中尺度高空急流—锋云系与暴雨的结构及演变机制的动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高空急流—锋是对流层上部最突出的天气系统之一,它对中尺度灾害天气发生发展过程具有十分重要的作用。本文以我国上空的副热带高空西风急流为研究对象,通过常规观测、卫星、雷达资料分析以及新一代高分辨率中尺度数值模式(WRF)模拟,对2005年6月、2006年5月和6月发生在我国东部的三次高空急流相关的天气过程中高空急流-锋云系与急流-锋暴雨中尺度系统的特征、三维结构以及发生发展和演变过程的动力学机制进行了研究,得到的主要结果如下:
     1.典型的高空急流—锋系统在卫星云图上具有四个基本特征:叶状云、涡旋逗点云系、暗带以及急流出口区右侧排列有序的对流云团波串或横向云带。它们所出现的位置、微物理结构都具有明显特征。由中高云组成的叶状云带主要集中在急流轴的南侧,呈西南—东北走向,在红外和水汽图像上几乎为不透明。从其微物理结构来看,这条叶状云带的高层主要由密实的冰晶、雪粒子构成,而位于零度线以下则主要由云水粒子构成,它们大量集中在云带的西南端,这里对应南方强降水区。水汽图像上,“S”水汽型北边界以北的暗区位于急流的气旋性弯曲一侧。这条狭窄暗带沿着叶状云北侧边缘分布,随着气流向下游平流,卷入下游的云团,形成逗点云。在急流气旋性切变一侧产生的一些云带在形成逗点云之前常会表现为发展中的对流云团波串或者横向云带形式。这些对流云团波串或横向云带常常是随着急流靠近,急流核的中心风速加大而产生的,且它们通常相对固定地出现在急流出口区的左侧附近,随环境风方向向下游方向排列。就其微物理结构来看,急流气旋性切变一侧的云系内的微物理垂直结构与急流反气旋性切变一侧基本相同,但是急流气旋性切变一侧云系的云冰、云水含量相对较低。
     2.急流轴南北两侧的云系都具有锋面云系的特征,但具有不同的发生发展机制。从气流轨迹分析来看,急流轴以南的叶状云带的形成主要受西南、东南和西北气流等三股气流的影响。云带主要由西南和东南暖湿空气辐合抬升形成。而由西北干冷空气形成的干带,一部分从高层向下侵入到叶状云尾部的层状降水区内,与这里由降水拖带产生的下沉空气相遇,形成强而一致的下沉气流致使云带后部云区逐渐变窄云顶降低直至最后消散,而另一部分气流到达对流层中低层后又转为上升运动,叠置在低层的暖湿气流之上,造成大气不稳定度增大,因此整个急流反气旋性切变一侧的云带可以被看作是干带与暖输送带相互作用的结果。急流北侧的云系也沿锋面发展,但云系高度较低。此处的云带主要是由槽后西北气流在下沉辐散过程中与地面低压相遇,受地面摩擦辐合作用而被强迫抬升,在抬升过程中又将低空西南暖湿空气输送到高空而形成的。
     3.水汽图像上在高空急流气旋性弯曲一侧的狭长的暗带对应于低湿、高位涡区。位涡场和湿度场的特征表明高空急流气旋性弯曲一侧的暗区是高空干空气侵入的源头。干侵入机制对促进急流两侧云系发展都具重要作用,一方面干侵入过程中干冷空气使对流层中低层的湿度减小,造成大气上干冷、下暖湿的不稳定结构,促进急流云系内深对流发展。另一方面,干侵入过程引起位涡下传,导致低空正位涡和风场异常,诱生地面气旋发展,因此它还可能是导致急流轴气旋性切变一侧的云团无论在产生时具有何种形态最终都表现为涡度逗点状形态特征的关键的动力机制。湿位涡的分布特征表明急流轴附近的大气具有较大的湿斜压性。从稳定性角度看,急流轴两侧特别是急流轴反气旋性切变一侧叶状云系产生和发展除了与对流不稳定机制有关,还可能受条件性对称不稳定机制的影响。条件性对称不稳定有利于倾斜对流的发生发展,这种倾斜对流对处于强风速切变环境中的急流云系长时间维持和发展是至关重要的。
     4.急流云系上的不稳定能量具有不均匀分布的特征。从能量分布特征来看,有两个对流有效位能的高值中心,分别位于急流轴反气旋性切变一侧的叶状云系的后部,以及急流轴气旋性切变一侧的逗点云系的凹部到头部的一个相对较小的区域内。而下沉对流有效位能的大值中心分别对应于急流核入口区的左侧和出口区的右侧,它们在云图上与无云区相对应。这进一步证实了云图上位于急流气旋性切变一侧的暗区是高空干冷空气下沉侵入的表征。
     5.急流的运动学结构分析表明,在急流核两端(入口区和出口区)非地转风具有明显的气旋性切变特征,而急流核南北两侧非地转风则具有反气旋性切变的特点。在涡度场上,急流核的入口区和出口区两端都为非地转风正涡度区,而在急流轴两侧则为非地转风负涡度区,其结构与Cunningham和Keyser(2000)提出的急流非地转风涡度“四象限”分布特征基本一致。
     6.应用罗斯贝数(Ro)和非线性平衡方程的残差(ΔNBE)诊断发现,高空急流气旋性一侧靠近出口区的地方为Ro和ΔNBE大值区,ΔNBE的量级达到10~(-8)s~(-1)。从ΔNBE的含义可知,高空急流气旋性一侧靠近出口区的地方具有明显的非地转性。而且随着急流的曲率加大,这种非地转性进一步增强。另外,从Richardson数(Ri_g)分析来看,高空急流出口区也是切变不稳定区,这里正对应于急流出口区附近的中尺度重力波发生区和强降水区。
     7.根据小波分析的多分辨率频域滤波特性,构造了基于小波变换的带通滤波器以分析高空急流出口区引发的重力波的特征。分析结果表明,位于我国上空的副热带高空西风急流出口区附近的重力波的水平波长一般在100-500km,振幅约为1—10hPa,垂直速度场上的波动略落后于位温场上波动,位相差约1/4个水平波长。具有明显的中尺度重力波的特征,从云系分布特征看,云图上急流出口区左侧出现的对流云团波串和横向云带与该处的中尺度重力波关系密切。
     8.就地转适应与切变不稳定在高空急流出口区附近所产生的中尺度重力波的发生发展中的作用来说,高空急流出口区附近中尺度重力波是在地转调整加快以及切变不稳定快速增大的过程中产生发展起来的,且产生位置位于非地转平衡能量的下游频散区与切变不稳定区的叠合区内。从地转调整和切变不稳定的产生顺序来看,地转调整提前于切变不稳定产生。高空急流气旋性切变一侧的高位涡区与该处的△NBE正值区具有很好的对应关系。根据ΔNBE与位涡(PV)的含义可知,急流出口区附近的中尺度重力波可能是由高空锋系统内的一股具有强非地转平衡性的气流所引发的。
     9.对2005年6月10日在我国东北地区发生的一次急流锋暴雨(以下简称“05.06”暴雨)发生机制的分析结果表明,此次暴雨是发生在高空槽东移加深过程中的一次中尺度对流天气过程。从大尺度特征来看,中尺度对流系统处于前倾疏散的高空槽槽前,高空辐散,低空辐合,为MCS发生提供了有利的大尺度动力条件;暴雨发生前对流层低层有西南—东北走向的湿舌,为暴雨提供了有利的水汽条件;高空干冷平流与低空的暖湿平流形成的差动平流,则为此次暴雨提供了不稳定条件。此外,从地面接收到的太阳辐射能量分布情况来看,下垫面不均匀加热引起的热力环流是这次暴雨过程中尺度对流系统发生发展的一个重要的触发机制。从中尺度对流系统特征看,影响沙兰河上游的中尺度对流系统具有多单体风暴结构特征的孤立对流系统的特征,而且系统中气流具有后方入流前方出流的特点。从对流系统的移动规律来看,导致沙兰河上游暴雨的雷暴云为左移风暴。
     10.就高空急流的作用而言,“05.06”暴雨的雨带以及卫星与雷达回波图上显示出对流云团与由高空急流出口区上激发的中尺度重力波时空分布特征相吻合,高空急流出口区所激发的中尺度重力波对触发和维持此次暴雨过程具有重要作用。高空急流出口区引起的高层的重力波把能量向下输送,使低层波动加强,在上下两列波动垂直方向同相叠加的地区产生出大振幅的中尺度重力波,引发强降水。此外,在研究中发现,“05.06”暴雨过程中强对流云团分布与地面切变线走向具有很好的一致性,但是在这条切变线上对流强弱分布却是不均匀的,其中在弧形切变线转折处对流最强。分析认为,造成这种现象的一种可能解释是,这是由切变线走向与盛行环境风向的配置关系引起的;而从波动能量传播与不稳定能量关系来看,这种现象又可能和高空急流激发的中尺度重力波的传播方向与湿舌的走向有关。除了非地转平衡性以外,高空急流所引起的中高层大气切变不稳定也是造成沙兰河上游中尺度对流系统左移的一个重要动力条件。
Upper-level jet-front system is one of the most outstanding weather systems inthe upper troposphere. It plays an important role to the development of themesoscale disaster weather systems. By comprehensive inspection using thesounding, satellite and radar observations, theory analysis and modeling simulationsby WRF model, a high resolution model for meso-scale and micro-scale weatherresearch developed by NCAR U.S.A, this paper is aimed at exploring the structuresand dynamic mechanisms of the subtropical upper-level jet-frontal zone cloudsystems related with three heavy rain processes over China occurred on 9-11 June2005, 24-26 May 2006 and 7-10 June 2006 respectively. The major results made inthe course of this study are listed as follows:
     1. A typical upper-level jet-front cloud system may have four characteristicfeatures: a baroclinic leaf cloud, a dark area, vortex comma clouds andasequential convective cloud clusters or transversal cloud lines. A baroclinic leafis often observed on the cyclonic side vicinity of an upper level jet orientedsouthwest-northeast. Composed of high-or medium-level clouds, a typical cloudleaf is normally opaque in IR and VIS images. With respect to its microphysicalstructure, the upper-level part of the cloud leaf is mainly composed of dense iceand snow crystals, while the lower-level part plentiful liquid water. Those liquidcloud droplets involved in the cloud leaf are seem to be concentrated within thesouth-west part of the cloud corresponding with the rainfall on the anti-cyclonicside of jets. A dark area is observed on the cyclonic side of the jet distributingalong the jet edge in WV (water vapor) images. This dark area is then advecteddownstream with environment flow and wrapped into the cloud head andgradually evolves the downstream cloud into a comma cloud. Some commacloud on the cyclonic side of jetstream sometimes display as a sequence ofconvective cloud clusters or some transversal cloud lines at its nascent stage.These kinds of convective cloud clusters or some transversal cloud lines areoften seen formed within the left-exit zone of upper-level jet and developedwhen the upper-level jet is closed to or the jet core is strengthened. The microphysical structure of the cloud within this area is generally same as that ofthe cloud leaf on the anti-cyclonic side of the jet, except that the ice and liquidwater content of the former are some lower than the latter.
     2. The cloud leafs in both south and north sides of the jet stream can be identifiedas a frontal cloud, while with different development machanisms. According tothe trajectory analysis, the cloud leaf is affected by three branches of flowduring its development: southwesterlies, southeasterlies and northwesterlies.Both the south-westerlies and south-easterlies are from the mid-lower level andare responsible for the cloud leaf genesis. A part of cold and dry air parcels onthe dry belt within north-westerlies spreads downward from upper-level andintrudes into the stratified rainfall area at the end of the cloud leafs. This airflowencountered with the dowdraft air by rainfall makes the total dowdraftstrengthening in such a manner as to cause the rear of the cloud dissipating;while the other part turn to an updraft at the middle level after a short termdescending. This branch of airflow superposites on the warm moist air from thelower which cause the local atmosphere instability increase rapidly. Thereforethe whole cloud band on the anti-cyclonic side of jet can be manifested as theoutcome of the interplay of the dry and warm conveyor belts. The cloud band onthe cyclonic side is remained as a frontal cloud. Comparing the cloud betweenthe two sides of the jet, the frontal cloud on the cyclonic side is relativelythinner with lower height. With respect to the genesis of the cloud on thecyclonic side, it is speculated to be generated in the course of the upstreamnorthwest flow to the west of the pressure trough being abruptly changed fromdescending into ascending by encountering a surface low. During the clouddevelopment, the updraft is included with a part of continuous warm and moistairflow.
     3. The dark area on the cyclonic side of the upper-level jet in WV imageriescorresponds to a low moist and high PV region. In the PV perspective, thisphenomenon signifies that the dark area on the cyclonic side of the upper-leveljet is the source of the dry intrusion from the upper-level. Dry intrusion acts as apromoter to the development of the clouds on both side of upper-level jet. Onthe one hand, it decreases the moisture at the middle level of the tropospheremaking the instability increase which is good for the deep convectiondeveloping in the cloud cluster. On the other hand, dry intrusion can cause the high-value PV at the upper level of the troposphere glide down to thelower-level to trigger a surface cyclone. According to the trajectory analysis, dryintrusion may be a key mechanism for the cloud clusters on the cyclonic side ofthe upper-level jet taking on a comma-shape finally. The moist potentialvorticity distribution shows characteristics of moist baroclinicity along the jetaxes. With respect to the stability, it seems that the conditional instability andthe instability-related tilt updraft are the possible dynamic mechanisms fortriggering and maintaining the cloud leaf on the anti-cyclonic side of theupper-level jet.
     4. From the characteristics of the energy distribution, it is seen that the instableenergy is not symmetrically distributed in a jet-front cloud system. There aretwo CAPE centers. One is located at the rear of the cloud band on theanti-cyclonic side of the jet; the other is within a small area between the head ofthe comma cloud and its maximum inflection area on the cyclonic side of the jet.While the maximum on the DCAPE distribution are located on the left side ofthe enter area and right side of the exit area of the jet respectively, whichcorrespond to the dark areas in satellite images. This fact seems to further verifythat the dark area on the cyclonic side of the jet can be identified as the token ofthe dry intrusion from the upper level.
     5. With respect to the kinematic structure of an upper-level jet, ageostrophic windson the two ends of a jet streak (enter area and exit area) have evident cyclonicshear, while ageostrophic winds on the south and north sides of the jet streakanti-cyclonic shear. On the vorticity field of ageostrophic wind, the two endsalong the jet streak correspond to positive vorticity areas, while the south andnorth sides of the jet steak correspond to negtive vorticity areas. Such a structurein ageostrophic vorticity field generally coincides with the "four quadrant"model of ageostrophic vorticity for a straight jet streak suggested byCunningham and Keyser in 2000.
     6. Diagnosis study based on the Lagrangian Rossby number (Ro) and the residualof nonlinear balance equation (ANBE) shows that the cyclonic side of theupper-level jet is occupied by both the high value areas of Ro and ANBE. Thescale of the△NBE around this area is over 10~(-8)s~(-1). According to the concept of△NBE, it is manifested that there is an evident ageostrophic on the cyclonic sideof the upper-level jet and with the increasing curvature of the jet, the ageostrophic enhances. Besides, according to the diagnosis study of shearinstability around the jet based on Richardson number (Ri), it is noticed that theexit area of the upper-level jet is a shear instability area where mesoscale gravitywave and heavy rainfall may occur.
     7. In the light of the advantage of wavelet analysis in the multi-resolutionfrequency filtering, a band pass filter is designed based on wavelet transform foranalyzing the characteristics of the gravity wave around the exit area of anupper-level jet. The analysis results show that the horizontal wavelength of thegravity wave around the exit area of the subtropical upper-level jet in thevicinity area of China is about 100-500km, and the amplitude 1-10hPa. Besides,the wave in the vertical velocity field is about 1/4 wavelength behind that in thepotential temperature field. Such facts display the common characteristics of atypical mesoscale gravity wave. Considering the cloud distribution, it seems thatthe sequential convective cloud clusters or transversal cloud lines on the left sideof the jet exit area are close related with this kind of meso-scale gravity wave.
     8. With respect to the influence of the geostrophic adjustment and the shearinstability on the mesoscle gravity wave on the left side of the jet exit area, itseems that the mesoscale gravity wave is generated through the quickening ofthe geostrophic adjustment and increase of the shear instability. And the locationof the mesoscale gravity wave is just within the superposition of the downstreamunbalanced energy radiation area and the shear instability area. As for the timesequence of the geostrophic adjustment and the shear instability, the formerseems occur ahead of the latter. Superposing the PV and△NBE on the cyclonicside of the upper-level jet shows the maxima of PV correspond closely to thosepositive△NBE maxima in this region. According to the definition of PV and△NBE, it is speculated that the mesoscale gravity wave within the exit area ofthe upper-level jet is possible induced by a strong imbalance flow generatedfrom the upper-level jet-front system.
     9. An elementary diagnosis of the dynamic mechanism of the jet-front systemrainfall in the eastem central portion of Heilongjiang province on 10th June 2005(to be called as "05.06" northeastern rainstorm hereafter) is performed. Theresults show that this rainstorm occurred in the process of a forward tiltingupper-level trough with a diverging dispersive structure, moving eastward anddeepening. The rain-producing MCSs (Meso-scale Convective Systems) systems are in the foreside area of this upper trough, and the large-scale kinetic energysuitable for system development is supplied by the low level convergence-upper level divergence mechanism; a SW-NE oriented moist tongue located atthe lower level of troposphere was obviously seen before the rainstorm occurs,which feeds the rainfall area with favorable moisture condition; and thedifferential advection induced by dry and cold air superposing the warm andmoist air results in the increase in local instability. Furthermore, the distributionof incoming solar radiance at underlying surface shows differential heatingwhich is an important trigger to the MCSs of this rainstorm. As for thecharacteristics of the mesoscale convective system (MCS) during this rainstorm,the MCS is an isolated convective system with a multi-cell storm structure; andthe system is characterized with a backward input and forward output structure.As for the movement direction, this MCS belongs to a left-moving storm.
     10. As far as the influence of the upper-level jet on the "2005.06" rainstorm isconcerned, the space-temporal characteristics of the rain band and convectivecloud clusters displayed in the satellite and radar imageries finely agree with thatof the mesoscale gravity wave triggered by the upper-level jet on the left side ofits exit area. Such facts imply that the mesoscale gravity wave triggered by theupper-level jet on the left side of its exit area may therefore have played animportant role in initiating and maintaining this rainstorm. It is the gravity waveinduced by the jet that transports the energy at the upper-level downward tostrengthen the wave at the lower-level. The rainfall maxima are located at thearea where the waves at upper and lower levels happen to have the samespace-temporal phase. Furthermore, with respect to the relationship betweenmeso-scale shear line and the MCSs, it is found that over the shear line, theconvective cells located around the bend part of the shear line are the mostintense. After a comprehensive analysis, two possible explanations to thisphenomenon are considered. One is related to the orientations between thesurface meso-scale shear line and the ambient wind fields and the other is tied tothe relationship between the radiation direction of the meso-scale gravity waveand the orientation of the moist tongue. As for the formation mechanism of theleft-moving MCS, the shear instability induced by the upper-level jet may haveacted as a key role.
引文
[1] 阮均石.气象灾害十讲[M].北京:气象出版社,2000.202pp.
    [2] Bjerknes.J., 1951 : Extratropicalcyclones. Compendium of meteorology. T.F.Malone. Ed. American meteorological Society. 577-598.
    [3] Palmen. E. and Newton. C. W., 1969:Atmospheric circulation systems:Their structure and physical interpretation.Academic Press. New York, USA. 374pp.
    [4] 郑新江,陆文杰等译,1994:水汽图像在天气分析和天气预报中的解译与应用.气象出版社:218 PP..Weldon, R.B., and S.J. Holmes, 1991: Water vapor imagery: Interpretation and applications to weather analysis and forecasting. NOAA Tech. Rep. NESDIS 67, 213 PP.
    [5] 叶笃正,高由禧,刘匡南.1952:1945-46年亚洲南部和美洲西南部急流进退之探讨.气象学报,23(1),1-32
    [6] 候青,许健民,2006:卫星导风资料所揭示的对流层上部环流形势与我国夏季主要雨带之间的关系.应用气象学报,2,12-18.
    [7] Bjerknes J. and Holmboe, 1944:On the theory of cyclones.J.Meteor , 1, 1-22.
    [8] Namias, J. and P.F.Clapp, 1949:Confluence theory of the high tropospheric jet stream. J.Meteor , 6, 330-336.
    [9] Sutcliffe, R.C., and A.G.Forsdyke, 1950:The theory and use of upper air thickness patterns in forecasting.Quart. J.Roy.Meteor. Soc., 76, 189-217.
    [10] Cunningham P. and Keyser D., 2000:Analytical and numerical modeling of jet streaks: Barotropic dynamics.Q.J.R.Meteorol.Soc., 126, 3187-3217.
    [11] Matthew E.P., Daniel Keyser and Lance F. Bosart, 2004:A diagnostic study of jet streaks: kinematic signatures and relationship to coherent tropopause disturbances.Mon. Wea.Rev., 132, 297-318.
    [12] 黄安丽,高坤,1982:对流层高、低空急流耦合作用的动力学分析.浙江大学学报(理学版),3,123-131.
    [13] 王小曼,丁治英,张兴强,2002:梅雨暴雨与高空急流的统计与动力分析.南京气象学院学报,1,115-121.
    [14] Beebe, R.G., and F.C.Bates, 1955:A mechanism for assisting in the release of convective instability.Mon. Wea. Rev., 83, 1-10.
    [15] Shapiro, M.A. and Kennedy, P.J., 1981:Research aircraft measurements of jet stream geostrophic and ageostrophic winds. J. Atmos. Sci., 38, 2642-2652.
    [16] Shapiro, M. A., 1982: Mesoscale weather systems of the central United States. CIRES/NOAA Tech. Rep., University of Colorado. Boulder, USA. 78pp.
    [17] Newton, C.W., and A. Trevisan, 1984: Clinogensis and frontogenesis in jet-stream waves.Part Ⅱ: Channel model numerical experiments. J. Atmos. Sci., 41, 2735-2755.
    [18] Keyser, D., and M. A. Shapiro, 1986: A review of the structure and dynamics of upper-level frontal zones. Mon. Wea. Rev., 114, 452-499.
    [19] Moore, J. T. and VanKnowe, G. E., 1992: The effect of jet-streak curvature on kinematic fields. Mon. Wea. Rev., 120, 2429-2441.
    [20] Ziv, B. and Paldor, N., 1999: The divergence fields associated with time-dependent jet streams. J. Atmos. Sci., 56, 1843-1857.
    [21] 徐海明,何金海,周兵,2001:“倾斜”高空急流轴在大暴雨过程中的作用.南京气象学院学报,2,155-161.
    [22] 寿绍文,励申申,姚秀萍.2000:中尺度气象学.气象出版社,北京,370pp.
    [23] Reed, R. J., 1955: A study of characteristic type of upper level frontogenesis.J. Meteor., 12, 226-237.
    [24] Reed, R. J., and E. F. Danielsen, 1959: Fronts in the vicinity of the tropopause. Arch. Meteor. Geophys. Bioklimatol., 11, 1-17.
    [25] Bamber, D. J., P. Healey, B. Jones, S. A Penkett, A. F. Tuck, and G. Vaughan, 1984: Vertical profiles of tropospheric gases: Chemical consequences of stratospheric intrusions. Atmos. Environ., 18, 1759-1766.
    [26] Hoskins, B. J., M. E. Mclntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart.J. Roy. Meteor. Soc., 111, 877-945.
    [27] Vaughan, G., 1988: Stratosphere-troposphere exchange of ozone. Tropospheric Ozone, I. S. A. Isaksen, Ed., D. Reidel, 125-135.
    [28] Uccellini, L. W., D. Keyser, K. F. Brill, and C. H. Wash, 1985: The Presidents' Day cyclone of 18-19 February 1979: Influence of upstream trough amplification and associated tropopause folding on rapid cyclogenesis. Mon. Wea. Rev., 113, 962-988.
    [29] Lackmann, G. M., D. Keyser, and L. F. Bosart, 1997: A characteristic life cycle of upper-tropospheric cyclogenetic precursors during the Experiment on Rapidly Intensifying Cyclones over the Atlantic (ERICA). Mon. Wea. Rev., 125, 2729-2758.
    [30] Shapiro, M. A.,, 1981: Frontogenesis and geostrophically forced secondary circulations in the vicinity of jet stream-frontal zone systems. J. Atmos. Sci., 38, 954-973.
    [31]Uccellini, L. W., and P. J. Kocin, 1987: The interaction of jet streak circulations during heavy snow events along the East Coast of the United States. Wea. Forecasting, 2,289-308.
    [32]Chameides, W., and J. C. J. Walker, 1973: A photochemical theory of tropospheric ozone. J. Geophys. Res., 78, 8751-8760.
    [33]Chatfield, R., and H. Harrison, 1976: Ozone in the remote troposphere: Mixing versus photochemistry. J. Geophys. Res., 81, 421—423.
    [34]Fishman, J., V. Ramanathan, P. J. Crutzen, and S. C. Liu, 1979: Tropospheric ozone and climate. Nature, 282, 818-820.
    [35]Gidel, L. T., and M. A. Shapiro, 1980: General circulation model estimates of the net vertical flux of ozone in the lower stratosphere and the implications for the tropospheric ozone budget. J. Geophys. Res., 85,4049-4058.
    [36]Logan, J., 1985: Tropospheric ozone: Seasonal behaviour, trends, and anthropogenic influence. J. Geophys. Res., 90,10 463-10 482.
    [37] Liu, S. C, M. Trainer, F. C. Fehsenfeld, D. D. Parrish, E. J. Williams, D. W. Fahey, G. Humbler, and P. C. Murphy, 1987: Ozone production production in the rural troposphere and the implications for regional and global ozone distributions. J. Geophys. Res., 92,4191-4207.
    [38]Follows, M. J., and J. F. Austin, 1992: A zonal average model of the stratospheric contribution to the tropospheric ozone budget. J.Geophys. Res., 97, 18047-18060.
    [39]Lamarque, J.-F., and P. G. Hess, 1994: Cross-tropopause mass exchange and potential vorticity budget in a simulated tropopause folding. J. Atmos. Sci., 51, 2246-2269.
    [40]Holton, J. R., and J. Lelieveld, 1996: Stratosphere-troposphere exchange and its role in the budget of tropospheric ozone. Clouds, Chemistry and Climate, P. J. Crutzen and V. Ramanathan, Eds., NATO ASI Series, Vol. 35, Springer-Verlag, 173-190.
    [41]Roelofs, G. J., and J. Lelieveld, 1997: Model study of the influence of cross-tropopause ozone transports on tropospheric ozone levels. Tellus, 49B,38-55.
    [42]Levy, H., P. Kashibhalta, W. J. Moxim, A. A. Klonecki, A. I. Hirch, S. J. Oltmans, and W. L. Chameides, 1997: The global impact of human activity on tropospheric ozone. Geophys. Res. Lett., 24, 791-794.
    [43]Kentarchos, A. S., T. D. Davies, and C. Zerefos, 1998: A low latitude stratospheric intrusion associated with a cut-off low. Geophys. Res. Lett., 25, 67-70.
    [44] Shapiro, M. A., 1978: Further evidence of the mesoscale and turbulence structure of upper level jet stream-frontal zone systems. Mon. Wea. Rev., 106, 1100-1111.
    [45]Mattocks.C. and Bleck.R.,1986: Jet streak dynamics and geostrophic adjustment processes during the initial stages of lee cyclongenesis.Mon.Wea.Rev., 114,2033-2056.
    [46]Takayabu.I, 1991:Coupling development: An efficient mechanism for the development of extratropical cyclones. J.Meteorol.Soc.Japan,69,609-628.
    [47]Clough,S.A.Davitt C.S.A and Thorpe A.J.,1996:Attribution concepts applied to the omega equa.tion.Q.J.R.Meteorol.Soc., 122,1943-1962.
    [48] Cunningham.P., 1997: Analytical and numerical modeling of jet-streak dynamics.M.S.thesis. University at Albany, State University of New York.
    [49]Pyle.M.E.,1997:A diagnostic study of jet streaks:Kinematic signatures and relationship to coherent tropopause disturbances.M.S.thesis,University at Albany,State University of New York.
    [50]Davies, H. C, and A. M. Rossa, 1998: PV frontogenesis and uppertropospheric fronts. Mon. Wea. Rev., 126,1528-1539.
    [51]Hakim,G.J.,2000:Climatology of coherent structures on the extratropical tropopause. Mon. Wea. Rev., 128,385-406.
    [52]Fourrie,N.,C. Claud,J. Donnadille, J.-P. Cammas, B. Pouponneau,and N.A.Scott,2000:The use of TOVS observations for the identification of tropopause-level thermal anomalies. Quart. J. Roy. Meteor. Soc, 126,1473-1494.
    [53]Fourrie,N.,C. Claud and A.Chedin, 2003:Depication of upper-level precursors of the December 1999 storms from TOVS observation. Weather and Forcasting,18, 417-430.
    [54]Danielsen, E. F., 1968: Stratospheric-tropospheric exchange based upon radioactivity, ozone, and potential vorticity. J. Atmos. Sci., 25, 502-518.
    [55]Keyser, D., and M. J. Pecnick, 1985: A two-dimensional primitive equation model of frontogenesis forced by confluence and horizontal shear. J. Atmos. Sci., 42, 1259-1282.
    [56]Reeder, M. J., and D. Keyser, 1988: Balanced and unbalanced upperlevel frontogenesis. J. Atmos. Sci., 45, 3366-3386.
    [57]Wandishin M.S., J.W.Nielsen-Gammon, and D.Keyser, 2000:A potential vorticity diagnostic approach to upper-level frontogenesis within a developing baroclinic wave. J. Atmos. Sci., 57,3918-3938.
    [58]Schneider, R. S., 1990: Large-amplitude mesoscale wave disturbances within the intense midwest extratropical cyclone of 15 December 1987. Wea. Forecasting, 5, 533-558.
    [59]Fritts, D. C, and G. D. Nastrom, 1992: Sources of mesoscale variability of gravity waves. Part II: Frontal, convective, and jet stream excitation. J. Atmos. Sci., 49, 111-127.
    [60]Ramamurthy, M. K., R. M. Rauber, B. Collins, and N. K. Malhotra, 1993: A comparative study of large-amplitude gravity-wave events. Mon. Wea. Rev., 121, 2951-2974.
    [61]Koch,S.E.,and C. O'Handley,1997:Operational forecasting and detection of mesoscale gravity waves.Wea. Forecasting,12,253-281.
    [62]Bosart, L. F.,W. E. Bracken, and A. Seimon, 1998: A study of cyclone mesoscale structure with emphasis on a large-amplitude inertia-gravity wave. Mon. Wea. Rev., 126,1497-1527.
    [63]Thomas, L., R. M. Worthington, and A. J. McDonald, 1999: Inertia- gravity waves in the troposphere and lower stratosphere associated with a jet stream exit region. Ann. Geophys., 17, 115-121.
    [64]Koppel, L. L., L. F. Bosart, and D. Keyser, 2000: A 25-yr climatology of large-amplitude hourly surface pressure changes over the conterminous United States. Mon. Wea. Rev., 128, 51-68.
    [65]Guest,F.M., M.J.Reeder, C.J.Marks, and D.J.Karoly,2000:Inertia gravity waves observed in the lower stratosphere over Macquarie Island. J. Atmos. Sci.,57,737-752.
    [66]Rauber, R. M., M. Yang, M. K. Ramamurthy, and B. F. Jewett, 2001: Origin, evolution, and fine-scale structure of the St. Valentine's Day mesoscale gravity wave observed during STORM-FEST. Part I: Origin and evolution. Mon. Wea. Rev., 129, 198-217.
    [67]Plougonven, R., and H. Teitelbaum, 2003: Comparison of a large-scale inertia-gravity wave as seen in the ECMWF analyses and from radiosondes. Geophys. Res. Lett, 30, 1954-1957
    [68] Wu, D. L., and F. Zhang , 2004: A study of mesoscale gravity waves over North Atlantic with satellite observations and a mesoscale model. J. Geophys. Res., 109, D22104., doi: 10.1029/2004JD005090.
    [69]Powers, J. G., and R. J. Reed, 1993: Numerical model simulation of the largeamplitude mesoscale gravity-wave event of 15 December 1987 in the central United States. Mon. Wea. Rev., 121,2285-2308.
    [70] Zhang, F., and S. E. Koch, 2000: Numerical simulation of a gravity wave event observed during CCOPE. Part Ⅱ: Wave generation by an orographic density current. Mort. Wea. Rev., 128, 2777-2796.
    [71] Zhang, F., and S. E. Koch, C. A. Davis, and M. L. Kaplan, 2001: Wavelet analysis and the governing dynamics of a large-amplitude gravity wave event along the east coast of the United States. Quart. J. Roy. Meteor. Soc., 127, 2209-2245.
    [72] Koch, S. E., F. Zhang, M. Kaplan, Y.-L. Lin, R. Weglarz, and M. Trexler, 2001: Numerical simulation of a gravity wave event observed during CCOPE. Part Ⅲ: Mountain-plain solenoids in the generation of the second wave episode. Mon. Wea. Rev., 129, 909-932.
    [73] Koch, S. E., and F. Caracena, 2002: Predicting clear-air turbulence from diagnosis of unbalanced flow. Preprints, 10th Conf on Aviation, Range, and Aerospace Meteorology, Portland, OR, Amer. Meteor. Soc., 359-363.
    [74] O'Sullivan, D., and T. J. Dunkerton, 1995: Generation of inertia-gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci., 52, 3695-3716.
    [75] Zhang, F., 2004: Generation of mesoscale gravity waves in the upper-tropospheric jet front systems. J. Atmos. Sci., 61, 440-457.
    [76] Koch S. E., Jamison B. D., Lu C., SMITH T. L., E. I. Tollerud, C. Girz, N. Wang, T. P. Lane, M. A. Shapiro, D. D. Parrish, and O. R. Cooper, 2005: Turbulence and Gravity Waves within an Upper-Level Front. J. Atmos. Sci., 62, 3885-3908.
    [77] Peng Jiayi, Wu Rongsheng, Wang Yuan, 2002: Initiation mechanism of mesoβscale convective systems. A dvances in Atmospheric Sciences, 19 (5): 870-884.
    [78] 许小峰,孙照渤,2003:非地转平衡流激发的重力惯性波对梅雨锋暴雨影响的动力学研究.气象学报,61(6):655-660.
    [79] 胡伯威,2005:梅雨锋上MCS的发展、传播以及与低层“湿度锋”相关联的CISK惯性重力波.大气科学,29(6),845-853.
    [80] 田俊杰,庄春毅,1996:晴空湍流(CAT)对大尺度和中尺度动力强迫过程的响应.应用气象学报,3,353-360.
    [81] 陶建军2001:高空急流与重力内波.湘潭师范学院学报(自然科学版),23,58-62.
    [82] 林永辉,廖清海,2003:王鹏云低空急流形成发展的一种可能机制——重力波的惯性不稳定.气象学报,61(3),374-378.
    [83] 官元红,周伟灿,张兴强,2004:一次强暴雨形成的动力机制.南京气象学院学报,27(6),728-734.
    [84] Fawbush, E. J. and R. C. Miller, 1953: The tornado situation of 17 March 1951. Bull. Amer. Meteor. Soc., 34, 139-145.
    [85] Fawbush, E. J. and R. C. Miller, 1953: The types of air masses in which North American tornadoes form. Bull. A mer. Meteor. Soc., 35, 154-165.
    [86] Uccellini L. W. and D. R. Johnson, 1979: Coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon. Wea. Rev., 107, 682-703.
    [87] 陈受均.1989:梅雨末期暴雨过程中高低空环流的耦合—数值实验[J].气象学报,47,8-16.
    [88] 胡欣等,急流对海河南系一次特大暴雨影响的数值试验[J],气象,1999,25(7): 8-16
    [89] 吕克利,赵德明,水汽凝结过程与高低空急流对冷锋环流的作用[J],大气科学,1997,21(3):317-323
    [90] 朱乾根等,高低空急流耦合对长江中游强暴雨形成的机理研究[J],南京气象学院学报,2001,24(3):308-314
    [91] 高守亭,陶诗言,高空急流加速和低层锋生[J],大气科学,1991,15(2):11-21
    [92] Lane T. P., Doyle J. D., Plougonven R., Shapiro M. A., Sharman R. D., 2004: Observations and numerical simulations of inertia-gravity waves and sheafing instabilities in the vicinity of a jet stream J. Atmos. Sci., 61, 2692-2706.
    [93] Rossby, C.-G., 1940: Planetary flow patterns in the atmosphere. Quart. J. Roy. Meteor. Soc. 66, 68-87.
    [94] Ertel, H., 1942:Ein neuer hydrodynamischer Wirbelsatz. sphere. Quart. J. Roy. Meteor Soc. 66, 68-87.
    [95] Hoskins, B. J., M. E. Mclntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy.Meteor. Soc., 111, 877-946.
    [96] Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 1929-1953.
    [97] Huo Z.H., Zhang D. L., 1998:An application of potential vorticity inversion to improving the numerical prediction of the March 1993 superstorm. Mon. Wea. Rev., 126, 426-439.
    [98] Sato.K., and Yamada, M., 1994:Vertical structure of atmospheric gravity waves revealed by wavelet analysis. J. Geophys. Res., 99, 20623-20631.
    [99] Grivet-Talocia, and Einaudi, F., 1998:Wavelet analysis of a microbarograph network. 1EEE Trans. Geosci. Remote, 36, 418-433.
    [100] Grivet-Talocia, S., Einaudi, F., Clark, W. L., Dennett, R. D., Nastrom, G. D. and VanZandt, T. E., 1999: A 4-year climatology of pressure disturbances using a barometer network in central Illinois. Mon. Wea. Rev., 127, 1613-1629.
    [101] Weng H., and Lau, K. M., 1994: Wavelets, period doubling, and time-frequency localization with application to organization of convection over the tropical western Pacific. J.. Atmos. Sci., 51, 2523-2541.
    [102] Houghton, D. D., W. H. Campbell, and N. D. Reynolds, 1981: Isolation of the gravity-inertial motion component in a nonlinear atmospheric model. Mon. Wea. Rev., 109, 2118-2130.
    [103] Van Tuyl, A. H., and J. A. Young, 1982: Numerical simulation of nonlinear jet streak adjustment. Mon. Wea. Rev., 110, 2038-2054.
    [104] William C. Skamarock, Joseph B. Klemp, Jimy Dudhia, David O. Gill, Dale M. Barker, Wei Wang, Jordan G. Powers. 2005: A description of the advanced research wrf version 2. Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, Colorado, USA. 88pp.
    [105] Laprise R., 1992: The Euler Equations of motion with hydrostatic pressure as independent variable, Mon. Wea. Rev., 120, 197-207.
    [106] 国家卫星气象中心.风云二号(02)批静止气象卫星数据格式.36pp.
    [107] 陈渭民.卫星气象学.北京:气象出版社,2003:523pp.
    [108] M.J.巴德,G.S.福布斯,R.B.E.理利,J.R.格兰特,A.J.沃特斯编.许健民等译.卫星与雷达图象在天气预报中的应用.北京:科学出版社,1998,392pp
    [109] McGuirk, J. P., A. H. Thompson, and N. R. Smith, 1987: Moisture bursts over the tropical Pacific Ocean. Mon. Wea. Rev., 115, 787-798.
    [110] McGuirk, J. P., A. H. Thompson, and J. R. Schaefer, 1988: An eastern Pacific tropical plume. Mon. Wea. Rev., 116, 2505-2521.
    [111] McGuirk, J. P., and D. J. Ulsh, 1990: Evolution of tropical plumes in VAS water vapor imagery. Mon. Wea. Rev., 115, 1758-1766.
    [112] Kuhnel, I., 1989: Tropical-extratropocal cloudband climatology based on satellite data. Int. J. Climatol., 9, 441-463.
    [113] Ziv, B., 2001: A subtropical rainstorm associated with a tropical plume over Africa and the Middle-East. Theor.Appl. Climatol., 69, 91-102.
    [114] Knippertz, P., A. H. Fink, A. Reiner, and P. Speth, 2003: Three late summer/early autumn cases of tropical-extratropical interactions causing precipitation in northwest Africa. Mon. Wea. Rev., 131, 116-135.
    [115] Knippertz, P., and J. E. Martin, 2005: Tropical plumes and extreme precipitation in subtropical and tropical West Africa. Quart. J. Roy. Meteor. Soc., 112, 2337-2365.
    [116] 丁一汇.2005:高等天气学.气象出版社,北京,585pp.
    [117] Kleinschmidt E. 1957: Handbuch der Physik. In: Eliassen A, Kleinschmidt E eds. Dynamic Meteorology. Germany: Speringer,. 48: 112-129
    [118] Doswell, C. A., III, 1987:The distinction between large-scale and mesoscale contribution to severe convection: A case study example. Wea. Forecasting, 2, 3-16.
    [119] Doswell, C.A., H.E.Brooks, R.A.Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560-581.
    [120] 陶诗言,丁一汇,周晓平.1979:暴雨和强对流天气的研究.大气科学,3,227-237.
    [121] 雷雨顺.1986:能量天气学[M],北京:气象出版社,159pp.
    [122] Lane P. T., Reeder M. J., 2001: Convectively generated gravity waves and their effect on the cloud environment. Journal of the Atmospheric Sciences, 58, 2427-2440.
    [123] Chen S. H., Lin Y. L., 2005: Effects of moist Froude number and CAPE on a conditionally unstable flow over a mesoscale mountain ridge. Journal of the Atmospheric Sciences, 62, 331-350.
    [124] Danielsen E. F. 1964: Project Springfield Report. Defense Atomics Support Agency, 99, 664-668.
    [125] Browning K. A. 1997: The dry intrusion perspective of extra-tropical cyclone development. Meteor. Appl., 4, 317-324.
    [126] Browning K. A., Golding B.W., 1995: Mesoscale aspects of a dry intrusion within a vigorous cyclone. Quart. J. Roy. Meteor. Soc., 121, 463-493.
    [127] Leslie R. Lemon on the mesocyclone "dry intrusion" and tomadogensis, preprints, 19th. Conf. on sever local storm, 1998, 752-755.
    [128] 杨贵名,毛冬艳,姚秀萍.2006:梅雨期一次黄淮气旋发展的干侵入特征分析.22(2),176-183.
    [129] David O. Blanchard 1998: Assessing the Vertical Distribution of Convective Available Potential Energy, Wea. Forecasting, 13, 870-877.
    [130] Lee B. D., Wilhelmson R. B., 2000: The numerical simulation of nonsupercell tornadogensis, part Ⅲ: parameter tests investigating the role of CAPE, vortex sheet strength, and boundary layer vertical shear. Journal of the Atmospheric Sciences, 57, 2246-2261.
    [131] Blanchard D. O., 1998: Notes and correspondence assessing the vertical distribution of convective available potential energy. Wea. Forecasting, 12, 870-877.
    [132] Smith R. K. 1997: Thermodynamics of moist and cloudy air. Also see: R. K. Smith(ed), The physics and parameterization of moist atmospheric convection, Kluwer Academic Publishers. Printed in the Netherlands.29-58.
    [133] 彭治班,刘健文,郭虎等.2001:国外强对流天气的应用研究.北京:气象出版社,69—73,89—95,96—102,123—135,261—271.
    [134] Emanuel K. A. 1994: Atmospheric convection. Oxford University Press(New York), 158-165.
    [135] 许绍祖等.大气物理学基础[M].北京:气象出版社,1993:90-130
    [136] 刘健文,郭虎,李耀东,刘还珠,吴宝俊.天气分析预报物理量计算基础[M].北京:气象出版社,2005,253pp.
    [137] Desautels. G., R. Verret. Canadian Meteorological Centre summer severe weather package (storm relative helicity)[C]. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc. 1996:689-692
    [138] Shapiro M. A., 1981: Frontogenesis and geostrophically forced secondary circulations in the vicinity of jet stream-frontal zone systems. Journal of the Atmospheric Sciences, 38, 954-973.
    [139] Sawyer, J. S., 1956: The vertical circulation at meteorological fronts and its relation to frontogenesis. Proc. Roy. Soc. London, Series A, 234, 346-362.
    [140] Eliassen, A., 1962: On the vertical circulation in frontal zones.Geof Publ., 24, 147-160.
    [141] 丁治英,陈久康.1994:200hPa非地转风和非均匀层结与梅雨暴雨的关系,气象科学,4,344-353.
    [142] 廖移山,张兵,李俊,李武阶,宇如聪.2006:河南特强暴雨β中尺度流场发展机理的数值模拟研究,气象学报,64(4),500-509.
    [143] 吕美仲,候志明,周毅.动力气象学[M].北京:气象出版社,2004:419pp.
    [144] 朱乾根,林锦瑞,寿绍文,唐东升.天气学原理与方法[M].北京:气象出版社,2000:649pp.
    [145] Rossby C. G., 1938: On the mutual adjustment of pressure and velocity distributions in certain simple current systems. Ⅱ. J. Marine Res., 7, 239-263.
    [146] Calm A., 1945: An investigation of the free Oscillations of a simple current system. J. Meteorol., 2, 113-119.
    [147] Hoskins B. J., 1975: The geostrophic momentum approximation and semi-geostrophic equations. J. Atmos. Sci., 32, 232-242.
    [148] Emanuel K. A., 1986: Overview and definition of mesoscale meteorology. Mesoscale Meteorology and Forecasting, Edited by P. S. Ray., American Meteorological Society, 1-17.
    [149] Koch S. E., and E B. Dorian, 1988: A mesoscale gravity wave event observed during CCOPE Part Ⅲ: Wave environment and probable source mechanisms. Mon. Wea. Rev., 116, 2570-2592.
    [150] Ferretti, R., F. Einaudi, and L. W. Uccellini, 1988: Wave disturbances associated with the Red River Valley severe weather outbreak of 10-11 April 1979. Meteor. Atmos. Phys., 39, 132-168.
    [151] Holton, J.R., P. H.Haynes, M.E. McIntyre, A. R. Douglass, R. B. Road, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403-439.
    [152] Fritsch J. M, Chappell C. F. 1980: Numerical prediction of eonveetively driven mesoseale pressure systems, Part Ⅰ: Convective parameterization. J. Atmos Sci., 37(8): 1722-1733.
    [153] Barnes S. L., 1972: Mesoscale objective analysis using weighted time-series observations. NOAA Technical Memorandum, ERL, NSSL-62.
    [154] Shuman, F. G., 1957: Numerical methods in weather prediction. Ⅱ: Smoothing and filtering. Mon. Wea. Rev., 85, 357-361.
    [155] Shapiro, R., 1970: Smoothing filtering and boundary effects. Reviews of Geophysics and Space Physics. 8, 359-387.
    [156] Shapiro, R., 1975: Linear filtering. Mathematics of Computation.29, 1094-1097.
    [157] Weng H. and Lau, K. M. 1994: Wavelets, period doubling, and time-frequency localization with application to organization of convection over the tropical western Pacific. J. Atmos. Sci., 51, 2523-2541.
    [158] 黄贤武,王家俊,李家华.数字图像处理与压缩编码技术[M].成都:电子科技大学出版社.2000,538pp.
    [159] 杨枝灵,王开等.Visual C++数字图像获取处理及实践应用[M].北京:人民邮电出版社.2003:613pp.
    [160] 吴正华.1988:北方强降水的气候特征.气象科学研究院院刊,3(1),86-91.
    [161] 陶诗言.中国之暴雨[M].北京:科学出版社.1980:115pp.
    [162] 《华北暴雨》编写组.华北暴雨,北京:气象出版社1992:1-13.
    [163] 郑秀雅,张廷治,白人海.东北暴雨北京:气象出版社1992:1-19.
    [164] 《西北暴雨》编写组西北暴雨北京:气象出版社1992:1-25.
    [165] 孙力,廉毅,白乐生.1995:东北地区一次突发性暴雨分析,高原气象,14(4),486-494.
    [166] 姜学恭,孙永刚,沈建国.2001:98.8松嫩流域一次东北冷涡暴雨的数值模拟初步分析.应用气象学报,12(2),26-28.
    [167] 陈力强,陈受钧,周小珊,潘向党.2005:东北冷涡诱发的一次MCS结构特征数值模拟,气象学报,63(2),173-183.
    [168] 王健,寿绍文.辽宁地区暴雨强对流天气的数值模拟与诊断分析:[硕士论文].南京:南京信息工程大学,2005:1-15.
    [169] 戴廷仁,寿绍文.东北地区暴雨、强对流天气的数值模拟诊断研究.[硕士论文].南京:南京气象学院,2003:1-40.
    [170] 孙力,安刚.2001:1998年夏季嫩江和松花江流域东北冷涡暴雨的成因分析,大气科学,25(3):342-354.
    [171] 黄泓,张铭.2004:一次东北暴雨的诊断分析.解放军理工大学学报(自然科学版),5(5):33-37.
    [172] 许秀红,王承伟,石定朴,徐宝祥.2000:1998年盛夏嫩江、松花江流域暴雨过程中尺度雨团特征,气象,26(10):35-40.
    [173] 周海光,张沛源.2002:笛卡尔坐标系的双多普勒天气雷达三维风场反演技术.气象学报,60(5):585~593.
    [174] 王峰云,王燕雄,陶祖钰.2003:多普勒天气雷达的中尺度风场探测技术研究.热带气象学报,19(3):291-298.
    [175] 余志豪等.流体力学[M].北京:气象出版社,1994:25-26.
    [176] 江晓燕,倪允琪.2005:一次梅雨锋暴雨过程的β中尺度对流系统发展机理的数值研究,气象学报,63(1),77-92.
    [177] 孙建华,赵思雄.2002:华南“946”特大暴雨的中尺度对流系统及其环境场研究Ⅰ.引发暴雨的中尺度对流系统的数值模拟研究.大气科学,26(4):541-557.
    [178] 孙建华,赵思雄.2002:华南“946”特大暴雨的中尺度对流系统及其环境场研究Ⅱ.物理过程、环境场以及地形对中尺度对流系统的作用.大气科学,26(5):633-646.
    [179] 巢纪平.1980:非均匀层结大气中的重力惯性波及其在暴雨预报中的初步应用.大气科学,4(3),230—235.
    [180] 郑媛媛,俞小鼎,方狲等.2004:一次典型超级单体风暴的多普勒天气雷达观测分析.气象学报,62(3),317-328.
    [181] 舒防国,吴涛,蓝天飞等,2005:十堰一次强对流天气雷达回波特征.气象,31(12),47-52.
    [182] 漆梁波,陈永林,2004:一次长江三角洲飑线的综合分析.应用气象学报,2(3),35-46.
    [183] Schmid, W., H. -H. Schiesser, R. A. Houze, Jr., and R. G. Fovell, 1990: Severe left-moving hailstorms in central Switzerland. Preprints, 16th Conference on Severe Local Storms, Kananaskis Provincial Park, Alberta, American Meteorological Society, 467-472.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.