. Electrochimica Acta,2010,55(3):641-647
    [146]Soreta T.R., Strutwolf J., Henry O., et al. Electrochemical Surface Structuring with Palladium Nanoparticles for Signal Enhancement[J]. Langmuir,2010,26(14):12293-12299
    [147]Darmanin T., Guittard F. One-pot Method for Build-up Nanoporous Super Oil-repellent Films[J]. Journal of Colloid and Interface Science,2009,335(1):146-149
    [148]Wen D., Zou X., Liu Y., et al. Nanocomposite Based on Depositing Platinum Nanostructure onto Carbon Nanotubes Through a One-pot, Facile Synthesis method for Amperometric Sensing[J]. Talanta, 2009,79(5):1233-1237
    [149]Wen Z., Ci S., Li J. Pt Nanoparticles Inserting in Carbon Nanotube Arrays:Nanocomposites for Glucose Biosensors[J]. The Journal of Physical Chemistry C,2009,113(31):13482-13487
    [150]Manesh K.M., Santhosh P., Uthayakumar S., et al. One-pot Construction of Mediatorless Bienzymatic Glucose Biosensor Based on Organic-inorganic Hybrid[J]. Biosensors and Bioelectronics,2010,25(7): 1579-1586
    [151]Tan Y., Deng W., Chen C., et al. Immobilization of Enzymes at High Load/activity by Aqueous Electrodeposition of Enzyme-tethered Chitosan for Highly Sensitive Amperometric Biosensing[J]. Biosensors and Bioelectronics,2010,25(12):2644-2650
    [152]Yu X., Sotzing GA., Papadimitrakopoulos F., et al. Wiring of Enzymes to Electrodes by Ultrathin Conductive Polyion Underlayers:Enhanced Catalytic Response to Hydrogen Peroxide[J]. Analytical chemistry,2003,75(17):4565-4571
    [153]Yang K., She G.W., Wang H., et al. ZnO Nanotube Arrays as Biosensors for Glucose[J]. The Journal of Physical Chemistry C,2009,113(47):20169-20172
    [154]Ahmad M., Pan C., Luo Z., et al. A Single ZnO Nanofiber-based Highly Sensitive Amperometric Glucose Biosensor[J]. The Journal of Physical Chemistry C,2010,114(20):9308-9313
    [155]Joshi R.K., Hu Q., Alvi F., et al. Au Decorated Zinc Oxide Nanowires for CO Sensing[J]. The Journal of Physical Chemistry C,2009,113(36):16199-16202
    [156]Shan G, Wang S., Fei X., et al. Heterostructured ZnO/Au nanoparticles-based Resonant Raman Scattering for Protein Detection[J]. The Journal of Physical Chemistry B,2009,113(5):1468-1472
    [157]Krishnan D., Pradeep T. Precursor-controlled Synthesis of Hierarchical ZnO Nanostructures, Using Oligoaniline-coated Au Nanoparticle Seeds[J]. Journal of Crystal Growth,2009,311(15):3889-3897
    [158]Enustun B.V., Turkevich J. Coagulation of Colloidal Gold[J]. Journal of the American Chemical Society,1963,85(21):3317-3328
    [159]Chang M., Cao X., Zeng H. Electrodeposition Growth of Vertical ZnO Nanorod/polyaniline Heterostructured Films and Their Optical Properties[J]. The Journal of Physical Chemistry C,2009, 113(35):15544-15547
    [160]Zhao X., Mai Z., Kang X., et al. Clay-chitosan-gold Nanoparticle Nanohybrid:Preparation and Application for Assembly and Direct Electrochemistry of Myoglobin[J]. Electrochimica Acta,2008, 53(14):4732-4739
    [161]Laviron E. General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusionless Electrochemical Systems[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1979,101(1):19-28
    [162]Gao R., Zheng J., Qiao L. Direct Electrochemistry of Hemoglobin in Layer-by-layer Films Assembled with DNA and Room Temperature Ionic Liquid[J]. Electroanalysis,2010,22(10): 1084-1089
    [163]Gao R., Shangguan X., Qiao G., et al. Direct Electrochemistry of Hemoglobin and Its Electrocatalysis Based on Hyaluronic Acid and Room Temperature Ionic Liquid[J]. Electroanalysis,2008,20(23): 2537-2542
    [164]Lu X., Xiao Y., Lei Z., et al. Graphitized Macroporous Carbon Microarray with Hierarchical Mesopores as Host for the Fabrication of Electrochemical Biosensor[J]. Biosensors and Bioelectronics, 2009,25(1):244-247
    [165]Xu H., Dai H., Chen G. Direct Electrochemistry and Electrocatalysis of Hemoglobin Protein Entrapped in Graphene and Chitosan Composite Film[J]. Talanta,2010,81(1):334-338
    [166]Zhao H.Y., Zheng W., Meng Z.X., et al. Bioelectrochemistry of Hemoglobin Immobilized on a Sodium Alginate-multi Wall Carbon Nanotubes Composite Film[J]. Biosensors and Bioelectronics, 2009,24(8):2352-2357
    [167]Liu L.M., Shen B., Shi J.J., et al. A Novel Mediator-free Biosensor Based on Co-intercalation of DNA and Hemoglobin in the Interlayer Galleries of Alpha-zirconium Phosphate[J]. Biosensors and Bioelectronics,2010,25(12):2627-2632
    [1]付云芝,张永强.生物制备纳米晶的研究进展[J].中国材料进展,2011,30(3):47-53
    [2]石杰,范淑敏,吴静等.生物法制备纳米金的研究进展[J].吉首大学学报(自然科学版),2012,33(3):71-75
    [3]柴春镜,白红娟.生物法制备纳米银材料的研究进展[J].电镀与环保,2011,31(2):4-7
    [4]Zhao X.J., Mai Z.B., Kang X.H., et al. Clay-chitosan-gold Nanoparticle Nanohybrid:Preparation and Application for Assembly and Direct Electrochemistry of Myoglobin[J]. Electrochimica Acta,2008, 53(14):4732-4739
    [5]Sicard C., Brayner R., Margueritat J., et al. Nano-gold Biosynthesis by Silica-encapsulated Microalgae:a "Living" Bio-hybrid Material[J]. Journal of Materials Chemistry,2010,20(42): 9342-9347
    [6]Yoshida M., Roh K.H., Mandal S., et al. Structurally Controlled Bio-hybrid Materials Based on Unidirectional Association of Anisotropic Microparticles with Human Endothelial Cells[J]. Advanced Materials,2009,21(48):4920-4925
    [7]Pipich V, Balz M., Wolf S.E., et al. Nucleation and Growth of CaCO3 Mediated by the Egg-white Protein Ovalbumin:a Time-resolved in Situ Study Using Small-angle Neutron Scattering[J]. Journal of the American Chemical Society,2008,130(21):6879-6892
    [8]Sommer A.E., Fetter G., Bosch P., et al. Protein Template Effect on Hydrotalcite Morphology[J]. Polymers for Advanced Technologies,2011,22(12):2638-2642
    [9]Lechevalier V., Jeantet R., Arhaliass A., et al. Egg White Drying:Influence of Industrial Processing Steps on Protein Structure and Functionalities[J]. Journal of Food Engineering,2007,83(3):404-413
    [10]Gabal M.A. Structural and Magnetic Properties of Nano-sized Cu-Cr Ferrites Prepared through a Simple Method Using Egg White[J]. Materials Letters,2010,64(17):1887-1890
    [11]Maensiri S., Masingboon C., Laokul P., et al. Egg White Synthesis and Photoluminescence of Platelike Clusters of CeO2 Nanoparticles[J]. Crystal Growth & Design,2007,7(5):950-955
    [12]Ahmadov T.O., Durmus Z., Baykal A., et al. A Simple Approach for the Synthesis of Co3O4 Nanocrystals[J]. Inorganic Materials,2011,47(4):426-430
    [13]Li Y., Schluesener H.J., Xu S. Gold Nanoparticle-based Biosensors[J]. Gold Bulletin,2010,43(1): 29-41
    [14]Shan J., Tenhu H. Recent Advances in Polymer Protected Gold Nanoparticles:Synthesis, Properties and ApplicationsfJ]. Chemical Communications,2007, (44):4580-4598
    [15]Pingarron J.M., Yanez-Sedeno P., Gonzalez-Cortes A. Gold Nanoparticle-based Electrochemical Biosensors[J]. ElectrochimicaicaActa,2008,53(19):5848-5866
    [16]Katz E., Willner I. Integrated Nanoparticle-biomolecule Hybrid Systems:Synthesis, Properties, and Applications[J]. Angewandte Chemie International Edition,2004,43(45):6042-6108
    [17]Gallardo I.F., Webb L.J. Tethering Hydrophobic Peptides to Functionalized Self-assembled Monolayers on Gold through Two Chemical Linkers Using the Huisgen Cycloaddition[J]. Langmuir, 2010,26(24):18959-18966
    [18]Pang S., Kondo T., Kawai T. Formation of Dendrimer-like Gold Nanoparticle Assemblies[J]. Chemistry of Materials,2005,17(14):3636-3641
    [19]Kim C., Oh J.G., Kim Y.T., et al. Platinum Dendrites with Controlled Sizes for Oxygen Reduction Reaction[J]. Electrochemistry Communication,2010,12(11):1596-1599
    [20]Witten T.A., Sander L.M. Diffusion-limited Aggregation[J]. Physical Review B,1983,27(9):5686
    [21]Yang S., Xu B., Zhang J., et al. Controllable Adsorption of Reduced Graphene Oxide onto Self-assembled Alkanethiol Monolayers on Gold Electrodes:Tunable Electrode Dimension and Potential Electrochemical Applications[J]. The Journal of Physical Chemistry C,2010,114(10): 4389-4393
    [22]Sun W., Li X., Wang Y., et al. Electrochemistry of Myoglobin in Nafion and Multi-walled Carbon Nanotubes Modified Carbon Ionic Liquid Electrode[J]. Bioelectrochemistry,2009,75(2):170-175
    [23]Zhang L., Zhang Q., Li J. Direct Electrochemistry and Electrocatalysis of Myoglobin Covalently Immobilized in Mesopores Cellular Foams[J]. Biosensors and Bioelectronics,2010,26(2):846-849
    [24]Laviron E. General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusionless Electrochemical Systems[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1979,101(1):19-28
    [25]Sun W., Li X., Qin P., et al. Electrodeposition of Co Nanoparticles on the Carbon Ionic Liquid Electrode as a Platform for Myoglobin Electrochemical Biosensor[J]. The Journal of Physical Chemistry C,2009,113(26):11294-11300
    [26]Liu C.Y., Hu J.M. Hydrogen Peroxide Biosensor Based on the Direct Electrochemistry of Myoglobin Immobilized on Silver Nanoparticles Doped Carbon Nanotubes Film[J]. Biosensors and Bioelectronics,2009,24(7):2149-2154
    [27]Liu X.Q., Li H.J., Wang F., et al. Functionalized Single-walled Carbon Nanohorns for Electrochemical Biosensing[J]. Biosensors and Bioelectronics,2010,25(10):2194-2199
    [28]Shan W.J., He P.L., Hu N.F. Electrocatalytic Reduction of Nitric Oxide and Other Substrates on Hydrogel Triblock Copolymer Pluronic Films Containing Hemoglobin or Myoglobin Based on Protein Direct Electrochemistry [J]. Electrochimica Acta,2005,51(3):432-440
    [29]Kamin R.A., Wilson G.S. Rotating Ring-disk Enzyme Electrode for Biocatalysis Kinetic Studies and Characterization of the Immobilized Enzyme Layer[J]. Analytical Chemistry,1980,52(8):1198-1205
    [30]Shu F.R., Wilson G.S., Rotating Ring-disk Enzyme Electrode for Surface Catalysis Studies[J]. Analytical Chemistry,1976,48(12):1679-1686
    [31]Dai Z., Xu X., Ju H. Direct Electrochemistry and Electrocatalysis of Myoglobin Immobilized on a Hexagonal Mesoporous Silica Matrix[J]. Analytical Biochemistry,2004,332(1):23-31
    [32]Zhao G., Xu J.J., Chen H.Y. Interfacing Myoglobin to Graphite Electrode with an Electrodeposited Nanoporous ZnO Film[J]. Analytical Biochemistry,2006,350(1):145-150
    [33]Xie Y., Hu N., Liu H. Bioelectrocatalytic Reactivity of Myoglobin in Layer-by-layer Films Assembled with Triblock Copolymer Pluronic F127[J]. Journal of Electroanalytical Chemistry,2009, 630(1):63-68
    [34]Yue R., Lu Q., Zhou Y. A Novel Nitrite Biosensor Based on Single-layer Graphene Nanoplatelet-protein Composite Film[J]. Biosensors and Bioelectronics,2011,26(11):4436-4441
    [35]Zhu W.L., Zhou Y., Zhang J.R. Direct Electrochemistry and Electrocatalysis of Myoglobin Based on Silica-coated Gold Nanorods/room Temperature Ionic Lliquid/silica Sol-gel Composite Film[J]. Talanta,2009,80(1):224-230
    [36]Sun W., Li X., Jiao K. Direct Electrochemistry of Myoglobin in a Nafion-ionic Liquid Composite Film Modified Carbon Ionic Liquid Electrode[J]. Electroanalysis,2009,21(8):959-964
    [37]Liu Y, Feng X., Shen J., et al. Fabrication of a Novel Glucose Biosensor Based on a Highly Electroactive Polystyrene/polyaniline/Au Nanocomposite[J]. The Journal of Physical Chemistry B, 2008,112(30):9237-9242
    [38]Hu X., Zhang Y.Y., Tang K., et al. Hemoglobin-biocatalysts Synthesis of a Conducting Molecular Complex of Polyaniline and Sulfonated Polystyrene[J]. Synthetic Metals,2005,150(1):1-7
    [39]He J.L., Wu Z.S., Hu P., et al. Biocatalytic Growth of Gold Agglomerates on an Electrode for Aptamer-based Electrochemical Detection[J]. Analyst,2010,135(3):570-576
    [40]Wang J., SanchezArribas A. Biocatalytically Induced Gormation of Cupric Ferrocyanide Nanoparticles and Their Application for Electrochemical and Optical Biosensing of Glucose[J]. Small, 2006,2(1):129-134
    [41]Willner I., Baron R., Willner B. Growing Metal Nanoparticles by Enzymes[J]. Advanced Materials, 2006,18(9):1109-1120
    [42]Shlyahovsky B., Katz E., Xiao Y, et al. Optical and Electrochemical Detection of NADH and of NAD+ Dependent Biocatalyzed Processes by the Catalytic Deposition of Copper on Gold Nanoparticles[J]. Small,2005,1(2):213-216
    [43]Yehezkeli O., Raichlin S., Tel-Vered R., et al. Biocatalytic Implant of Pt Nanoclusters into Glucose Oxidase:A Method to Electrically Wire the Enzyme and to Transform It From an Oxidase to a Hydrogenase[J]. The Journal of Physical Chemistry Letters,2010,1(19):2816-2819
    [44]Seongpil H., Eunkyung K., Juhyoun K., Electrochemical Detection of DNA Hybridization Using Biometallization[J]. Analytical Chemistry,2005,77(2):579-584
    [45]Chen Z.P., Peng Z.F., Luo Y., et al. Successively Amplified Electrochemical Immunoassay Based on Biocatalytic Deposition of Silver Nanoparticles and Silver Enhancement[J]. Biosensors and Bioelectronics,2007,23(4):485-491
    [46]Chen J., Luo Y., Liang Y., et al. Surface-enhanced Raman Scattering for Immunoassay Based on the Biocatalytic Production of Silver Nanoparticles[J]. Analytical Sciences,2009,25(3):347-352
    [47]Hu X., Tang K., Liu S G., et al. Hemoglobin-biocatalysts Synthesis of a Conducting Polyaniline[J]. Reactive and Functional Polymers,2005,65(3):239-248
    [48]Sheng Q.L., Shen Y., Zhang H.F., et al. Neodymium(III) Hexacyanoferrate(II) Nanoparticles Induced by Enzymatic Reaction and Their Use in Biosensing of Glucose[J]. Electrochimica Acta,2008,53(14): 4687-4692
    [49]Sheng Q.L., Luo K., Zheng J.B., et al. Enzymatically Induced Formation of Neodymium Hexacyanoferrate Hanoparticles on the Glucose Oxidase/Chitosan Modified Glass Carbon Electrode for the Detection of Glucose[J]. Biosensors and Bioelectronics,2008,24(3):429-434
    [50]Sheng Q.L., Zheng J.B. Bienzyme System for the Biocatalyzed Deposition of Polyaniline Templated by Multiwalled Carbon Nanotubes:a Biosensor Design[J]. Biosensors and Bioelectronics,2009, 24,(6):1621-1628
    [51]Zhang H., Liu R., Sheng Q., et al. Enzymatic Deposition of Au Nanoparticles on the Designed Electrode Surface and Its Application in Glucose Detection[J]. Colloids and Surfaces B:Biointerfaces, 2011,82(2):532-535
    [52]Guo X.H., Hu N.F. Increment of Density of Au Nanoparticles Deposited in Situ within Layer-by-layer Films and Its Enhancement on the Electrochemistry of Ferrocenecarboxylic Acid and Bioelectrocatalysis[J]. The Journal of Physical Chemistry C,2009,113(22):9831-9833
    [53]Liu X., Zeng X., Mai N., et al. Amperometric Glucose Biosensor with Remarkable Acid Stability Based on Glucose Oxidase Entrapped in Colloidal Gold-modified Carbon Ionic Liquid Electrode[J]. Biosensors and Bioelectronics,2010,25(12):2675-2679
    [54]Bahshi L., Freeman R., Gill R., et al. Optical Detection of Glucose by Means of Metal Nanoparticles or Semiconductor Quantum Dots[J]. Small,2009,5(6):676-680
    [55]Lim S.Y., Lee J.S., Park C.B. In Situ Growth of Gold Nanoparticles by Enzymatic Glucose Oxidation within Alginate Gel Matrix[J]. Biotechnology and Bioengineering,2010,105(1):210-214
    [56]Huang X.J., Li C.C., Gu B., et al. Controlled Molecularly Mediated Assembly of Gold Nanooctahedra for a Glucose Biosensor[J]. The Journal of Physical Chemistry C,2008,112(10):3605-3611
    [57]Zhang D., Diao P., Zhang Q. Potential-induced Shape Evolution of Gold Nanoparticles Prepared on ITO Substrate[J]. The Journal of Physical Chemistry C,2009,113(36):15796-15800
    [58]Weizmann Y., Patolsky F., Popov I., et al. Telomerase-^enerated Templates for the Growing of Metal NanowiresfJ]. Nano Letters,2004,4(5):787-792
    [59]Liu X., Li Y., Zheng J., et al. Carbon Nanotube-enhanced Electrochemical Aptasensor for the Detection of Thrombin[J], Talanta,2010,81(4):1619-1624
    [60]Xiao Y.B., Li CM. Nanocomposites:from Fabrications to Electrochemical Bioapplications[J]. Electroanalysis,2008,20(6):648-662
    [61]Sheng Q.L., Zheng J.B. Bienzyme System for the Biocatalyzed Deposition of Polyaniline Templated by Multiwalled Carbon Nanotubes:A Biosensor Design[J]. Biosensors and Bioelectronics,2009, 24,(6):1621-1628
    [62]Gao R., Zheng J., Qiao L. Direct Electrochemistry of Hemoglobin in Layer-by-layer Films Assembled with DNA and Room Temperature Ionic Liquid[J]. Electroanalysis,2010,22(10): 1084-1089
    [63]Lu X., Xiao Y., Lei Z., et al. A Promising Electrochemical Biosensing Platform Based on Graphitized Ordered Mesoporous Carbon[J]. Journal of Materials Chemistry,2009,19(27):4707-4714
    [64]Shan C., Yang H., Song J., et al. Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene[J]. Analytical chemistry,2009,81(6):2378-2382
    [65]Lv W., Guo M., Liang M.H., et al. Graphene-DNA Hybrids:Self-assembly and Electrochemical Detection Performance[J]. Journal of Materials Chemistry,2010,20(32):6668-6673
    [66]Tang Z., Wu H., Cort J.R., et al. Constraint of DNA on Functionalized Graphene Improves Its Biostability and Specificity[J]. Small,2010,6(11):1205-1209
    [67]Lu Y, Goldsmith B.R., Kybert N.J., et al. DNA-decorated Graphene Chemical Sensors[J]. Applied Physics Letters,2010,97(8):083107-083107-3
    [68]Liu J., Li Y, Li Y, et al. Noncovalent DNA Decorations of Graphene Oxide and Reduced Graphene Oxide toward Water-soluble Metal-carbon Hybrid Nanostructures via Self-assembly[J]. Journal of Materials Chemistry,2010,20(5):900-906
    [69]Zayats M., Baron R., Popov I., et al. Biocatalytic Growth of Au Nanoparticles:from Mechanistic Aspects to Biosensors Design[J]. Nano Letters,2005,5(1):21-25
    [70]Wang D., Chen L. Facile Direct Electron Transfer in Glucose Oxidase Modified Electrodes[J]. Electrochimica Acta,2009,54(18):4316-4320
    [71]Zeng Q., Cheng J.S., Liu X.F., et al. Palladium Nanoparticle/Chitosan-grafted Graphene Nanocomposites for Construction of a Glucose Biosensor[J]. Biosensors and Bioelectronics,2011, 26(8):3456-3463
    [72]Horng Y.Y., Hsu Y.K., Ganguly A., et al. Direct-growth of Polyaniline Nanowires for Enzyme-immobilization and Glucose Detection[J]. Electrochemistry Communication,2009,11(4): 850-853
    [73]Chen Y, Li Y, Sun D., et al. Fabrication of Gold Nanoparticles on Bilayer Graphene for Glucose Electrochemical Biosensing[J]. Journal of Materials Chemistry,2011,21(21):7604-7611
    [74]Nenkova R., Ivanova D., Vladimirova J., et al. New Amperometric Glucose Biosensor Based on Cross-linking of Glucose Oxidase on Silica Gel/multiwalled Carbon Nanotubes/polyacrylonitrile Nanocomposite Film[J]. Sensors and Actuators B:Chemical,2010,148(1):59-65
    [75]Li, W.J., Yuan, R., Chai Y.Q. Determination of Glucose Using Pseudobienzyme Channeling Based on Sugar-lectin Biospecific Interactions in a Novel Organic-inorganic Composite Matrix[J]. The Journal of Physical Chemistry C,2010,114(44):21397-21414
    [76]Wang X.Y., Gu H.F., Yin F., et al. A Glucose Biosensor Based on Prussian Blue/chitosan Hybrid Film[J]. Biosensors and Bioelectronics,2009,24(5):1527-1530
    [77]Li, K.T., Liu, B., Zheng, J.B., et al. Direct Electrochemistry Study of Glucose Oxidase on Nail-like Nanostructured Carbon and Its Biosensoring for Glucose[J]. Electroanalysis,2010,22(6):701-706
    [78]Liu J.P., Guo C.X., Li C.M., et al. Carbon-decorated ZnO Nanowire Array:a novel Platform for Direct Electrochemistry of Enzymes and Biosensing Applications[J]. Electrochemistry Communication,2009,11(1):202-205
    [79]Gao R.F., Zheng J.B. Amine-terminated Ionic Liquid Functionalized Carbon Nanotube-gold Nanoparticles for Investigating the Direct Electron Transfer of Glucose Oxidase[J]. Electrochemistry Communication,2009,11(3):608-611
    [80]Hummers W.S., Offeman R.E. Preparation of Graphitic Oxide[J]. Journal of the American Chemical Society,1958,80(6):1339
    [81]Novoselov K.S., Geim A.K., Morozov S.V., et al. Electric Field Effect in Atomically Thin Carbon Films[J]. Science,2004,306(5696):666-669
    [82]Srivastava S., Samanta B., Arumugam P., et al. DNA-mediated Assembly of Iron Platinum(FePt) Nanoparticles[J]. Journal of Materials Chemistry,2006,17(1):52-55
    [83]Chen X.M., Cai Z.M., Lin Z.J., et al. A Novel Non-enzymatic ECL Sensor for Glucose Using Palladium Nanoparticles Supported on Functional Carbon Nanotubes[J]. Biosensors and Bioelectronics,2009,24(12):3475-3480
    [84]Xu J.Z., Zhu J.J., Wu Q., et al. Direct Electron Transfer Between Glucose Oxidase and Multi-walled Carbon Nanotubes[J]. Chinese Journal of Chemistry,2003,21(8):1088-1091
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.