短波长菁染料的合成、性质及其在生物医学上的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菁染料是一类重要的功能性染料,它们被广泛应用于照相材料光谱增感剂、光盘存储介质、太阳能电池光敏剂、pH探针、非线性光学材料等领域中。特别短波长菁染料具有可穿过细胞膜、无毒、不干扰细胞的正常生理功能、对核酸(DNA/RNA)有较强的亲和性等优点,在生物医学领域的应用得到了广泛的关注,例如应用于凝胶电泳中染色DNA、DNA测序、流式细胞仪、活细胞成像、生物大分子的标记等。目前商品化的膜通透性活细胞荧光探针种类有限,应用范围有限,且价格昂贵,还无法在国内临床分析上普及,极大限制了其在生物医学领域的应用,为了拓宽活细胞荧光探针的种类及应用范围,寻找性能优良的荧光探针,本文以短波长菁染料作为合成目标,将其作为荧光染色剂应用于细胞成像和流式细胞术中,探讨其作为活细胞荧光探针的可能性。本文介绍了菁染料的结构特点、性质特征、应用研究以及近些年来短波长二甲川菁染料、苯乙烯半菁染料及一次甲基份菁染料的合成进展,主要研究内容有以下几个方面:
     1.采用微波无溶剂方法合成了七种新型含吲哚核的二甲川菁染料,其中六种未见文献报道,通过元素分析、1HNMR、IR、UV-Vis对产物进行了结构表征。根据微波辐射功率和时间,讨论了杂环季铵盐与吲哚甲醛的反应活性,结果表明:杂环季铵盐的反应活性顺序为:喹啉季铵盐≈2-甲基吡啶季铵盐≈4-甲基吡啶季铵盐>萘噻唑季铵盐≈苯并噻唑季铵盐>苯并吲哚季铵盐>苯并咪唑季铵盐。研究了染料的紫外-可见吸收和荧光光谱性质,结果表明:染料在甲醇中的最大吸收波长位于376.0~484.0nm范围,摩尔消光系数为1.8×104~5.7×104L·mol-1cm-1,其荧光发射波长位于512.6~548.6nm之间,荧光量子产率为0.0018~0.0285,具有53.6~104.6nm的斯托克位移值。染料的吸收波长和杂环碱性具有一定的关系,最大吸收波长随杂环核的碱性减小而增大。研究了染料最大吸收波长和溶剂介电常数的关系,结果表明,随着溶剂介电常数的增大,染料的最大吸收波长蓝移。
     2.采用微波无溶剂方法和常规合成方法合成了十三种含喹啉核的二甲川菁染料,均未见文献报道,通过元素分析、1HNMR、IR、UV-Vis对产物进行了结构表征。研究了不同的取代基对季铵盐反应活性的影响,结果发现:取代基的给电子能力的增强,有助于反应进行,并且对于相同的取代基而言,6位取代的染料较7位取代的易合成,且产率也相对较高。利用紫外-可见光谱和荧光光谱技术研究了单纯染料、染料与DNA、BSA在生理条件下的相互作用,探讨其作为DNA、BSA荧光探针的可能性。结果发现:此类染料对DNA具有较好的亲和性,当染料与DNA相互作用后,荧光强度剧增,荧光量子产率最高增大了68.8倍。
     3.采用三组份一锅法反应,合成了四种含异噁唑酮核一次甲基份菁染料,其中三种产物未见文献报道,并利用元素分析、1HNMR、R和UV-Vis对其进行了结构表征。此类染料在甲醇中的最大吸收波长位于417.0~429.0nm范围,摩尔消光系数在3.3×104~4.5×104L.mol-1cm-1,其荧光最大发射波长位于476.0~511.6nm之间,具有59.0~82.6nm的斯托克位移值,荧光量子产率值为0.0008~0.0024。利用X射线单晶衍射技术对四种染料分子的晶体结构和空间堆积方式进行了表征和解析。
     4.在B3LYP/6-31G*和PBE1PBE/6-31G*水平上分别对七种含吲哚核二甲川菁染料进行了理论研究。采用极化连续模型PCM考虑了溶剂效应对吸收光谱的影响,结果表明:PBE1PBE/6-31G*(PCM)方法更能准确预测染料的吸收光谱性质。通过部分二面角参数和染料的荧光量子产率,说明了染料分子的刚性平面越强,共轭体系越大,则荧光强度就越大。染料的最低能级电子跃迁属于HOMO到LUMO的π→π*跃迁,具有最大的谐振强度,并且从分子轨道图分析得出HOMO→LUMO的电子跃迁源于分子内部的电荷转移。
     应用CIS/PCM方法在S1优化构型的基础上,研究了七种含喹啉核二甲川菁染料的荧光发射光谱性质,结果表明:计算所得的λem与实验值的相对偏差为1.7%,此方法可以用来预测染料的最大发射光谱。使用Swizard软件计算出了含喹啉核二甲川菁染料的摩尔消光系数,并且通过计算模拟拟合的吸收光谱图与实验光谱图基本一致。
     5.将设计、合成的二十种短波长菁染料作为荧光染色剂应用于H929骨髓瘤细胞和精子细胞的荧光显微成像技术中,结果表明:染料A8、A11、A28和A31在终浓度为1uM~5uM时表现出优良的荧光性能,并且具有膜通透性、无毒、不干扰细胞的正常生理功能、荧光背景干扰小、无光漂白、对核酸(DNA)有较强的亲和性,是一种潜在的活细胞膜通透性荧光探针。将二十种染料应用于细胞存活率的PI复染实验中,与SYBRGreenⅠ比较,染料A8、A28和A31在死细胞中几乎完全被PI替代,没有残留,然而SYBR GreenⅠ残留较多,从而影响细胞存活率的准确性,因此染料A8、A28、A31在PI复染实验中可以作为SYBR GreenⅠ的替代品应用于流式细胞术中。
Cyanine dyes present typical optical properties and act as the most important organic functional dyes in many processes of technological interest like sensitizers in photography, optical recording materials in laser disks, sensitizers in solar cell, pH fluorescence probe, nonlinear optical materials etc. A very attractive additional feature of short-wavelength cyanine dyes is the affinity for biological structures, especially for DNA/RNA. Besides, they are nuclear membrane permeant, tolerated by living cells, photostable, and low cell cytotoxicity. Therefore, they have been utilized in many fields, such as gel staining, DNA sequencing, and flow cytometry, cell imaging, biological macromolecules labeling, etc. However, the types and application areas of the commercial live cell fluorescent dyes are limited, which are expensive and their popularization in clinical analysis are limited. In order to explore the types and application areas of the fluorescent dyes with excellent performance, the short-wavelength cyanine dyes are as the target synthesis compound in the paper. The short-wavelength cyanine dyes are used in live cell imaging and flow cytometry. The possibility of the dyes as the potential fluorescence probe is discussed. The paper presents the structure features, properties and application of cyanine dyes, and the preparation of dimethine cyanine dyes, styryl hemicyanine dyes and monomethine merocyanine dyes in recent years.
     The main research included several aspects as the follows:
     1. Seven short-wavelength cyanine dyes (six novel compounds) were designed and synthesized by microwave irradiation method. The products were identified by 1H NMR, IR, UV-Vis spectroscopy and elemental analysis. Based on the microwave power and irradiation time, the reaction activity for quaternary salts was discussed. It could be found that the sequence of the reaction acitivity of 1H-indole-3-carbaldehyde and various heterocyclic quaternary salts was:quinoline quaternary≈2-methyl pyridine qunaternary salt≈4-methyl pyridine qunaternary salt> naphthothiazole quaternary salt≈benzothiazole quaternary salt> benzindole quaternary salt> benzimidazole quaternary salt. The dyes absorbed in the region 376.0~484.0 nm and had molar extinction coefficients of 1.8×104~5.7×104 L-mol-1cm-1. Their fluorescence maxima were located at 512.6~548.6 nm, their fluorescence quantum yields were in the range of 0.0018~0.0285 in methanol, and their Stokes shifts were in the range of 53.6~104.6 nm. Theλmax had relationship with the basicity of heterocyclic nucleus, increasingλmax is considered to indicate decreasing basicity of heterocyclic nucleus. Moreover, theλmax was blue-shifted with increasing the solvent dielectric constant.
     2. Thirteen novel short-wavelength cyanine dyes were designed and synthesized by microwave irradiation and classical solvent methods. The products were identified by 1H NMR, IR, UV-Vis spectroscopy and elemental analysis. The different substituents on the reactivity of quaternary salts was investigated, the result showed that reaction would took easier with increasing the electron donating ability of the substiuent. For the same substituent, 6-substituted heterocyclic quaternary slats was easier than that of 7-substituted heterocyclic quaternary when reaction with 1H-indole-3-carbaldehyde. The absorption and fluorescence properties of prepared dimethine cyanine dyes in the DNA/BSA presence were investigated, and the dyes had good affinity for DNA. Significant enhancement of the fluorescence intensity was observed for all the dye. The quantum yields of DNA-dyes increased up to 68.8 times compared with quantum yield of free dyes.
     3. Four monomethine merocyanine dyes (three novel compounds) were synthesized by one-pot method. The products were identified by1H NMR, IR, UV-Vis spectroscopy and elemental analysis. The dyes absorbed in the region 17.0~429.0 nm and had molar extinction coefficients of 3.3×104~4.5×104 L·mol-1cm-1. Their fluorescence maxima were located at 476.0~511.6 nm, their fluorescence quantum yields were in the range of 0.0008~0.0024 in methanol. and their Stokes shifts were in the range of 59.0-82.6 nm. The crystal structures and packing modes of four monomethine merocyanine dyes were analyzed by X-ray diffraction, which revealed molecular conformation, intra-and intermolecular interactions in solid state of the dyes.
     4. B3LYP/6-31G* and PBE1PBE/6-31G* levels were used for investigating the absorption spectra of seven indole dimethine cyanine dyes. The effect of solvent on the absorption and emission spectra of the dyes was taken into account using the polarizable continuum model PCM. The result showed that PBE1PBE/6-31G*(PCM) level gave more reliable description of the absorption characters. Based on the main torsion angles, it could be found that the better planar structural rigidity and the largerπconjugated system of the molecular, the stronger fluorescence it appeared. The lowest energy absorption in dyes was due to the first dipole-allowedπ→π* transition from HOMO to LUMO with largest oscillator strength. From the molecular orbitals, it could be found that the HOMO→LUMO absorption transition involved the intra electron displacement.
     CIS/PCM level was used for investigating the emisson spectra of seven quinoline dimethine cyanine dyes on the S1 geometry. The result showed that the average relative deviation is 1.7%, the method could be used for predicting the emission spectra of the dyes. The molar extinction coefficients were calculated by Swizard program, and the shape of simulated absorption spectra are in a principal agreement the experimental spectra.
     5. A further objective of this study was to explore the potential applications of the twenty prepared cyanine dyes as fluorescent probes in live cell imaging of H929 myeloma cells and sperms. The result showed that dyes A8、A11、A28 and A31 showed excellent fluorescence in the concentration of 1uM-5uM, and the dyes showed nuclear membrane permeant, low cell cytotoxicity, tolerated by living cells, little background interference, little photobleaching and good affinity for DNA. The dyes represented thus the potential cell-permeant fluorescence probes.
     We also investigated effect of the twenty dyes on counterstaining with PI in flow cytometry, the commercial SYBR Green I was taken as the contrastive probe. Another significant advantage of the dyes A8、A28 and A31 was their little remnant and no interference on the accuracy in flow cytometry when counterstaining with PI. However, SYBR Green I and PI existed in the dead cells simultaneously, which affect the accuracy obtained by flow cytometry. The short-wavelength dyes A8、A28 and A31 were able to replace SYBR Green I as fluorescent probes in flow cytometry.
引文
[1]郑光洪,冯西宁,染料化学[M].北京:中国纺织出版社,2001.
    [2]何瑾馨,染料化学[M].北京:中国纺织出版社,2004.
    [3]赵雅琴,魏玉娟,染料化学基础,北京:中国纺织出版社,2006.
    [4]孟涛,徐端夫,王笃金,et a1.阴阳离子菁染料J-聚集体的荧光光谱研究[J].光谱学与光谱分析,2008,28(6):1340-1342.
    [5]营冀祁,王玉英,熊建平,et a1.高密度光存储实现途径分析[J].半导体光电,2004,25(4):308-312.
    [6]孙树清,陈萍,郑德水,et al可录型光盘(CD-R)中染料膜层的光谱性质和光学特性[J].感光科学与光化学,1999,17(2):134-140.
    [7]Tani K., Matsuzaki K. i., Kodama Y., et al. Photophysical property of the J-aggregate thin film of an oxacyanine dye prepared by the spin-coating method and enhancement of its photostability by use of polydimethylsilane[J], Journal of Photochemistry and Photobiology A:Chemistry,2008,199:150-155.
    [8]Yao Q.-H., Meng F.-S., Li F.-Y, et al. Photoelectric conversion properties of four novel carboxylated hemicyanine dyes on TiO2 electrode[J]. Journal of Materials Chemistry,2003,13:1048-1053.
    [9]Matsuia M., Hashimoto Y, Funabiki K., et al. Application of near-infrared absorbing heptamethine cyanine dyes as sensitizers for zinc oxide solar cell[J]. Synthetic Metals,2005,148:147-153.
    [10]Ma X., Hua J., Wu W., et al. A high-efficiency cyanine dye for dye-sensitized solar cells[J]. Tetrahedron, 2008,64:345-350.
    [11]Chen Y. S., Zeng Z. H., Li C, et al. Highly efficient co-sensitization of nanocrystalline TiO2 electrodes with plural organic dyes[J]. New Journal of Chemistry,2005,29 (6):773-776.
    [12]E1-Shishtawy R. M., Almeida P. A new Vilsmeier-type reaction for one-pot synthesis of pH sensitive fluorescent cyanine dyes[J]. Tetrahedron,2006,62:7793-7798.
    [13]Mazieres M. R., Duprat C, Wolf J. G., et al. pH dependent spectral properties and electronic structure of benzothiazol containing cyanine dyes[J]. Dyes and Pigments,2009,80:355-360.
    [14]Xu Y, Liu Y., Qian X. Novel cyanine dyes as fluorescent pH sensors:PET, ICT mechanism or resonance effect?[J]. Journal of Photochemistry and Photobiology A:Chemistry,2007,190:1-8.
    [15]Kabatc J., Jedrzejewska B., Paczkowski J. Asymmetric Cyanine Dyes as Fluorescence Probes and Visible-Light Photoinitiators of Free-Radical Polymerization Processes[J]. Journal of Applied Polymer Science,2006,99 (207-217).
    [16]元以中,康海峰,孙真荣,et al.七甲川菁染料H-聚集体薄膜的线性及三阶非线性光学性能研究[J].科学通报,2007,52(7):748-751.
    [17]Wang J., Cao W. F., Su J. H., et al. Syntheses and nonlinear absorption of novel unsymmetrical cyanines[J]. Dyes and Pigments,2003,57:171-179.
    [18]Webster S., Fu J., Padilha L. A., et al. Comparison of nonlinear absorption in three similar dyes: Polymethine, squaraine and tetraone[J]. Chemical Physics,2008,348:143-151.
    [19]Xu X., Qiu W., Zhou Q., et al. Nonlinear Optical Absorption Properties of Two Multisubstituted p-Dimethylaminophenylethenyl Pyridiniums[J]. Journal of Physical Chemistry B,2008,112:4913-4917.
    [20]Matselyukh B. P., Yarmoluk S. M., Matselyukh A. B., et al. Interaction of cyanine dyes with nucleic acids: XXXI. Using of polymethine cyanine dyes for the visualization of DNA in agarose gels[J]. Journal of Biochemical and Biophysical Methods,2003,57:35-43.
    [21]Kovalska V. B., Tokar V. P., Losytskyy M. Y, et al. Studies of monomeric and homodimeric oxazolo[4,5-6] pyridinium cyanine dyes as fluorescent probes for nucleic acids visualizatio[J]. Journal of Biochemical and Biophysical Methods,2006,68:155-165.
    [22]Fechter E. J., Olenyuk B., Dervan P. B. Sequence-Specific Fluorescence Detection of DNA by Polyamide-Thiazole Orange Conjugates[J]. Journal of American Chemical Society,2005,127: 16685-16691.
    [23]Duthie R. S., Kalve I. M., Samols S. B., et al. Novel Cyanine Dye-Labeled Dideoxynucleoside Triphosphates for DNA Sequencing[J]. Bioconjugate chemistry,2002,13 (4):699-706.
    [24]Thompson M. Synthesis, photophysical effects, and DNA targeting properties of oxazole yellow-peptide bioconjugates[J]. Bioconjugate chemistry,2006,17:507-513.
    [25]Mujumdar S. R., Mujumdar R. B., Grant C. M., et al. Cyanine-labeling reagents:sulfobenzindocyanine succinimidyl esters[J]. Bioconjugate chemistry,1996,7:356-362.
    [26]Kanofsky J. R., Sima P. D. Preferential cytotoxicity for multidrug-resistant K562 cells using the combination of a photosensitizer and a cyanine dye[J]. Journal of Photochemistry and Photobiology B: Biology,2000,54:136-144.
    [27]Chen Y, Gryshuk A., Achilefu S., et al. A Novel Approach to a Bifunctional Photosensitizer for Tumor Imaging and Phototherapy [J]. Bioconjugate chemistry,2005,16:1264-1274.
    [28]Carreon J. R., Stewart K. M., Jr. K. P. M., et al. Cyanine dye conjugates as probes for live cell imaging[J]. Bioorganic& Medicinal Chemistry Letters,2007,17:5182-5185.
    [29]Toutchkine A., Nguyen D.-V., Hahn K. M. Simple One-Pot Preparation of Water-Soluble, Cysteine-Reactive Cyanine and Merocyanine Dyes for Biological Imaging[J]. Bioconjugate chemistry,2007,18:1344-1348.
    [30]Timtcheva I., Maximova V., Deligeorgiev T., et al. New asymmetric monomethine cyanine dyes for nucleic-acid labelling:absorption and fluorescence spectral characteristics[J]. Journal of Photochemistry and Photobiology A:Chemistry,2000,130:7-11.
    [31]Deligeorgiev T. G., Gadjev N. I., Timtcheva I. I., et al. Synthesis of homodimeric monomethine cyanine dyes as noncovalent nucleic acid labels and their absorption and fluorescence spectral characteristics[J]. Dyes and Pigments,2000,44:131-136.
    [32]Kovalska V. B., Volkova K. D., Losytskyy M. Y, et al.6,6'-Disubstituted benzothiazole trimethine cyanines-new fluorescent dyes for DNA detection[J]. Spectrochimica Acta Part A,2006,65:271-277.
    [33]Hilal H., Taylor J. A. Determination of the stoichiometry of DNA-dye interaction and application to the study of a bis-cyanine dye-DNA complex[J]. Dyes and Pigments, In Press, Corrected Proof.
    [34]Balanda A. O., Volkova K. D., Kovalska V. B., et al. Synthesis and spectraleluminescent studies of novel 4-oxo-4,6,7,8-tetrahydropyrrolo[1,2-a]thieno[2,3-d]pyrimidinium styryls as fluorescent dyes for biomolecules detection[J]. Dyes and Pigments,2007,75:25-31.
    [35]Li Q., Kim Y., Namm J., et al. RNA-selective, live cell imaging probes for studying nuclear structure and function[J]. Chemistry & Biology,2006,13 (6):615-623.
    [36]Wang L. Y., Zhang X. G, Li F. M., et al. Microwave-Assisted Solvent-Free Synthesis of Some Styryl Dyes with Benzimidazole Nucleus[J]. Synthetic Communications,2004,34 (12):1-7.
    [37]Wang L. Y, Zhang X. G., Shi Y. P., et al. Microwave-assisted solvent-free synthesis of some hemicyanine dyes[J]. Dyes and Pigments,2004,62 (1):21-25.
    [38]Zhang X.-H., Wang L.-Y, Nan Z.-X., et al. Microwave-assisted solvent-free synthesis and spectral properties of some dimethine cyanine dyes as fluorescent dyes for DNA detection[J]. Dyes and Pigments, 2008,79:205-209.
    [39]Zhang X.-H., Wang L.-Y., Zhai G-H., et al. Microwave-assisted Solvent-free Synthesis of Some Dimethine Cyanine Dyes, Spectral Properties and TD-DFT/PCM Calculations[J]. Bulletin of Korean Chemical Society, 2007,28 (12):2382-2388.
    [40]Zhang X.-H., Wang L.-Y., Zhai G-H., et al. The absorption, emission spectra as well as ground and excited states calculations of some dimethine cyanine dyes[J]. Journal of Molecular Structure:THEOCHEM,2009, 906:50-55.
    [41]Zhang X. H., Wang L. Y, Zhai G H., et al. X-ray and DFT studies of the structure and spectral property of 2-[2-(4-dimethylaminophenyl)ethenyl]-1-methyl-pyridinium iodide[J]. Journal of Molecular Structure, 2008,881:117-122.
    [42]Wang L.-Y, Chen Q.-W., Zhai G-H., et al. Theoretical study on the structures and absorption properties of styryl dyes with quinoline nucleus[J]. Dyes and Pigments,2007,72 (3):357-362.
    [43]Wang L. Y, Chen Q. W., Zhai G. H., et al. Investigation of the structures and absorption spectra for some hemicyanine dyes with pyridine nucleus by TD-DFT/PCM approach[J]. Journal of Molecular Structure: THEOCHEM,2006,778 (1-3):15-20.
    [44]Fu Y.-L., Huang W., Li C.-L., et al. Monomethine cyanine dyes with an indole nucleus:Microwave-assisted solvent-free synthesis, spectral properties and theoretical studies[J]. Dyes and Pigments,2009,82:409-415.
    [45]WANG L.-Y, LI F.-M., Yi H., et al. Synthesis and Properties of Novel Hemicyanine Dyes-β-Cyclodextrin[J]. Chinese Journal of Chemistry,2007,25:1192-1195.
    [46]范芳丽,乔泽邦,陈沁闻,et al.2-取代毗啶半菁染料的无溶剂微波合成及光谱性质的理论研究[J].有机化学,2006,26(10):1389-1393.
    [47]Huang W., Wang L.-Y, Fu Y.-L., et al. Study on Thermodynamics of Three Kinds of Benzindocarbocyanine Dyes in Aqueous Methanol Solution[J]. Bulletin of Korean Chemical Society,2009,30 (3):556-560.
    [48]李春兰,王兰英,孙国峰,et a1.吲哚菁染料的研究进展[J].有机化学,2006,26(4):442-453.
    [49]WANG L. Y, ZHANG X. G., JIA Y Q., et al. Solvent-free Rapid Synthesis of Styryl Dyes with Benzimidazole Nucleus Using Microwave Irradiation[J]. Chinese Chemical Letters,2003,14 (11): 1116-1118.
    [50]Hilal H., Taylor J. A. Determination of the stoichiometry of DNA-dye interaction and application to the study of a bis-cyanine dye-DNA complex[J]. Dyes and Pigments,2007,75:483-490.
    [51]Chipon B., Clave G., Bouteiller C., et al. Synthesis and post-synthetic derivatization of a cyanine-based amino acid. Application to the preparation of a novel water-soluble NIR dye[J]. Tetrahedron,2006,47: 8279-8284.
    [52]Perlitz C., Licha K., Scholle F.-D., et al. Comparison of Two Tricarbocyanine-Based Dyes for Fluorescence Optical Imaging[J]. Journal of Fluorescence,2005,15 (3).
    [53]Song B., Zhang Q., Ma W.-H., et al. The synthesis and photostability of novel squarylium indocyanine dyes[J]. Dyes and Pigments,2009,82:396-400.
    [54]Song F., Peng X., Lu E., et al. Syntheses, spectral properties and photostabilities of novel water-soluble near-infrared cyanine dyes[J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,168:53-57.
    [55]杨松杰,田禾.菁染料光稳定性研究进展[J].感光科学与光化学,1999,17(3):275-283.
    [56]范芳丽,王兰英,袁宏安,et al.苯并吲哚二碳菁染料的合成及性质研究[J].化学工程,2007,35(5):63-66.
    [57]Chen X. Y., Peng X. J., Cui A. J., et al. Photostabilities of novel heptamethine 3H-indolenine cyanine dyes with different N-substituents[J]. Journal of Photochemistry and Photobiology A:Chemistry,2006,181: 79-85.
    [58]Bouteiller C., Clave G., Bernardin A., et al. Novel Water-Soluble Near-Infrared Cyanine Dyes:Synthesis, Spectral Properties, and Use in the Preparation of Internally Quenched Fluorescent probes[J]. Bioconjugate chemistry,2007,18:1303-1317.
    [59]Wang L., Fan J. L., Qiao X. Q., et al. Novel asymmetric Cy5 dyes:Synthesis, photostabilities and high sensitivity in protein fluorescence labeling[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2010, doi:10.1016/j.jphotochem.2010.01.002.
    [60]干福熹主编,信息材料[M].天津:天津大学出版社,2000.
    [61]Gan F., Hou L., Wang G., et al. Optical and recording properties of short wavelength optical storage materials[J]. Materials Science and Engineering B,2000,76:63-68.
    [62]孙树清,陈萍.可录型光盘与菁染料光存储媒体的研究进展[J].化学通报,1999,6:20-23.
    [63]贺锋涛,冯晓强,张东玲,et al.三甲川菁染料绿光高密度光存储研究[J].激光技术,2004,28(5):449-451.
    [64]Shimizu H., Morishita D., Optical information recording medium with two different read/wirte wavelengths and method of manufacturing the same[P]. EP:1622138,2006-02-01.
    [65]Chapin D. M., Fullerand C. S., Pearson G. L. A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power[J]. Journal of Applied Physics,1954,25 (5):676-677.
    [66]Polo A. S., Itokazu M. K., Iha N. Y. M. Metal complex sensitizers in dye-sensitized solar cells[J]. Coordination Chemistry Reviews,2004,284:1343-1361.
    [67]Wu J., Hao S., Lan Z., et al. An All-Solid-State Dye-Sensitized Solar Cell-Based PoIy(N-alkyl-4-vinyl-pyridine iodide) Electrolyte with Efficiency of 5.64%[J]. Journal of American Chemical Society,2008,130:11568-11569.
    [68]Jasieniak J., Johnston M., Waclawik E. R. Characterization of a Porphyrin-Containing Dye-Sensitized Solar Cell[J]. Journal of Physical Chemistry B,2004,108:12962-12971.
    [69]Ma T., Akiyama M., Abe E., et al. High-Efficiency Dye-Sensitized Solar Cell Based on a Nitrogen-Doped Nanostructured Titania Electrode[J]. Nano Letters,2005,5 (12):2543-2547.
    [70]Nazeeruddin M. K., Bessho T., Cevey L., et al. A high molar extinction coefficient charge transfer sensitizer and its application in dye-sensitized solar cell[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2007,185:331-337.
    [71]Preat J., Michaux C., Jacquemin D., et al. Enhanced Efficiency of Organic Dye-Sensitized Solar Cells: Triphenylamine Derivatives[J]. Journal of Physical Chemistry C,2009,113:16821-16833.
    [72]Rocca D., Gebauer R., Angelis F. D., et al. Time-dependent density functional theory study of squaraine dye-sensitized solar cells[J]. Chemical Physics Letters,2009,475:49-53.
    [73]Hagberg D. P., Marinado T., Karlsson K. M., et al. Tuning the HOMO and LUMO Energy Levels of Organic Chromophores for Dye Sensitized Solar Cells[J]. Journal of Organic Chemistry,2007,72:9550-9556.
    [74]Caballero R., Barea E. M., Fabregat-Santiago F., et al. Injection and Recombination in Dye-Sensitized Solar Cells with a Broadband Absorbance Metal-Free Sensitizer Based on Oligothienylvinylene[J]. Journal of Physical Chemistry C,2008,112:18623-18627.
    [75]Guillen E., C.Fernandez-Lorenzo, R.Alcantara, et al. Solvent-free ZnO dye-sensitised solar cells[J]. Solar Energy Materials & Solar Cells,2009,93:1846-1852.
    [76]McCall K. L., Jennings J. R., HongxiaWang, et al. Novel ruthenium bipyridyl dyes with S-donor ligands and their application in dye-sensitized solar cells[J]. Journal of Photochemistry and Photobiology A: Chemistry,2009,202:196-204.
    [77]Hara K., Sato T., Katoh R., et al. Molecular Design of Coumarin Dyes for Efficient Dye-Sensitized Solar Cells[J]. Journal of Physical Chemistry B,2003,107:597-606.
    [78]Liang M., Xu W., Cai F., et al. New Triphenylamine-Based Organic Dyes for Efficient Dye-Sensitized Solar Cells[J]. Journal of Physical Chemistry C,2007,111:4465-4472.
    [79]Shen P., Liu Y., Huang X., et al. Efficient triphenylamine dyes for solar cells:Effects of alkyl-substituents and π-conjugated thiophene unit[J]. Dyes and Pigments,2009,83 (2):187-197.
    [80]Xu W., Pei J., Shi J., et al. Influence of acceptor moiety in triphenylamine-based dyes on the properties of dye-sensitized solar cells[J]. Journal of Power Sources,2008,183 (2):792-798.
    [81]Hara K., Tachibana Y, Ohga Y., et al. Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes[J]. Solar Energy Materials & Solar Cells,2003,77 (1):89-103.
    [82]Zhang X., Zhang J.-J., Xia Y.-Y. Molecular design of coumarin dyes with high efficiency in dye-sensitized solar cells[J]. Journal of Photochemistry and Photobiology A:Chemistry,2008,194:167-172.
    [83]Ibarra J. C., Olivares-Perez A. New holographic recording material:bromothymol blue dye with rosin[J]. Optical Materials,2002,20 (1):73-80.
    [84]樊美公,光化学基本原理与光子学材料科学[M].北京:科学出版社,2001:15.
    [85]Poornesh P., Shettigar S., Umesh G., et al. Nonlinear optical studies on 1,3-disubstituent chalcones doped polymer films[J]. Optical Materials,2009,31 (6):854-859.
    [86]Wang W.-1., Wang M., Huang W.-d. A novel growth method for organic nonlinear optical crystals[J]. Optical Materials,2004,27 (3):609-612.
    [87]Churikov V. M., Hsu C.-C. Photoinduced Third-Order Nonlinear Optical Phenomena in Azo-Dye Polymers[J]. Photoreactive Organic Thin Films,2002:365-395.
    [88]Bloor D., Buschow K. H. J., Robert W. C., et al., Molecular Nonlinear Optical Materials[M]. Oxford: Elsevier,2001:5812-5817.
    [89]Reintjes J. F., Robert A. M., Nonlinear Optical Processes[M]. New York:Academic Press,2001:537-581.
    [90]Boyd R. W, Fischer G. L., Nonlinear Optical Materials[M]. Oxford:Elsevier,2001:6237-6244.
    [91]Qian Y, Lin B., Xiao G., et al. Chromophores exhibiting nonlinearity-transparency-thermal stability trade-off:synthesis and nonlinear optical properties of two-dimensional chromophores containing nitro acceptors[J]. Optical Materials,2004,27:125-130.
    [92]Cai Z., Zhou M., Gao J. A new type of organic donor-p-acceptor compounds with third-order nonlinear optical properties[J]. Optical Materials,2009,31:1128-1133.
    [93]黎爱珍,李有君,朱伟玲,et al.偶氮苯光致异构反饱和吸收的光学双稳态开关的理论研究[J].大学物理,2008,37(5):33-36.
    [94]李德川,王明建,方香云,et al.有机材料反饱和吸收特性分析[J].应用光学,2009,30(1):172-176.
    [95]张冰,刘智波,陈树琪,et al.新型卟啉衍生物反饱和吸收研究[J].物理学报,2007,56(9):5252-5257.
    [96]Terai T., Nagano T. Fluorescent probes for bioimaging application[J]. Current Opinion in Chemical Biology,2008,12 (5):515-521.
    [97]王丽秋.水溶性3H-吲哚菁型生物荧光标示染料的研究[D].大连:大连理工大学,2003.
    [98]Zhu J., Li J.-J., Zhao J.-W. Spectral characters of Rhodamine B as a multi-information fluorescence probe for bovine serum albumins[J]. Sensors and Actuators B:Chemical,2009,138 (1):9-13.
    [99]Hasegawa T., Kondo Y., Koizumi Y., et al. A highly sensitive probe detecting low pH area of HeLa cells based on rhodamine B modified [beta]-cyclodextrins[J]. Bioorganic & Medicinal Chemistry,2009,17 (16): 6015-6019.
    [100]Shibata A., Furukawa K., Abe H., et al. Rhodamine-based fluorogenic probe for imaging biological thiol[J]. Bioorganic & Medicinal Chemistry Letters,2008,18 (7):2246-2249.
    [101]Reungpatthanaphong P., Dechsupa S., Meesungnoen J., et al. Rhodamine B as a mitochondrial probe for measurement and monitoring of mitochondrial membrane potential in drug-sensitive and-resistant cells[J]. Journal of Biochemical and Biophysical Methods,2003,57 (1):1-16.
    [102]Camur M., Bulut M., Kandaz M., et al. Synthesis, characterization and fluorescence behavior of new fluorescent probe phthalocyanines bearing coumarin substituents[J]. Polyhedron,2009,28 (2):233-238.
    [103]Jones G., Jimenez J. A. C. Azole-linked coumarin dyes as fluorescence probes of domain-forming polymers[J]. Journal of Photochemistry and Photobiology B:Biology,2001,65 (1):5-12.
    [104]Feau C., Klein E., Kerth P., et al. Synthesis of a coumarin-based europium complex for bioanalyte labeling[J]. Bioorganic & Medicinal Chemistry Letters,2007,17 (6):1499-1503.
    [105]Ma Y. M., Hider R. C. The selective quantification of iron by hexadentate fluorescent probes[J]. Bioorganic & Medicinal Chemistry,2009,17 (23):8093-8101.
    [106]赵红莉,袁慧慧,蓝闽波.菁染料在荧光探针及光动力疗法中的应用[J].感光科学与光化学,2003,21(3):212-222.
    [107]Volkova K. D., Kovalska V. B., Balanda A. O., et al. Specific fluorescent detection of fibrillar a-synuclein using mono-and trimethine cyanine dyes[J]. Bioorganic & Medicinal Chemistry,2008,16:1452-1459.
    [108]Rosania G. R., Lee J. W., Ding L., et al. Combinatorial Approach to Organelle-Targeted Fluorescent Library Based on the Styryl Scaffold[J]. Journal of American Chemical Society,2003,125:1130-1131.
    [109]Shindy H. A. Synthesis, characterization and visible spectral behaviour of some novel methine, styryl and aza-styryl cyanine dyes[J]. Dyes and Pigments,2007, (75):344-350.
    [110]Kovalska V. B., Losytskyy M. Y, Kryvorotenko D. V., et al. Synthesis of novel fluorescent styryl dyes based on the imidazo[1,2-a]pyridinium chromophore and their spectral-fluorescent properties in the presence of nucleic acids and proteins[J]. Dyes and Pigments,2006,68:39-45.
    [111]谢普会,郭丰启,董兰芬.几种半菁染料的合成、光物理性质及在pH检测中的应用研究[J].河南科学,2009,27(2):164-168.
    [112]刘玮炜,欧松,王炳祥,et al.含中氮茚环的二甲川菁的合成[J].应用化学,2004,21(6):581-584.
    [113]Lee W.-W. W., Gan L.-M., Loh T.-P. Microwave-assisted synthesis of photochromic fulgimides[J]. Journal of Photochemistry and Photobiology A:Chemistry,2007,185:106-109.
    [114]Lee C.-C., Wang J.-C., Hu A. T. Microwave-assisted synthesis of photochromic spirooxazine dyes under solvent-free condition[J]. Materials Letters,2004,58:535-538.
    [115]Shaabani A., Maleki-Moghaddam R., A. Maleki A. H. R. Microwave assisted synthesis of metal-free phthalocyanine and metallophthalocyanines[J]. Dyes and Pigments,2007,74:279-282.
    [116]Loones K. T. J., Maes B. U. W., Rombouts G., et al. Microwave-assisted organic synthesis:scale-up of palladium-catalyzed aminations using single-mode and multi-mode microwave equipment[J]. Tetrahedron, 2005,61(43):10338-10348.
    [117]Lidstrom P., Tierney J., Wathey B., et al. Microwave assisted organic synthesis-a review [J]. Tetrahedron, 2001,57 (45):9225-9283.
    [118]Mavandadi F., Pilotti A. The impact of microwave-assisted organic synthesis in drug discovery[J]. Drug Discovery Today,2006,11:165-174.
    [119]Ozil M., Agar E., Sasmaz S., et al. Microwave-assisted synthesis and characterization of the monomeric phthalocyanines containing naphthalene-amide group moieties and the polymeric phthalocyanines containing oxa-aza bridge[J]. Dyes and Pigments,2007,75:732-740.
    [120]Horikoshi S., Ohmori N., Kajitani M., et al. Microwave-enhanced bromination of a terminal alkyne in short time at ambient temperature:Synthesis of phenylacetylene bromide[J], Journal of Photochemistry and Photobiology A:Chemistry,2007,189:374-379.
    [121]Rao M. L. N., Awasthi D. K., Banerjee D. Microwave-mediated solvent free Rap-Stoermer reaction for efficient synthesis of benzofurans[J]. Tetrahedron Letters,2007,48:431-434.
    [122]Millos C. J., Whittaker A. G., Brechin E. K. Microwave heating-A new synthetic tool for cluster synthesis[J]. Polyhedron,2007,26 (15):1927-1933.
    [123]Ikuma Y., Oosawa H., Shimada E., et al. Effect of microwave radiation on the formation of Ce2O(CO3)2·H2O in aqueous solution[J]. Solid State Ionics,2002,151:347-352.
    [124]王少康,李春兰,黄薇,et al.吲哚二甲川菁染料的绿色合成及其光谱研究[J].西北大学学报(自然科学版),2007,37(2):239-241.
    [125]Tu C., Osborne E. A., Louie A. Y. Synthesis and characterization of a redox-and light-sensitive MRI contrast agent[J]. Tetrahedron,2009,65:1241-1246.
    [126]Shindy H. A., El-Maghraby M. A., Eissa F. M. Synthesis, photosensitization and antimicrobial activity of certain oxadiazine cyanine dyes[J]. Dyes and Pigments,2006,70:110-116.
    [127]Barresi V., Condorelli D. F., Fortuna C. G., et al. In Vitro Antitumor Activities of 2,6-di-[2-(Heteroaryl)vinyl]pyridines and Pyridiniums[J]. Bioorganic & Medicinal Chemistry,2002,10: 2899-2904.
    [128]Fichera M., Fortuna C. G., Impallomeni G., et al. Studies on the Interactions of the New 2,6-Bis[2-(heteroaryl)vinyl]-1-methylpyridinium Cations with the Decamer d(CGTACGTACG)2[J]. European Journal of Organic Chemistry,2002,2002 (1):145-150.
    [129]Zhang W.-W., Yu Y.-G., Lu Z.-D., et al. Ferrocene-Phenothiazine Conjugated Molecules:Synthesis, Structural Characterization, Electronic Properties, and DFT-TDDFT Computational Study [J]. Oragnometallics,2007,26:865-873.
    [130]Manzur C., Millan L., Figueroa W., et al. Organo-Iron Benzaldehyde-Hydrazone Complexes. Synthesis, Characterization, Electrochemical, and Structural Studies[J]. Oragnometallics,2003,22 (1):153-161.
    [131]Alonso B., Blais J.-C., Astruc D. Successive Activation and Perfunctionalization of Arenes by π-Complexation to CpFe+and Cp*Ru+for the Construction of Organometallic Stars and Dendrimers[J]. Oragnometallics,2002,21 (5):1001-1003.
    [132]Liao Y, Eichinger B. E., Firestone K. A., et al. Systematic Study of the Structure-Property Relationship of a Series of Ferrocenyl Nonlinear Optical Chromophores[J]. Journal of American Chemical Society,2005, 2758-2766.
    [133]Yang F., Xu X.-L., Gong Y.-H., et al. Synthesis and nonlinear optical absorption properties of two new conjugated ferrocene-bridge-pyridinium compounds[J]. Tetrahedron,2007,63:9188-9194.
    [134]Wurthner F., Yao S. Merocyanine Dyes Containing Imide Functional Groups:Synthesis and Studies on Hydrogen Bonding to Melamine Receptors[J]. Journal of Organic Chemistry,2003,68:8943-8949.
    [135]Anderluh M., Jukic M., Petric R. Three-component one-pot synthetic route to 2-amino-5-alkylidenethiazol-4-ones[J]. Tetrahedron,2009,65:344-350.
    [136]Shigemitsu Y., Sugimoto M., Itonaga S., et al. Synthesis and electronic spectra of novel merocyanine dyes bearing a maleimide ring incorporated into the methine chains[J]. Dyes and Pigments,2003,56:167-179.
    [137]费学宁,谷迎春.荧光染料探针修饰研究进展[J].自然科学进展,2007,17(12):1609-1615.
    [1]Chen X. Y., Guo J. H., Peng X. J., et al. Novel cyanine dyes with different methine chains as sensitizers for nanocrystalline solar cell[J]. Journal of Photochemsity and Photobiology A:Chemistry,2005,171:231-236.
    [2]Matsuia M., Hashimoto Y., Funabiki K., et al. Application of near-infrared absorbing heptamethine cyanine dyes as sensitizers for zinc oxide solar cell[J]. Synthetic Metals,2005,148:147-153.
    [3]Perlitz C., Licha K., Scholle F.-D., et al. Comparison of Two Tricarbocyanine-Based Dyes for Fluorescence Optical Imaging[J]. Journal of Fluorescence,2005,15 (3):443-454.
    [4]Xu Y. F., Liu Y, Qian X. H. Novel cyanine dyes as fluorescent pH sensors:PET, ICT mechanism or resonance effect?[J]. Journal of Photochemsity and Photobiology A:Chemistry,2007,190:1-8.
    [5]Zhu C.-Q., Wu Y.-Q., Zheng H., et al. Fluorescence enhancement method for measuring anionic surfactants with a hydrophobic cyanine dye[J]. Anal Bioanal Chem,2004,379:730-734.
    [6]陈秀英,赵小琴,李芒.功能性三甲川菁染料的合成及其光电性质研究[J].广东化工,2008,35(1): 25-29.
    [7]Fu Y.-L., Huang W., Li C.-L., et al. Monomethine cyanine dyes with an indole nucleus:Microwave-assisted solvent-free synthesis, spectral properties and theoretical studies[J]. Dyes and Pigments,2009,82:409-415.
    [8]陈秀英,赵小琴,郑昌戈.新型不对称五甲川菁染料的合成及光稳定性能研究[J].影响科学与光化学,2008,26(4):291-298.
    [9]过家好,何晓英,蔡生民,et al.新型菁类染料Cy5敏化ZnO纳米晶电极[J].应用化学,2007,24(4):383-387.
    [10]Kim J. S., Kodagahally R., Strekowski L., et al. A study of intramolecular H-complexes of novel bis(heptamethine cyanine) dyes[J]. Talanta,2005,67:947-954.
    [11]Patonay G, Kim J. S., Kodagahally, et al. Spectroscopic Study of a Novel Bis(heptamethine cyanine) Dye and Its Interaction with Human Serum Albumin [J]. Applied Spectroscopy,2005,59 (5):104A-114A.
    [12]Loupy A., Microwave in organic synthesis[M]. Weinheim:Wiley-VCH,2002.
    [13]Gedye R., Smith F., Westaway K., et al. The use of microwave ovens for rapid organic synthesis[J]. Tetrahedron Letters,1986,27 (3):279-282.
    [14]金钦汉,微波化学[M].北京:科学出版社,1999:126-146.
    [15]Shaabani A., Maleki-Moghaddam R., Maleki A., et al. Microwave assisted synthesis of metal-free phthalocyanine and metallophthalocyanines[J]. Dyes and Pigments,2007,74:279-282.
    [16]Wang L. Y., Zhang X. G., Li F. M., et al. Microwave-Assisted Solvent-Free Synthesis of Some Styryl Dyes with Benzimidazole Nucleus[J]. Synthetic Communications,2004,34 (12):1-7.
    [17]Ramaiah K., Dubey P. K., Rao D. E., et al. Sytnhesis and spectral properties of a variety of 2-styrylbenzimidazoles[J]. Indian Journal of Chemsitry,2000,39B:904-914.
    [18]张思规,实用精细化学品手册[M].北京:化学工业出版社,1996:1541.
    [19]Kiprianov A. I., Rozum Y. S. Ultraviolet absorption spectra of benzothiazole derivatrives[J]. Zhur. Obshchei Khim,1951,21:2038-2045.
    [20]Pool W. O., Harwood H. L., Ralstion A. W.2-Alkylbenzimidazoles as derivatives for the identification of aliphatic acid[J]. J. Am. Chem. Soc.,1937,59:178-179.
    [21]Zakharova N. A., Porai-Koshits B. A., Efros L. S. Acylation of 2-hydroxymethylbenzimidazole and the products of its methylation[J]. Zhur. Obshchei Khim,1953,23:1225-1230.
    [22]Sutherland D., Comption C. The absorption spectra of some substituted quinolines and their methiodides[J]. The Journal of Orgainc Chemistry,1952,17 (9):1257-1261.
    [23]Smith J. L. B. Dye stuffs derived from heterocyclic bbases containing reacive methyl groups[J]. Journal of Chemical Society,1923,123:2288-2296.
    [24]Bergmann E. D., Crane F. E. J., Fuoss R. M. Experiments in the 1,2-di-(y-pyridyl)ethane series[J]. Journal of American Chemical Society,1952,74:5979-5982.
    [25]范芳丽.苯并吲哚菁染料的合成及性质研究[D].西安:西北大学,2006.
    [26]Fery-Forgues S., Lavabre D. Are Fluorescence Quantum Yields So Tricky to Measure? A Demonstration Using Familiar Stationery Products[J]. Journal of Chemical Education,1999,76:1260-1264.
    [27]Casey K. G., Quitevis E. L. Effect of solvent polarity on nonradiative processes in xanthene dyes: Rhodamine B in normal alcohols[J]. Journal of Physical Chemistry,1988,92:6590-6594.
    [28]Jedrzejewska B., Kabatc J., Pietrzak M., et al. Hemicyanine dyes:synthesis, structure and photophysical properties[J]. Dyes and Pigments,2003,58 (1):47-58.
    [29]常建华,董绮功,波谱原理及解析[M].第一版;北京:科学出版社,2001:76-152.
    [30]Brooker L. G. S., Sklar A. L., Cressman H. W. J., et al. Color an constitution. Ⅶ Interpretation of Absorption of dyes containing heterocyclic nucleiof different basicities[J]. J. Am. Chem. Soc,1945,67: 1875-1889.
    [31]樊美公,光化学基本原理与光子学材料科学[M].北京:科学出版社,2001:15.
    [32]Peng X., Song F., Lu E., et al. Heptamethine Cyanine Dyes with a Large Stokes Shift and Strong Fluorescence:A Paradigm for Excited-State Intramolecular Charge Transfer[J]. Journal of American Chemical Society,2005,127:4170-4171.
    [33]张雯,崔月芝,王世杰,et al.多支结构的吡嗪衍生物的合成及其双光子吸收性质[J].化学学报,2009,67(16):1880-1884.
    [1]江镇海.2_羟基喹啉系列中间体市场看好[J].农药市场信息,2009,10:24.
    [2]Kwiek J. J., Haystead T. A. J., Rudolph J. Kinetic Mechanism of Quinone Oxidoreductase 2 and Its Inhibition by the Antimalarial Quinolines[J]. Biochemistry,2004,43:4538-4547.
    [3]Golas J. M., Lucas J., Etienne C., et al. SKI-606, a Src/Abl inhibitor with in vivo activity in colon tumor xenograft models[J]. Cancer Research,2005,65:5358-5364.
    [4]Cao X., You Q.-D., Li Z.-Y., et al. Design and synthesis of 7-alkoxy-4-heteroarylamino-3-quinolinecarbonitriles as dual inhibitors of c-Src kinase and nitric oxide synthase[J]. Bioorganic & Medicinal Chemistry,2008,16:5890-5898.
    [5]Diacon A. H., Pym A., Grobusch M., et al. The Diarylquinoline TMC207 for Multidrug-Resistant Tuberculosis[J]. The New England Journal of Medicine,2009,360:2397-2405.
    [6]Koraiem A. I. M., EI-Hamd R. M. A., Khalafalah A. K., et al. Synthesis and Properties of Some Naphtho (Quinolino)-Quinone Heterocyclic Dimethine Cyanine Dyes[J]. Dyes and Pigments,1996,30:89-98.
    [7]Shindy H. A., El-Maghraby M. A., Eissa F. M. Synthesis, photosensitization and antimicrobial activity of certain oxadiazine cyanine dyes[J]. Dyes and Pigments,2006,70:110-116.
    [8]Kovalska V. B., Tokar V. P., Losytskyy M. Y, et al. Studies of monomeric and homodimeric oxazolo[4,5-b] pyridinium cyanine dyes as fluorescent probes for nucleic acids visualization[J]. Journal of Biochemical and Biophysical Methods,2006,68:155-165.
    [9]Fechter E. J., Olenyuk B., Dervan P. B. Sequence-Specific Fluorescence Detection of DNA by Polyamide-Thiazole Orange Conjugates[J]. Journal of American Chemical Society,2005,127:16685-16691.
    [10]Carreon J. R., Stewart K. M., Jr. K. P. M., et al. Cyanine dye conjugates as probes for live cell imaging[J]. Bioorganic & Medicinal Chemistry Letters,2007,17:5182-5185.
    [11]Eriksson M., Westerlund F., Mehmedovic M., et al. Comparing mono-and divalent DNA groove binding cyanine dyes-Binding geometries, dissociation rates, and fluorescence properties[J]. Biophysical Chemistry,2006,122:195-205.
    [12]Deligeorgiev T., Timcheva I., Maximova V., et al. Homodimeric monomethine cyanine dyes SOSO-1 and TOTO-1-6C-synthesis and fluorescence properties in the presence of nucleic acids[J]. Dyes and Pigments, 2004,61:79-84.
    [13]El-Shishtawy R. M., Santos C. R., Goncalves I., et al. New amino and acetamido monomethine cyanine dyes for the detection of DNA in agarose gels[J]. Bioorganic & Medicinal Chemistry,2007:5537-5542.
    [14]Dictionary of orfanic compounds Vol.5[M]. Fiveth Revised and enlarged editon; Suffolk:Ltd Bungay, 1982.
    [15]李英.含硅碳双键化合物的研究[D].西安:西北大学,1995.
    [16]Leir C. M. An improvement in the Doebner-Miller synthesis of quinaldines[J]. The Journal of Orgainc Chemistry,1977,42 (5):911-913.
    [17]试剂手册[M].第三版;上海:上海科学技术出版社,2002:874.
    [18]Sutherland D., Comption C. The absorption spectra of some substituted quinolines and their methiodides[J]. The Journal of Orgainc Chemistry,1952,17 (9):1257-1261.
    [19]Minkin V. I., Ardashev B. I. New nethod of preparation of quinaldine bases and N-arylquinaldinium salts by condensation of arylamines with aldehydes[J]. Zhur obshchei khim,1958,28:2556-2560.
    [20]Krapf R., Illsley N. P., Tseng H. C., et al. Structure-activity relationships of chloride-sensitive fluorescent indicators for biological application [J]. Analytical Biochemistry,1988,169 (1):142-150.
    [21]Casey K. G., Quitevis E. L. Effect of solvent polarity on nonradiative processes in xanthene dyes: Rhodamine B in normal alcohols[J]. Journal of Physical Chemistry,1988,92:6590-6594.
    [22]胡宏纹,有机化学(第二版)下册[M].北京:高等教育出版社,1990:622.
    [23]常建华,董绮功,波谱原理及解析[M].第一版;北京:科学出版社,2001:76-152.
    [24]Peng X., Song F., Lu E., et al. Heptamethine Cyanine Dyes with a Large Stokes Shift and Strong Fluorescence:A Paradigm for Excited-State Intramolecular Charge Transfer[J]. Journal of American Chemical Society,2005,127:4170-4171.
    [25]Cheng G. Z., Huang X. Z., Zheng Z. Z., et al., The analytical method of fluorescence,2nd end.[M]. Beijing: Science Press,1990:37-40.
    [26]Anikovsky M. Y., Tatikolov A. S., Shvedova L. A., et al. Photochemical investigation of the triplet state of 3,3'-diethylthiacarboyanine iodide in the presence of DNA[J]. Russian Chemical Bulletin,2001,50: 1190-1193.
    [27]Karunakaran V., Lustres J. L. P., Zhao L., et al. Large Dynamic Stokes Shift of DNA Intercalation Dye Thiazole Orange has Contribution from a High-Frequency Mode[J]. Journal of American Chemical Society, 2006,128:2954-2962.
    [28]Hilal H., Taylor J. A. Determination of the stoichiometry of DNA-dye interaction and application to the study of a bis-cyanine dye-DNA complex[J]. Dyes and Pigments,2007,75:483-490.
    [1]罗婉秋.异恶草酮的新用途[J].农药,2002,41(6):44-45.
    [2]张广良,李耀先,张锁秦,et al.4,4-二甲基-3-异噁唑酮衍生物的合成与表征[J].有机化学,2005,25(7):800-804.
    [3]覃兆海.异噁草酮的作用方式[J].世界农药,2006,28(6):15-41.
    [4]Ishioka T., Tanatani A., Nagasawa K., et al. Anti-Androgens with Full Antagonistic Activity Toward Human Prostate Tumor LNCaP Cells with Mutated Androgen Receptor[J]. Bioorganic & Medicinal Chemistry Letters,2003,13:2655-2658.
    [5]Ishioka T., Kubo A., Koiso Y., et al. Novel Non-Steroidal/Non-Anilide Type Androgen Antagonists with an Isoxazolone Moiety[J]. Bioorganic & Medicinal Chemistry,2002,10:1555-1566.
    [6]Lowe D. B., Magnuson S., Qi N., et al. In vitro SAR of (5-(2H)-isoxazolonyl) ureas, potent inhibitors of hormone-sensitive lipase[J]. Bioorganic & Medicinal Chemistry Letters,2004,14:3155-3159.
    [7]Laughlin S. K., Clark M. P., Djung J. F., et al. The development of new isoxazolone based inhibitors of tumor necrosis factor-alpha (TNF-a) production[J]. Bioorganic & Medicinal Chemistry Letters,2005,15: 2399-2403.
    [8]Alias S., Andreu R., Blesa M. J., et al. Iminium Salts of ω-Dithiafulvenylpolyenals:An Easy Entry to the Corresponding Aldehydes and Doubly Proaromatic Nonlinear Optic-phores[J]. Journal of Organic Chemistry, 73:5890-5898.
    [9]Abbiati G., Beccalli E. M., Brogginib G., et al. A valuable heterocyclic ring transformation:from isoxazolin-5(2H)-ones to quinolines[J]. Tetrahedron,2003,59:9887-9893.
    [10]Nishiwaki N., Uehara T., Asaka N., et al. Improved Generation Method for Functionalized Nitrile Oxide[J]. Tetrahedron Letters,1998,39:4851-4852.
    [11]Chande M. S., S.Verma R., Barve P. A., et al. Facile synthesis of active antitubercular, cytotoxic and antibacterial agents:a Michael addition approach[J]. European Journal of Medicinal Chemistry,2005,40: 1143-1148.
    [12]张英群,马晶军,王春,et al.3-甲基-4-芳亚甲基-异噁唑5-(4H)-酮的合成[J].有机化学,2008,28(1):141-144.
    [13]Casey K. G., Quitevis E. L. Effect of solvent polarity on nonradiative processes in xanthene dyes: Rhodamine B in normal alcohols[J]. Journal of Physical Chemistry,1988,92:6590-6594.
    [14]黄坤林,李彩今,刘群,et al.3-(2-对甲苯基乙烯基)-5(4H)-异噁唑酮的合成、晶体结构、1HNMR及其异构化研究[J].高等化学学报,2004,25:1264-1267.
    [15]Sheldrick G. M., SHELXS-97, Program for Solution Crystal Structure, University of Gottingen, Germany, 1997.
    [16]Sheldrick G. M., SHELXL-97, Program for Solution Crystal Structure and Refinement, University of Gottingen, Germany,1997.
    [1]Erich R., Gross E. K. U. Density-functional theory for time-dependent systems[J]. Physical Review Letters, 1984,52 (12):997-1000.
    [2]Gross E. K. U., Kohn W. Local density-functional theory of frequency-dependent linear response[J]. Physical Review Letters,1985,55 (26):2850-2852.
    [3]Cardoso C., Pereira Silva P. S., Ramos Silva M., et al. Experimental and ab-initio studies of the spectroscopic properties of N,N',N"-triphenylguanidine and N,N',N"-triphenylguanidinium chloride[J]. Journal of Molecular Structure,2008,878 (1-3):169-176.
    [4]Kolev T., Koleva B. B., Spassov T., et al. Synthesis, spectroscopic, thermal and structural elucidation of 5-amino-2-methoxypyridine ester amide of squaric acid ethyl ester:A new material with an infinite pseudo-layered structure and manifested NLO application[J]. Journal of Molecular Structure,2008,875 (1-3): 372-381.
    [5]Tacke M., Cuffe L. P., Gallagher W. M., et al. Methoxy-phenyl substituted ansa-titanocenes as potential anti-cancer drugs derived from fulvenes and titanium dichloride[J]. Journal of Inorganic Biochemistry,2004, 98:1987-1994.
    [6]Shigemitsu Y., Komiya K., Mizuyama N., et al. Reaction of functionalized maleimides with versatile nucleophiles. Synthesis, electronic spectra and molecular orbital study[J]. Dyes and Pigments,2007,72: 271-284.
    [7]Zhang W.-W., Yu Y.-G., Lu Z.-D., et al. Ferrocene-Phenothiazine Conjugated Molecules:Synthesis Structural Characterization, Electronic Properties, and DFT-TDDFT Computational Study[J]. Organometallics,2007, 26:865-873.
    [8]Wang L. Y, Chen Q. W., Zhai G. H., et al. Theoretical study on the structures and absorption properties of styryl dyes with quinoline nucleus[J]. Dyes and Pigments,2007,72 (3):357-362.
    [9]Bartkowiak W., Niewodniczanski W., Misiaszek T., et al. First-order hyperpolarizability of pyridinium N-phenolate betaine dye:Ab initio study[J]. Chemical Physics Letters,2005,411:8-13.
    [10]Guillaume M., Champagne B. Investigation of the UV/Visible Absorption Spectra of Merocyanine Dyes Using Time-Dependent Density Functional Theory[J]. The Journal of Physical Chemistry A,2006,110: 13007-13013.
    [11]Kachkovsky A. D., Pilipchuk N. V., Kurdyukov V. V., et al. Electronic properties of polymethine systems. 10. Electron structure and absorption spectra of cyanine bases[J]. Dyes and Pigments,2006,70:212-219.
    [12]Qin C., Clark A. E. DFT characterization of the optical and redox properties of natural pigments relevant to dye-sensitized solar cells[J]. Chemical Physics Letters,2007,438:26-30.
    [13]Thomas A., Srinivas K., Prabhakar C., et al. Estimation of the first excitation energy in diradicaloid croconate dyes having absorption in the near infra red (NIR):A DFT and SF-TDDFT study[J]. Chemical Physics Letters,2008,454:36-41.
    [14]Yang W., You X.-L., Zhang Y., et al. The crystal structure of 2',6'-dichloro-4-dimethylaminoazobenzene[J]. Dyes and Pigments,2006,68:27-31.
    [15]Nazeeruddin M. K., Bessho T., Cevey L., et al. A high molar extinction coefficient charge transfer sensitizer and its application in dye-sensitized solar cell[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2007,185:331-337.
    [16]Champagne B., Guillaume M., Zutterman F. TDDFT investigation of the optical properties of cyanine dyes[J]. Chemical Physics Letters,2006,425:105-109.
    [17]Wang L. Y, Chen Q. W., Zhai G. H., et al. Investigation of the structures and absorption spectra for some hemicyanine dyes with pyridine nucleus by TD-DFT/PCM approach[J]. Journal of Molecular Structure: THEOCHEM,2006,778 (1-3):15-20.
    [18]Wang L.-Y., Chen Q.-W., Zhai G.-H., et al. Theoretical study on the structures and absorption properties of styryl dyes with quinoline nucleus[J]. Dyes and Pigments,2007,72 (3):357-362.
    [19]Frisch M. J., Trucks G. W., Schlegel H. B., et al., Gaussian 03, Gaussian, Inc.; Pittsburgh PA,2003.
    [20]Becke A. D. Density-functional thermochemistry. Ⅲ.The role of exact exchange[J]. The Journal of Physical Chemistry A,1993,98 (7):5648-5642.
    [21]Perdew J. P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Physical Review Letters,1996,77 (18):3865-3868.
    [22]Cossi M., Barone V., Mennucci B., et al. Ab initio study of ionic solutions by a polarizable continuum dielectric model [J]. Chemical Physics Letters,1998,286:253-260.
    [23]Tomasi J., Mennucci B., Cances E. The IEF version of the PCM solvation method:an overview of a new method addressed to study molecular solutes at the QM ab initio level[J]. Journal of molecular Structure: THEOCHEM,1999,464:211-216.
    [24]Cheng G. Z., Huang X. Z., Zheng Z. Z., et al., The analytical method of fluorescence,2nd end.[M]. Beijing: Science Press,1990:37-40.
    [25]Casey K. G., Quitevis E. L. Effect of solvent polarity on nonradiative processes in xanthene dyes: Rhodamine B in normal alcohols[J]. Journal of Physical Chemistry,1988,92:6590-6594.
    [26]Fang L. F. M.S. Thesis[D]. Xi'an:Northwest University,2006.
    [27]Dreuw A., Weisman J. L., Head-Gordon M. Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange[J]. Journal of Chemical Physics,2003,119: 2943-2946.
    [28]Grimme S., Parac M. Substantial Errors from Time-Dependent Density Functional Theory for the Calculation of Excited States of Large π Systems[J]. ChemPhysChem,2003,3:292-295.
    [29]Foresman J. B., Head-Gordon M., Pople J. A., et al. Toward a systematic molecular orbital theory for excited states[J]. The Journal of Physical Chemistry,1992,96:135.
    [30]Gorelsky S. I., SWizard program, revision 2.0, http://www.sg-chem.net/.
    [31]Broo A., Holmen A. Calculations and Characterization of the Electronic Spectra of DNA Bases Based on ab Initio MP2 Geometries of Different Tautomeric Forms[J]. J. Phys. Chem.,1997,101 (19):3589-3600.
    [32]Zhang X. H., Wang L. Y., Nan Z. X., et al. Microwave-assisted solvent-free synthesis and spectral properties of some dimethine cyanine dyes as fluorescent dyes for DNA detection[J]. Dyes and Pigments,2008,79: 205-209.
    [I]Marchetti C., Gallego M.-A., Defossez A., et al. Staining of human sperm with fluorochrome-labeled inhibitor of caspases to detect activated caspases:correlation with apoptosis and sperm parameters[J]. Human Reproduction,2004,19 (5):1127-1134.
    [2]Gao X., Cui Y., Levenson R. M., et al. In vivo cancer targeting and imaging with semiconductor quantum dots[J]. Nature Biotechnology,2004,22 (8):969-976.
    [3]Carreon J. R., Roberts M. A., Wittenhagen L. M., et al. Synthesis, Characterization, and Cellular Uptake of DNA-Binding Rose Bengal Peptidoconjugates[J]. Organic Letters,2005,7 (1):99-102.
    [4]Wu C., Bull B., Szymanski C., et al. Multicolor Conjugated Polymer Dots for Biological Fluorescence Imaging[J]. ACS Nano,2008,2 (11):2415-2423.
    [5]Bhatta H., Goldys E. M. Quantitative characterization of different strains of Saccharomyces yeast by analysis of fluorescence microscopy images of cell populations[J]. Journal of Microbiological Methods,2009,77 (1): 77-84.
    [6]李超,韩金路,王玉刚,et al.流式细胞仪的工作原理及应用[J].中国实用医药,2009,4(20):235-236.
    [7]张晓飘.流式细胞仪在白血病临床研究中的应用[J].中国误诊学杂志,2009,9(30):7391-7392.
    [8]Bao N., Zhan Y, Lu C. Microfluidic Electroporative Flow Cytometry for Studying Single-Cell Biomechanics[J]. Analytical Chemistry,2008,80 (20):7714-7719.
    [9]Ayriss J., Woods T., Bradbury A., et al. High-Throughput Screening of Single-Chain Antibodies Using Multiplexed Flow Cytometry[J]. Journal of Proteome Research,2007,6:1072-1082.
    [10]Terai T., Nagano T. Fluorescent probes for bioimaging applications[J]. Current Opinion in Chemical Biology,2008,12 (5):515-521.
    [11]Hasegawa T., Kondo Y, Koizumi Y, et al. A highly sensitive probe detecting low pH area of HeLa cells based on rhodamine B modified [beta]-cyclodextrins[J]. Bioorganic & Medicinal Chemistry,2009,17 (16): 6015-6019.
    [12]Volkova K. D., Kovalska V. B., Balanda A. O., et al. Specific fluorescent detection of fibrillar a-synuclein using mono-and trimethine cyanine dyes[J]. Bioorganic & Medicinal Chemistry,2008,16:1452-1459.
    [13]Carreon J. R., Stewart K. M., Jr. K. P. M., et al. Cyanine dye conjugates as probes for live cell imaging[J]. Bioorganic & Medicinal Chemistry Letters,2007,17:5182-5185.
    [14]Rosania G. R., Lee J. W., Ding L., et al. Combinatorial Approach to Organelle-Targeted Fluorescent Library Based on the Styryl Scaffold[J]. Journal of American Chemical Society,2003,125:1130-1131.
    [15]Li Q., Kim Y., Namm J., et al. RNA-selective, live cell imaging probes for studying nuclear structure and
    function[J]. Chemistry & Biology,2006,13 (6):615-623.
    [16]Matselyukh B. P., Yarmoluk S. M., Matselyukh A. B., et al. Interaction of cyanine dyes with nucleic acids: XXXI. Using of polymethine cyanine dyes for the visualization of DNA in agarose gels[J]. Journal of Biochemical and Biophysical Methods,2003,57:35-43.
    [17]Kovalska V. B., Tokar V. P., Losytskyy M. Y., et al. Studies of monomeric and homodimeric oxazolo[4,5-b] pyridinium cyanine dyes as fluorescent probes for nucleic acids visualizatio[J]. Journal of Biochemical and Biophysical Methods,2006,68:155-165.
    [18]Fechter E. J., Olenyuk B., Dervan P. B. Sequence-Specific Fluorescence Detection of DNA by Polyamide-Thiazole Orange Conjugates[J]. Journal of American Chemical Society,2005,127: 16685-16691.
    [19]Duthie R. S., Kalve I. M., Samols S. B., et al. Novel Cyanine Dye-Labeled Dideoxynucleoside Triphosphates for DNA Sequencing[J]. Bioconjugate chemistry,2002,13 (4):699-706.
    [20]Thompson M. Synthesis, photophysical effects, and DNA targeting properties of oxazole yellow-peptide bioconjugates[J]. Bioconjugate chemistry,2006,17:507-513.
    [21]Kanofsky J. R., Sima P. D. Preferential cytotoxicity for multidrug-resistant K562 cells using the combination of a photosensitizer and a cyanine dye[J]. Journal of Photochemistry and Photobiology B: Biology,2000,54:136-144.
    [22]Chen Y, Gryshuk A., Achilefu S., et al. A Novel Approach to a Bifunctional Photosensitizer for Tumor Imaging and Phototherapy[J]. Bioconjugate chemistry,2005,16:1264-1274.
    [23]杨泽星.不育男性精子核DNA定量研究进展[J],中国男科学杂志,2005,19(3):67-69.
    [24]Mortimer S. T., Contemporary Endocrinology:Office Andrology (Essentials of Sperm Biology)[M]. Totowa, N.J.:Humana Press,2005.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.