有机小分子在钯、镍修饰电极上的电催化氧化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章:主要综述了有机小分子(甲醇、甲醛和甲酸)在钯催化剂和镍催化剂上的电催化氧化研究进展及其氧化机理。
     第二章:采用电化学沉积法制备了钯纳米修饰玻碳电极(Pd/GC/CV),利用扫描电子显微镜表征(SEM)对Pd/GC/CV电极进行了表征,钯纳米粒子分散均匀,粒径范围在100~200 nm。利用循环伏安法(CV)研究了Pd/GC/CV电极对甲醛的电催化氧化,发现该电极对甲醛具有较高的催化活性,并经优化实验条件,建立了用其测定甲醛的电化学分析方法,线性范围为1.0×10~(-4)~1.4×10~(-2) mol·L~(-1),检出限为3.0×10~(-5) mol·L~(-1),相对标准偏差为3.9%,对模拟样品进行了检测,回收率为94.7~104.0%。
     第三章:利用恒电位法在玻碳电极上沉积钯纳米粒子,制成修饰电极(Pd/GC),采用循环伏安法研究其电化学行为。运用循环伏安法对比了Pd/GC/CV电极和Pd/GC电极对甲酸的电催化活性,结果表明后者的活性优于前者。运用线性扫描伏安法初步探讨了甲酸在Pd/GC电极上的氧化机理。
     第四章:利用循环伏安法在镍电极表面电沉积氢氧化镍制得修饰电极(Ni(OH)_2/Ni),用其对甲醛和甲醇进行电催化氧化,发现该修饰电极对甲醛和甲醇具有较高的催化活性。经优化实验条件,建立了用其测定甲醛的电化学分析方法,线性范围为7.0×10~(-5)~1.6×10~(-2) mol·L~(-1),检出限为2.0×10~(-5) mol·L~(-1),相对标准偏差为4.3%,对模拟样品进行了检测,回收率为93.3~103.5%。同时研究发现甲醇浓度和循环伏安扫描速度均对甲醇在Ni(OH)_2/Ni电极上的电化学行为有所影响。
     第五章:总结钯纳米粒子对甲醛和甲酸的电催化氧化作用,以及氢氧化镍修饰的镍电极对甲醛和甲醇的电催化氧化作用,并提出下一步的计划。
Chapter 1: This paper mainly reviews the recent development of electrocatalytic oxidation of small organic molecules (methanol, formaldehyde and formic acid) on the palladium catalysts and nickel catalysts as well as their oxidation mechanism.
     Chapter 2: Using electrochemical deposition method, glassy carbon electrode modified with palladium nanoparticles (Pd/GC/CV) was prepared and it was characterized by scanning electron microscopy (SEM), which showed that they were well-dispersed and the size range of spherical particles was about 100~200 run. The electrocatalytic properties of Pd/GC/CV electrode for formaldehyde oxidation had been investigated by cyclic voltametry and high electrocatalytic activity was observed. The experimental parameters were optimized for establishing the method of formaldehyde determination. The oxidation peak current was linearly proportional to the concentration of formaldehyde over the range of 1.0×10~(-4)~1.4×10~(-2) mol·L~(-1) with the detection limit being 3.0×10~(-5) mol·L~(-1) and RSD being 3.9 %. And the artificial samples were determined with the recovery of 94.7~104.0 %.
     Chapter 3: Palladium nanoparticles were prepared by potentiostatic technique on glassy carbon electrode (Pd/GC), whose electrochemical behavior was investigated by cyclic voltametry. After comparing the electrocatalytic activity, the result showed Pd/GC was more active to formic acid than Pd/GC/CV. The oxidation mechanism of formic acid on the Pd/GC electrode was discussed primely by linear sweep voltammetry (LSV).
     Chapter 4: The nickel hydroxide-modified nickel electrode (Ni(OH)_2/Ni) was prepared by cyclic voltammetry and its electrocatalytic properties for methanol and formaldehyde oxidation had been investigated. And high electrocatalytic activity was observed. The experimental parameters were optimized for establishing the method of formaldehyde determination. The oxidation peak current was linearly proportional to the concentration of formaldehyde over the range of 7.0×10~(-5)~1.6×10~(-2) mol·L~(-1) with the detection limit being 2.0×10~(-5) mol·L~(-1) and RSD being 4.3 %. And the artificial samples were determined with the recovery of 93.3~103.5 %. The concentration of methanol and the scan rate also had an effect on the electrochemical behavior of methanol.
     Chapter 5: The work mentioned above had been summarized and the further work was proposed.
引文
[1]林维明.燃料电池系统.北京,化学工业出版社,1996.
    [2]SURAMPUDIS,NARAYANAN S R,VAMOSE,et al.Advance in Direct Oxidation Methanol Fuel Cells[J].J.Power Sources,1994,47:377-385.
    [3]KARAN K C,WASS J C,BOCKRIS O M.The Potential Dependence of Intermediates in Methanol Oxidation Observed in the Steady State by FTIR Spectroscopy[J].J.Electrochem.Soc.,1990,137:518-524.
    [4]PAVESE A,SOLIS V.Comparative Investigation of Formic Acid and Formaldehyde Oxidation on Palladium by a Rotating Ring-Disc Electrode and On-Line Mass Spectroscopy in Acidic Solutions[J].J.ElectroanaL Chem,1991,301:117-127.
    [5]MANZANARES M I,PAVESE A G,SOLIS V M.Comparative Investigation of Formic Acid and Formaldehyde Electro-oxidation on Palladium in Acidic Medium:Effect of Surface Oxides[J].J.Electroanal.Chem,1991,310:159-167.
    [6]NISHIMURA K,KUNIMATSU K,MACHIDA K,et al.Electrocatalysis of Pd+Au Alloy Electrodes:Part IV IR Spectroscopic Studies on the Surface Species Derived from Formaldehyde and Formate in Alkaline Solutions[J].J.Electroanal.Chem,1989,260:181-192.
    [7]YIN J,JIA J B,ZHU L D.Macroporous Pt Modified Glassy Carbon Electrode:Preparation and Electrocatalytic Activity for Methanol Oxidation[J].Int.J.Hydrogen Energy,2008,33:7444-7447.
    [8]HOGARTH M P,HARDS G.A.Direct Methanol Fuel Cells[J].Platinum Metals Rev., 1996,40:150-159.
    [9]MCNICOL B D,RAND D A,WILLIAMS K R.Direct Methanol-Air Fuel Cells for Road Transportation[J].J.Power Source,1999,83:15-31.
    [10]BALDAUF M,PREIDEL W.Status of the Development of a Direct Methanol Fuel Cell[J].J.Power Souree,1999,84:161-166.
    [11]SATTLER G.Fuel Cells Going On-Board[J].J.Power Source,2000,86:61-67.
    [12]SELVARAJU T,RAMARAJ R.Electrochemically Deposited Nanostructured Platinum on Nation Coated Electrode for Sensor Applications[J].J.Electroanal.Chem.,2005,585:290-300.
    [13]HUANG J D,SONG Z,LIJ,et al.A Highly-Sensitive L-Lactate Biosensor Based on Sol-Gel Film Combined with Multi-Walled Carbon Nanotubes(MWCNTs)Modified Electrode[J].Mat.Sci.Eng.C,2007,27:29-34.
    [14]刘有芹,颜芸,陈明洁,等.聚邻苯二胺修饰玻碳电极的恒电位法制备及表征[J].分析测试学报,2008,27(7):734-738.
    [15]TANG Z,LIU S,WANG Z,et al.Electrochemical Synthesis of Polyaniline Nanoparticles[J].Electrochem.Commun.,2000,2:32-35.
    [16]孙冬梅,薛宽宏,蔡称心,等.纳米阵列铂电极的样模法制备与应用[J].分析化学,2000,28(10):1308-1312.
    [17]褚道葆,王凤武,魏亦军,等.纳米TiO_2-Pt修饰电极的制备及电催化活性[J].物理化学学报,2004,20(2):182-185.
    [18]INNOCENZO G,CASELLA,CONTURSI M.Characterization of Bismuth AdatomModified Palladium Electrodes:The Electrocatalytic Oxidation of Aliphatic Aldehydes in Alkaline Solutions[J].Electrochim.Acta,2006,52:649-657.
    [19]WANG H S,LIT H,JIA W L,et al.Highly Selective and Sensitive Determination of Dopamine Using Nation/Carbon Nanotubes Coated Poly(3-methylthiophene)Modified Electrode[J].Biosens.Bioelectron.,2006,22:664-669.
    [20]杨宏洲,邓友全.Au/PAni/GC电极的制备及对甲醛的电催化氧化研究[J].化学学报,2002,60(4):569-573.
    [21]彭霞辉,黄可龙,焦飞鹏,等.聚苯胺的合成及性能[J].中南大学学报,2004,35(6):974-977.
    [22]WANG Z,ZHU ZAN-ZAN,SHI JIN,et al.Electrocatalytic Oxidation of Formaldehyde on Platinum Well-Dispersed into Single-Wall Carbon Nanotube/ Polyaniline Composite Film[J]. Appl. Surf. Sci., 2007,253: 8811-8817.
    
    [23] XU J R, LIU B. Preconcentration and Determination of Lead Ions at a Chitosan-Modified Glassy Carbon Electrode [J]. Analyst, 1994,119: 1599-1601.
    
    [24] QUAN D, SHIN W. Modification of Electrode Surface for Covalent Immobilization of Laccase[J]. Mat. Sci. Eng.C, 2004,24: 113-115.
    [25] QUAN D, KIM Y S, SHIN W. Characterization of an Amperometric Laccase Electrode Covalently Immobilized of Platinum Surface[J]. J. Electroanal. Chem., 2004,561:181-189.
    [26] ZHANG L, JIA J B, ZOU X Q, et al. Simultaneous Determination of Dopamine and Ascorbic Acid at an In-Site Functionalized Self-Assembled Monolayer on Gold Electrode[J]. Electroanal, 2004,16: 1413-1418.
    
    [27] LIGAJ M, JASNOWSKA J, MUSIAL W G, et al. Covalent Attachment of Single- Stranded DNA to Carbon Paste Electrode Modified by Activated Carboxyl Groups[J]. Electrochim. Acta, 2006, 51: 5193-5198.
    [28] CAPON A, PARSONS R. The Oxidation of Formic Acid on Noble Metal Electrodes, (Ⅱ) a Comparison of the Behavior of Pure Electrode[J]. Electroanal. Chem.& Interfaeial. Eletronanal. Chem, 1973, 44: 239.
    [29] YU X W, PICKUP P G. Recent Advances in Direct Formic Acid Fuel Cells (DFAFC)[J]. J. Power Sources, 2008,182: 124-132.
    [30] ZHU Y M, ZAKIA K, MASEL. R.I. The Behavior of Palladium Catalysts in Direct Formic Acid Fuel Cells[J]. J. Power Sources, 2005,139: 15-20.
    [31] LIU Z L, LIANG H, PUN T M, et al. Nanostructured Pt/C and Pd/C Catalysts for Direct Formic Acid Fuel Cells[J]. J. Power Sources, 2006,161: 831-835.
    [32] LI H Q, SUN G Q, JIANG Q, et al. Preparation and Characterization of Pd/C Catalyst Obtained in NH_3-Mediated Polyol Process[J]. J. Power Sources, 2007,172: 641-649.
    [33] HUANG Y J, ZHOU X C, LIAO J H, et al. Preparation of Pd/C Catalyst for Formic Acid Oxidation Using a Novel Colloid Method[J]. Electrochem. Commun., 2008,10: 621-624.
    [34] BOWKER M, STONE P, BENNETT R, et al. Formic Acid Adsorption and Decomposition on TiO_2(110) and on Pd/TiO_2(110) Model Catalysts[J]. Surf. Sci., 2002,511:435-448.
    [35]YI Q F,HUANG W,LIU X P,et al.Electroactivity of Titanium Supported Nanoporous Pd-Pt Catalysts towards Formic Acid Oxidation[J].J.Electroanal.Chem.,2008,619-620:197-205.
    [36]谢宝平,熊亚,陈润铭,等.Pd-TiO_2/ITO膜的制备及催化活性研究[J].广州化工,2005,33(1):22-27.
    [37]吕录萍,王新,陆天虹,等.多金属氧酸盐载Pd催化剂制备及其对甲酸氧化的电催化性能[J].应用化学,2008,25(10):1197-1200.
    [38]周全,张存中,陆晓林,等.镀Pd的GC电极上HCOOH的电催化氧化[J].电化学,2000,6(3):329-334.
    [39]ZHANG X G,ARIKAWA T,MURAKAMI Y,et al.Electrocatalytic Oxidation of Formic Acid on Ultra Fine Palladium Particles Supported on a Glassy Carbon[J].Electrochim.Atca,1995,40:1889-1897.
    [40]HA S,LARSEN R,MASEL R.I.Performance Characterization of Pd/C Nanocatalyst for Direct Formic Acid Fuel Cell[J].J.Power Sources,2005,144:28-34.
    [41]ZHU Y,KANG Y Y,ZOU Z Q,et al.A Facile Preparation of Carbon Supported Pd Nanoparticles for Electrocatalytic Oxidation of Formic Acid[J].Electrochem.Commun.,2008,10:802-805.
    [42]YANG S D,ZHANG X G,MI H G,et al.Pd Nanoparticles Supported on Functionalized Multi-Walled Carbon Nanotubes(MWCNTs)and Electro-Oxidation for Formic Acid[J].J.Power Sources,2008,175:26-32.
    [43]ZHANG LL,TANG Y W,BAO J C,et al.A Carbon-Supproted Pd-P Catalyst as the Anodic Catalyst in a Direct Formic Acid Fuel Cell[J].J.Power Sources,2006,162:177-179.
    [44]WANG X,TANG Y W,GAO Y,et al.Carbon-Supported Pd-Ir Catalyst as Anodic Catalyst in Direct Formic Acid Fuel Cell[J].J.Power Sources,2008,175:784-788.
    [45]THOMAS F S,MASEL R I.Formic Acid Decomposition on Palladium-Coated Pt(110)[J].Surf Sci,2004,573:169-175.
    [46]PENNER S,JENEWEIN B,GABASCHH,et al.Growth and Structural Stability of Well-Ordered PdZn Alloy Nanoparticles[J].J.Catalysis,2006,241:14-19.
    [47]HERNANDEZ F,BALTRUSCHAT H.Electrochemical Characterization of Gold Stepped Surfaces Modified with Pd[J]. Langmuir, 2006,22: 4877-4884.
    [48] CARDENAS G, OLIVA R, REYE P, et al. Synthesis and Properties of PdSn/Al_2O_3 and PdSn/SiO_2 Prepared by Solvated Metal Atom Dispersed Method[J]. J. Mol. Catal. A: Chem, 2003,191: 75-86.
    [49] VILLULLAS H M, MATTOS-COSTA F I, NASCENTE P A P, et al. Anodic Oxidation of Formaldehyde on Pt-Modified SnO_2 Thin Film Electrodes Prepared by a Sol-Gel Method[J]. Electrochim. Acta, 2004, 49: 3909-3916.
    [50] VASKELIS A, TAROZAITE R, JAGMINIENE A, et al. Gold Nanoparticles Obtained by Au(Ⅲ) Reduction with Sn(Ⅱ): Preparation and Electrocatalytic Properties in Oxidation of Reducing Agents[J]. Electrochim. Acta, 2007,53: 407-416.
    [51] LAMY C. Electrocatalytic Oxidation of Organic Compounds on Noble Metals in Aqueous Solution[J]. Electrochim. Acta, 1984,29: 1581-1588.
    [52] ENYO M. Electrocatalysis by Pd+Au Alloys Part Ⅱ. Electro-oxidation of Formaldehyde in Acidic and Alkaline Solutions[J]. J. Electroanal. Chem, 1985, 186: 155-166.
    [53] ZHANG X G, MURAKAMI Y, YAHIKOZAWA K, et al. Electrocatalytic Oxidation of Formaldehyde on Ultrafine Palladium Particles Supported on a Glassy Carbon [J]. Electrochim. Acta, 1997,42: 223-227.
    [54] GAO G Y, GUO D J, LI H L. Electrocatalytic Oxidation of Formaldehyde on palladium Nanoparticles Supported on Multi-Walled Carbon Nanotubes[J]. J. Power Sources, 2006,162: 1094-1098.
    [55] SELVARAJ V, GRACE A N, ALAGAR M. Electrocatalytic Oxidation of Formic Acid and Formaldehyde on Nanoparticle Decorated Single Walled Carbon Nanotubes[J]. J. Colloid Interface Sci, 2009,333: 254-262.
    [56] ZHU Z Z, WANG Z, LI H L. Self-Assembly of Palladium Nanoparticles on Functional Multi-Walled Carbon Nanotubes for Formaldehyde Oxidation[J]. J. Power Sources, 2009,186: 339-343.
    [57] XU W L, LU T H, LIU C P, et al. Electrooxidation of CO_(ad) Intermediated from Methanol Oxidation on Polycrystalline Pt Electrode[J]. J. Phys. Chem. B, 2006, 110: 4802-4807.
    [58] DING E, MORE L K, HE T. Preparation and Charaeterization of Carbon Supported PtTi Alloy Electrocatalysts[J]. J. Power Sourees, 2008,175: 794-799.
    [59] ZHOU A, XIE N X. Investigation of Electrosorption of Organic Molecules on to Gold and Nickel Electrodes Using an Electrochemical Quartz Crystal Microbalance[J]. J. Colloid Interface Sci, 1999,220: 281-287.
    [60] WENG Y C, CHOU T C. Ethanol Sensors by Using RuO_2-Modified Ni Electrode[J]. Sens. Actuators, B, 2002, 85: 246-255.
    [61] GOLIKAND A N, ASGARI M, MARAGHEH M G,et al. Methanol Electrooxidation on a Nickel Electrode Modified by Nickel-Dimethylgyoxime Complex Formed by Electrochemical Synthesis[J]. J. Electroanal Chem., 2006, 588: 155-160.
    [62] CORMIER E, WASMUND E B, RENNY L V, et al. A New Powder Morphology for Making High-Porosity Nickel Structures[J]. J. Power Sources, 2007,171: 999-1009.
    [63] KULLAPERE M, MATISEN L, SAAR A, et al. Electrochemical Behaviour of Nickel Electrodes Modified with Nitrophenyl Groups[J]. Electrochem. Commun., 2007, 9: 2412-2417.
    [64] CASSAYRE L, CHAMELOT P, ARURAULT L, et al. Electrochemical Oxidation of Binary Copper-Nickel Alloys in Cryolite Melts[J]. Corros. Sci., 2007,49: 3610-3625.
    [65] MACDOUGALL B, GRAHAM M J. Effect of Surface Pretreatment on the Galvanostatic Oxidation Of Nickel[J]. Electrochim. Acta., 1981,26: 705-710.
    [66] MACDOUGALL B, GRAHAM M J. Pitting of Nickel during Anodic Galvanostatic Charging in Na_2SO_4 Solutions[J]. Electrochim. Acta., 1982,27: 1093-1096.
    [67] HUMMEL R E, SMITH R J, VERINK JR ED. The Passivation of Nickel in Aqueous Solutions-I. The Identification of Insoluble Corrosion Products on Nickel Electrodes Using Optical and ESCA Techniques[J]. Corros. Sci., 1987,27: 803-813.
    [68] SMITH R J, HUMMEL R E, AMBROSE J R. Solutions- Ⅱ .An in Situ Investigation of the Passivation of Nickel Using Optical and Electrochemical Techniques[J]. Corros. Sci., 1987, 27: 815-826.
    [69] VISSCHER W, BARENDRECHT E. Anodic Oxide Films of Nickel in Alkaline Electrolyte[J]. Surf. Sci., 1983,135: 436-452.
    [70] De Souza L M M., Kong F P, MCLARNON F R, et al. Speclxoscopic Ellipsometry Study of Nickel Oxidation in Alkaline Solution[J]. Electrochim. Acta., 1997, 42: 1253-1267.
    [71]BODE H,DEHMELT K,WITTE J.Zur Kenntnis Der Nickelhydroxidelektrode-I.Uber Das Nickel(Ⅱ)-Hydroxidhydrat[J].Electrochim.Acta,1966,11:1079-1087.
    [72]FLEISCHMANN M,KORINEK K,PLETCHER D.The Oxidation of Organic Compounds at a Nickel Anode in Alkaline Solution[J].J.Electroanal.Chem.,1971,31:39-49.
    [73]FLEISCHMANN M,KORINEK K,PLETCHER D.The Kinetiscs and Mechanism of the Oxidation of Amines and Alcohols at Oxide-Covered Nickel,Silver,Coper,and Cobalt Electrodes[J].J.Chem.Soc.,PerkinTrans.Ⅱ,1972,10:1396-1403.
    [74]MAXIMOVITCH S,BRONOEL G.Oxidation of Methanol on Nickel-Zinc Catalysts [J].Electrochim.Acta,1981,26:1331-1338.
    [75]KAULER J,SCHAEFER H J.Oxidation of Alcohols by Electrochemically Regenerated Nickel Oxide Hydroxide Selective Oxidation of Hydroxysteroids[J].Tetrahedron,1982,38:3299-3308.
    [76]AMJAD.M,PLETCHER.D,et al.The Oxidation of Alcohols at a Nickel Anode in Alkaline T-Butanol/Water Mixtures[J].J.Electrochem.Soc.,1977,124:203-206.
    [77]CONWAY B E,SUTTAR M A,et al.Electrochemistry of the Nickel-Oxide Electrode-V.Self-Passivation Effects in Oxygen Evolution Kinetics[J].Electrochim.Acta,1969,14:677-694.
    [78]LIU S J.Kinetics of Methanol Oxidation on Poly(Ni~(ii)-tetramethyldibenzotetraaza Annulene)-Modified Electrodes[J].Electrochim.Acta,2004,49:3235-3241.
    [79]EL-SHAFEI A.A.Electrocatalytic Oxidation of Methanol at a Nickel Hydroxide/Glassy Carbon Modified Electrode in Alkaline Medium[J].J.Elecrtoanal.Chem.,1999,471:89-95.
    [80]ABDEL RAHIM M A,ABDEL HAMEED R M,KHALIL M W.Nickel as a Catalyst for the Electro-Oxidation of Methanol in Alkaline Medium[J].J.Power Sources,2004,134:160-169.
    [81]徐红艳,吴华强,徐冬梅,等.碳纳米管负载纳米Ni修饰电极及碱液中电氧化甲醇[J].应用化学,2007,24(5):503-506.
    [82]YI Q F,HUANG W,ZHANG J J,et al.Methanol Oxidation on Titanium-Supported Nano-Scale Ni Flakes[J].Catal.Commun.,2008,9:2053-2058.
    [83]WANG Z B,YIN G P,SHAO Y Y,et al.Electrochemical Impedance Studies on Carbon Supported PtRuNi and PtRu Anode Catalysts in Acid Medium for Direct Methanol Fuel Cell[J].J.Power Sources,2007,165:9-15.
    [84]黄令,许书楷,汤皎宁,等.Ni-Mo-PTFE复合电极的制备及其对甲醇电氧化的催化性能[J].应用化学,1997,14(4):21-24.
    [85]ZENGY,YU S C,LI Z L Kinetic Model of Ethanol Oxidation on Ni-Mo Alloy Electrode[J].Acta Phys.Chim.Sin.,2000,16(11):1013-1021.
    [86]孔景临,薛宽宏,何春建,等.镍纳米线电极的电化学氧化还原行为及其乙醇的电化学氧化催化作用[J].应用化学,2001,18(6):462-465.
    [87]黄令,许书楷,周绍民.碱性介质中高择优取向(220)镍电极上丙醇的电氧化[J].高等学校化学学报,1997,18(6):932-937.
    [88]章晶晶,黄武,易清风,等.环己醇电解氧化制备己二酸[J].应用化学,2008,25(10):1171-1175.
    [89]JAFARIAN M,MAHJANI M G,HELI H,et al.Electrocatalytic Oxidation of Methane at Nickel Hydroxide Modified Nickel Electrode in Alkaline Solution[J].Electrochem.Commun.,2003,5:184-188.
    [90]CIZEWSKI A,MILCZAREK G.Kinetics of Electrocatalytic Oxidation of Formaldehyde on a Nickel Porphyrin-Based Glassy Carbon Electrode[J].J.Electroanal.Chem.,1999,469:18-26.
    [91]CIZEWSKI A,MILCZAREK G.Glassy Carbon Electrode Modified by Conductive,Polymeric Nickel(Ⅱ)Porphyrin Complex as a 3D Homogeneous Catalytic System of Methanol Oxidation in Basic Media[J].J.Electroanal.Chem.,1997,426:125-130.
    [92]高桂莲,卢萍,杨秋霞,等.不对称草酰胺镍配合物修饰电极的制备及其对甲醛的电催化研究[J].济南大学学报,2002,16(4):319-323.
    [93]张志慧,赵常志,李明华,等.电化学发光传感器测定雨水中的甲醛[J].青岛科技大学学报,2006,27(5):407-410.
    [94]刘峥,温玉清,吴高亮.溴代水杨醛席夫碱镍配合物修饰碳糊电极的制备及其对甲醛电催化研究[J].分析科学学报,2008,24(4):421-424.
    [95]LOSADA J,DEL PESO I,Beyer L.Redox and Electrocatalytic Properties of Electrodes Modified by Films of Polypyrrole Nickel(Ⅱ)Schiff-base Complexes[J].J.Electroanal.Chem.,1998,447:147-154.
    [96]GOBI K V,TOKUDA K,OHSAKA T.Monomolecular Films of a Nickel(Ⅱ) Pentaazamacrocyclic Complex for the Electrocatalytic Oxidation of Hydrogen Peroxide at Gold Electrodes[J].J.Electroanal.Chem.,1998,444:145-150.
    [97]曹晓燕,袁华堂,周作祥,等.镍电极在KOH水溶液中析氧行为的研究[J].电化学,1998,4(4):428-433.
    [98]CHANG Y,QIAO J,LIU Q L,et al.Electrochemical Behavior of Hydrogen Peroxide at a Glassy Carbon Electrode Modified with Nickel Hydroxide-decorated Multi-walled Carbon Nanotubes[J].Anal.Let.,2008,41:3147-3160.
    [1]World Health Organization.Environmental Health Criteria89,Formaldehyde[R].Geneva:WHO,1989.
    [2]马金波,张琦,刘卓.乙酰丙酮法测定海产品中的甲醛[J].中国卫生检验杂志,2004,14(1):63.
    [3]STRASSNIG S,WENZL T,ERNST P,et al.Microwave-Assisted Derivatization of Volatile Carbonyl Compounds with O-(2,3,4,5,6-pentafluorobenzyl)Hydroxylamine [J].J.Chromatogr.A,2000,891:267-273.
    [4]马志东,郭忠,张文德.饮用水中痕量甲醛的单扫示波极谱快速测定法[J].环境与健康杂志,2003,20(3):177-178.
    [5]郝玉翠,康天放,刘桐,等.甲醛的铂微粒修饰玻碳电极伏安法测定[J].分析测试学报,2008,27:60-62.
    [6]朱赞赞,王喆.铂粒子修饰单壁碳纳米管/聚苯胺复合膜对甲醛的电催化氧化[J].化学学报,2007,65:1149-1154.
    [7]HUANG M H,ZHANG J T,MA H Y,et al.High Catalytic Activity of Nanostructured Pd Thin Films Electrochemically Deposited on Polycrystalline Pt and Au Substrates towards Electro-Oxidation of Methanol[J].Electrochem.Commun.,2007,9:1298-1304.
    [8]ZHU Z Z,WANG Z,LI H L.Self-Assembly of Palladium Nanoparticles on Functional Multi-Walled Carbon Nanotubes for Formaldehyde Oxidation[J].J.Power Sources,2009,186:339-343.
    [9]杭世平.空气中有害物质的测定方法(第2版)[M].北京:人民卫生出版社,1984:331-332.
    [10]SORETA T R,STRUTWOLF J,SULLIVAN C K.Electrochemically Deposited Palladium as a Substrate for Self-Assembled Monolayers[J].Langmuir,2007,23:10823-10830.
    [11]CASELLA I G,CONTURSI M.Characterization of Bismuth Adatom-Modified Palladium Electrodes:The Electrocatalytic Oxidation of Aliphatic Aldehydes in Alkaline Solutions[J].Electrochim.Acta,2006,52(2):649-657.
    [12]HOLZE R,BELTOWSKA-BRZEZINSKA M.On the Adsorption of Aliphatic Alcohols on Gold[J].Electrochim.Acta,1985,30:937-939.
    [13]杨宏洲,邓友全.Au/PAni/GC电极的制备及对甲醛的电催化氧化研究[J].化学学报,2002,60(4):569-573.
    [14]AVRAMOV-IVIc M L,ANASTASIJEVIc N A,ADzIc R R.A Study of the Oxidation of Formaldehyde on Au(332)by Rotating Disc-Ring Method[J].Electrochim.Acta,1990,35(4):725-729.
    [1]RICE C,HA S,MASEL R I,et al.Direct Formic Acid Fuel Cells[J].J.Power Sources,2002,111:83-89.
    [2]马德娜,袁青云,唐亚文,等.直接甲醇燃料电池中甲醇替代燃料的研究进展[J].应用化学,2008,25(10):1125-1129.
    [3]CAPON A,PARSONS R.The Oxidation of Formic Acid on Noble Metal Electrodes,(I)A Comparison of the Behavior of Pure Electrode[J].Electroanal.Chem.&Interfacial Electronanal.Chem.,1973,44:1.
    [4]CAPON A,PARSONS R.The Oxidation of Formic Acid on Noble Metal Electrodes,(Ⅱ)A Comparison of the Behavior of Pure Electrode[J].Electroanal.Chem.&Interfacial Electronanal.Chem.,1973,44:205.
    [5]CAPON A,PARSONS R.The Oxidation of Formic Acid on Noble Metal Electrodes,(Ⅲ)A Comparison of the Behavior of Pure Electrode[J].Electroanal.Chem.&Interfacial Electronanal.Chem.,1973,44:239.
    [6]PAVESE A,SOLIS V.Comparative Investigation of Formic Acid and Formaldehyde Oxidation on Palladium by a Rotating Ring-Disc Electrode and On-Line Mass Spectroscopy in Acidic Solutions[J].J.Electroanal.Chem.,1991,301:117-127.
    [7]周全,张存中,陆晓林,等.镀Pd的GC电极上HCOOH的电催化氧化[J].电化学,2002,6(3):329-334.
    [8]LARSEN R,HA S,ZAKZESKI J,et al.Unusually Active Palladium-Based Catalysts for the Electrooxidation of Formic Acid[J].J.Power Sources,2006,157:78-84.
    [9]LI H Q,SUN G Q,JIANG Q,et al.Synthesis of Highly Dispersed Pd/C ElectroCatalyst with High Activity for Formic Acid Oxidation[J].Electrochem.Commun.,2007,9:1410-1415.
    [10]ZHU Y,KANG Y Y,ZOU Z Q,et al.A Facile Preparation of Carbon-Supported Pd Nanoparticles for Electrocatalytic Oxidation of Formic Acid[J].Electrochem.Commun.,2008,10:802-805.
    [11]LIMA S H,WEI J,LIN J Y,et al.A Glucose Biosensor Based on Electrodeposition of Palladium Nanoparticles and Glucose Oxidase onto Nafion-Solubilized Carbon Nanotube Electrode[J].Biosens.Bioelectron.,2005,20:2341-2346.
    [12]DALL'ANTONIA L H,TREMILIOSI-FILHO G,JERKIEWICZ G.Influence of Temperature on the Growth of Surface Oxides on Palladium Electrodes[J].J.Electroanal.Chem.,2001,502:72-81.
    [13]LAVIRON E.Adsorption Autoinhibition and Autocatalysis in Polarography and in Liner Potential Sweep Voltammetry[J].Electroanal.Chem.& lnterfacial Electrochem.,1974,52:355-393.
    [14]BARD A J,FAOUKNER L R.Electrochemical Methods(Fundamentals and Application)[M].New york:1980,525:96.
    [15]YI Q F,HUANG W,LIU X P,et al.Electroactivity of Titanium-Supported Nanoporous Pd-Pt Catalysts towards Formic Acid Oxidation[J].J.Electroanal.Chem.,2008,619-620:197-205.
    [16]WANGY J,WU X C,WU B,et al.Application of Normal Pulse Voltammetry to the Kinetic Study of Formic Acid Oxidation on a Carbon Supported Pd Electrocatalyst[J].J.Power Sources,2009,189:1020-1022.
    [1]LIU H S,SONG C J,ZHANG L,et al.A Review of Anode Catalysis in the Direct Methanol Fuel Cell[J].J.Power Sources,2006,155:95-110.
    [2]WASMUS S,KUVER A.Methanol Oxidation and Direct Methanol Fuel Cells:a Selective Reviewl[J].J.Electroanal.Chem.,1999,461:14-31.
    [3]XUE X Z,GE J J,LIU C P,et al.Novel Chemical Synthesis of Pt-Ru-P Electrocatalysts by Hypophosphite Deposition for Enhanced Methanol Oxidation and CO Tolerance in Direct Methanol Fuel Cell[J].Electrochem.Commun.,2006,8:1280-1286.
    [4]PAVESE A,SOLIS V.Comparative Investigation of Formic Acid and Formaldehyde Oxidation on Palladium by a Rotating Ring-Disc Electrode and On-Line Mass Spectroscopy in Acidic Solutions[J].J.Electroanal.Chem.,1991,301:117-127.
    [5]MANZANARES M I,PAVESE A G,SOLIS V M.Comparative Investigation of Formic Acid and Formaldehyde Electro-Oxidation on Palladium in Acidic Medium:Effect of Surface Oxides[J].J.Electroanal.Chem.,1991,310:159-167.
    [6]NISHIMURA K,KUNIMATSU K,MACHIDA K,et al.Electrocatalysis of Pd + Au Alloy Electrodes:Part Ⅳ.IR Spectroscopic Studies on the Surface Species Derived from Formaldehyde and Formate in Alkaline Solutions[J].J.Electroanal.Chem.,1989,260:181-192.
    [7]GRDEN M,KLIMEK K.EQCM.Studies on Oxidation of Metallic Nickel Electrode in Basic Solutions[J].J.Electroanal.Chem.,2005,581:122-131.
    [8]DANAEE I,JAFARIAN M,FOROUZANDEH F,et al.Electrocatalytic Oxidation of Methanol on Ni and NiCu Alloy Modified Glassy Carbon Electrode[J].Int.J.Hydrogen Energy,2008,33:4367-4376.
    [9]CISZEWSKI A,MILCZAREK G.Kinetics of Electrocatalytic Oxidation of Formaldehyde on a Nickel Porphyrin-Based Glassy Carbon Electrode[J].J.Electroanal.Chem.,1999,469:18-26.
    [10]徐红艳,吴华强,徐冬梅,等.碳纳米管负载纳米Ni修饰电极及碱液中电氧化甲醇[J].应用化学,2007,24(5):503-506.
    [11]刘峥,温玉清,吴高亮.溴代水杨醛席夫碱镍配合物修饰碳糊电极的制备及其对甲醛电催化研究[J].分析科学学报,2008,24(4):421-424.
    [12]EL-SHAFEI A A.Electrocatalytic Oxidation of Methanol at a Nickel Hydroxide:Glassy Carbon Modified Electrode in Alkaline Medium[J].J.Electroanal.Chem.,1999,471:89-95.
    [13]杭世平.空气中有害物质的测定方法(第2版)[M].北京:人民卫生出版社,1984:331-332.
    [14]JAFARIAN M,MAHJANI M GA,HELI H,et al.Electrocatalytic Oxidation of Methane at Nickel Hydroxide Modified Nickel Electrode in Alkaline Solution[J].Electrochem.Commun.,2003,5:184-188.
    [15]BRIGGS G W D,SNODINP R.Ageing and the Diffusion Process at the Nickel Hydroxide Electrode[J].Electrochim.Acta,1982,27:565-569.
    [16]HAHN F,BEDEN B,CROISSANT M J,et al.In Situ Uv-Visible Reflectance Spectroscopic Investigation of the Nickel Electrode-Alkaline Solution Interface[J].Electrochim.Acta,1986,31:335-342.
    [17]孔景临,薛宽宏,何春建,等.镍纳米线电极的电化学氧化还原行为及其对乙醇的电化学氧化催化作用[J].应用化学,2001,18(6):462-465.
    [18]ABDEL RAHIM M A,ABDEL HAMEED R M,KHALIL M W.Nickel as a Catalyst for the Electro-Oxidation of Methanol in Alkaline Medium[J].J.Power Sources,2004,134:160-169.
    [19]LAVIRON E.Adsorption Autoinhibition and Autocatalysis in Polarography and in Liner Potential Sweep Voltammetry[J].Electroanal.Chem.&lnterfacial Electrochem.,1974,52:355-393.
    [20]BARD A J,FAOUKNER L R.Electrochemical Methods(Fundamentals and Application)[M].New york:1980,525:96.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.