新型萘系氮杂环化合物合成及其生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据以DNA为靶点的抗肿瘤药物的作用机理,分别以具有平面缺电子结构的1,8-萘酰亚胺和苯并[c,d]吲哚-2(1H)-酮为母体,设计合成了三个系列的DNA靶向分子,所有的化合物经过了核磁共振、高分辨质谱的分析鉴定,并对化合物的光谱性质、DNA嵌插能力、DNA切割能力和体外抗肿瘤活性进行研究。
     设计合成了系列新型的噻二唑并萘酰亚胺类化合物。通过紫外-可见光谱、荧光光谱、粘度测试和圆二色谱结果均显示噻二唑并萘酰亚胺类化合物具有良好的DNA嵌入能力。N-(N’,N’-二甲基胺基乙基)-2,1,3-噻二唑并萘酰亚胺S1与DNA嵌入常数Kb为2.83×105mol-1·L新型的噻二唑并萘酰亚胺类化合物与CT DNA作用的圆二色谱表明,它们能以经典的嵌插方式与DNA结合,使DNA正峰增加,负峰减少,化合物可以插入到DNA碱基对中,通过π电子的相互作用,增大碱基堆积程度。pBR322质粒DNA切断测试证明化合物具有一定的DNA切割能力,连接N,N-二甲基丙二胺侧链的化合物切割效果最佳。体外抗肿瘤活性测试中,带有柔性胺基侧链的新型的噻二唑并萘酰亚胺类化合物对所选的人肝癌细胞7721,人乳腺癌细胞MCF-7,人宫颈癌细胞Hela,人白血病细胞HL60和人肺腺癌细胞A549细胞都有良好的抑制活性。
     合成了一系列未见报道的苯并[c,d]吲哚-2(H)-酮新结构衍生物。通过Knoevenagel Condensation缩合得到α,β-不饱和化合物。该系列衍生物与DNA的结合强度较高,其与DNA结合常数Kb为1.65×105mol-1·L;与DNA主要发生了嵌插结合,均具有一定的DNA切割性能,其中以连接丙炔基侧链化合物效果最佳,化合物AC1-6都能将超螺旋DNA切断成Ⅲ型;AC6对MCF-7(人体乳腺癌)的IC5o值能达到nM级。对于萘酰亚胺衍生物的抗肿瘤作用,通常萘酰亚胺侧链为氨基侧链才有效果,但是对于我们合成的系列化合物,由于分子的强缺电特性,无侧链氨基化合物也具有突出的抗肿瘤活性。
     设计、合成了两个系列含1,2,3-三唑环萘酰亚胺类DNA嵌入剂。该类化合物具有较强的DNA嵌入性能,其嵌入常数数量级在105mol-1·L以上。随着化合物浓度的增大,其与CT DNA的作用模式从嵌入模式渐渐转变成静电堆积模式。具有较强的DNA光敏损伤活性。化合物具有明显的体外抑制肿瘤细胞生长活性。通过荧光光谱法研究了化合物与CT DNA的相互作用,表明该化合物具有较强的DNA嵌入性能,其嵌入常数为3.51×105mol-1·L。该系列化合物具有一定的光敏损伤活性。带有N,N二甲基乙二胺侧链的化合物是最有效的抗肿瘤化合物,分别是先导化合物Amonafide对应三个细胞株抗肿瘤活性的5.6倍,2.4倍和8.5倍。F1-5系列化合物对7721细胞抗肿瘤活性高于人乳腺癌细胞株MCF-7和宫颈癌细胞Hela细胞株。
Based on series of triazoles containing heterocyclic and naphthalimides compounds were designed and synthesized and confirmed by NMRJR and HRMS. Their spectra properties, DNA intercalative, antitumor and DNA photo-damaging activities were evaluated.
     Novel2,1,3-thiadiazole fused1,8-naphthalimide derivatives had been synthesized and the results of UV-Vis spectra, Fluorescence spectra, CD spectra and viscosity measurement all showed that the compounds had good DNA binding ability.2,1,3-thiadiazole fused1,8-naphthalimide derivatives S1binding constant could reach2.83×105mol-1·L. The change appeared in the CD spectra of DNA when incubated with2,1,3-thiadiazole fused1,8-naphthalimide derivatives S1and2,1,3-thiadiazole fused1,8-naphthalimide derivatives S4illustrated that the compounds interacted with DNA by the classical intercalating mode, making the positive band increase and the negative band decrease. All the2,1,3-thiadiazole fused1,8-naphthalimide derivatives compounds could cleave supercoiled plasmid DNA, especially S3. S1-4,,bearing flexible amine side chains, showed excellent cytotoxicity to the selected MCF-7,7721, Hela, A549and HL60cell lines.
     The derivatives of Benzo[c, d]indol-2(H)-one have been synthesized. Their DNA bonding properties were evaluated through UV-Vis spectra, Fluorescence spectra and CD spectra combined with viscosity measurement. The result showed that compounds can efficiently intercalate base pairs of CT DNA, while AC3's bonding constant is Kb=1.65×105mol-1·L. DNA photo-damaging assay were taken with pBR322plasmid. All the compounds are efficient to cleave super-coiled DNA, while AC1-6can photo-cleave super-coiled DNA into linear fragments. AC6showed that this compound exhibited high antitumor activities, IC50of compound against MCF-7cell reached3nM.
     Two series of triazol-1,8-naphthalimide derivatives were designed and synthesized via "Click Chemistry". Their spectra properties, DNA intercalative, DNA photo-damaging and antitumor activities were evaluated. Titration CD spectra of DNA by compounds illustrated that the mode of compounds interacted with DNA changed from intercalation to aggregation with the concentration increased. In particular, compound bearing N,N-dimethylethylenediamine with the values of IC50against three cell lines was5.6-fold,2.4-fold,and8.5-fold lower than that of Amonafide, and other compounds bearing aminoalkyl side chains were all more potent than Amonafide. DNA photo-damaging assay showed that these compounds could effectively cleave supercoiled DNA. The compounds were more toxic against7721than MCF-7and Hela cells.
引文
[1]Harmon M. J. Supramolecular DNA recognition [J]. Chem Soc Rev, 2007,36: 2H0-295.
    [2]MacMillan A. M. Fifty years of "Watson-Crick" [J]. Pure Appl Chem, 2004, 76: 1521-1524.
    [3]MacMillan A. M. Chemistry of nucleic acids - Part 3 - Preface [J]. Pure Appl. Chem. 2004, 76,.
    [4]Jelly R, Lewis S.W, Lennard C, et al,A Novel reagent for the detection of lateen fingermarks on paper surfaces [J]. Chem Commun. 2008:3513-3515.
    [5]Kranaster, R.; Marx, A. Increased single-nuclcotide discrimination in allele-specifie polymerase chain reactions through primer prohes bearing nucleobase and 2'-deoxyribose modifications [J]. Chem Eur J, 2007, 13: 6115-6122.
    [6]Marra S. A. E, Tyagi S, Kramer F. R,Real-time assays with molecular beacons and other fluoaescent nucleic acid hybridization probes [J]. Clin Chim Acta, 2006, 363: 48-60.
    [7]Werder S, Malinovskii V. L,Haner R, Triazolylpyrenes:Synthesis, fluorescence properties,and incorporation into DNA [J]. Org. Lett. 2008, 10: 2011-2014.
    [8]Yang Q, Yang P, Qian X. H, et al, Naphthalimide intercalators with chiral amino side chains: Effects of chirality on DNA binding, photodamage and antitumor cytotoxicity [J]. Bioorg. Med. Chem.Lett 2008, 18: 6210-6213.
    [9]McKnight R.E,Onogul B, Polasani S.R, et al, Substiluent control of DNA binding modes in a series of chalcogenoxanthy1ium photosensitizers as determined by isothermal titration calorimetry and topoisomerase Ⅰ DNA unwinding assay [J]. Bioorg.Med.Chem. 2008, 16: 10221-10227.
    [10]Brenno A. D, Alexandre A. M, Recent Developments in the Chemistry of Deoxyribonucleic Acid (DNA) Intercalators: Principles, Design, Synthesis, Applications and Trends [J]. Molecules 2009, 14: 1725-1746.
    [11]Shen X. C, Zhang Z. L, Zhou B, et al, Visible light-induced plasm id DNA damage catalyzed by a CdSe/ZnS-photosensitized nano-TiO2 film. Environ.Sci.Technol [J]. 2008,42: 5049-5054.
    [12]Varma-Basil M, El-Hajj H, Marras S. A. E, et al, Molecular beacons for multiplex detection of four bacterial bioterrorism agents [J]. Clin.Chem.2004,50:1060-1063.
    [13]Watson J. D, Crick F.H. C, Molecular structure of Nucleic Acids-A Structure for Deoxyribose Nucleic Acid [J]. Nature, 1953, 171: 737.
    [14]Watson J. D, Crick F. H. C, Genetical implications of the structure of Deoxyribonuc leic Acid [J]. Nature, 1953, 171: 964-967.
    [15]Dickerson R. E, Drew H. R, Conner B.N, et al, The Anatomy of A-DNA, B-DNA, and Z-DNA [J]. Science,1982,216:475-485.
    [16]Drew H. R, Samson S, Dickerson R. E. Structure of a B-DNA Dodecamer at 16-K [J]. Proc Natl Acad Sci,1982,79:4040-4044.
    [17]Dickerson R. E, Drew H. R. Kinematic Model for B-DNA [J]. Proc. Natl. Acad. Sci.1981, 78,7318-7322.
    [18]Elliott S. L, Brazier J, Cosstick R, et al. Mechanism of the Escherichia coli DNA T: G-mismatch endonuclease (Vsr protein) thiophosphate-containing probed with oligodeoxynucleotides [J]. J Mol Biol,2005,353:692-703.
    [19]Qu X. G, Trent J.0, Fokt I, et al. Allosteric, chiral-selective drug binding to DNA [J]. Proc Natl Acad Sci,2000,97,12032-12037.
    [20]Yang X. L, Wang A. H. J. Structural studies of atom-specific anticancer drugs acting on DNA [J]. Pharmacol Ther,1999,83:181-215.
    [21]Heiko I, Daniela Otto. Intercalation of organic dye molecules into double-stranded DNA-general principles and recent developments [J]. Top Curr Chem,2005,258:161-204.
    [22]Hannah K. C, Armitage B, Bruce A. DNA-Templated assembly of helical cyanine dye aggregates:A supramolecular chain polymerization [J]. Acc Chem Res,2004,37:845-853.
    [23]Pal S. K, Zeweil A.H. Dynamics of water in biological recognition [J]. Chem. Rev, 2004,104:2099-2123.
    [24]McMillin D. R, McNett K. M. Photoprocesses of copper complexes that bind to DNA [J]. Chem Rev,1998,98:1201-1219.
    [25]Wall R.K, Shelton A. H, Bonaccorsi L. C, et al. H2D3:A cationic prophyrin designed to intercalate into B-form DNA (H2D3= trans-di(N-methylpyridium-3-y1)prophyrin)) [J]. J Am Chem Soc 2001,123:11480-11481.
    [26]Wemmer D. E. Ligands recoginizing the minor groove of DNA:development and applications [J]. Biopolymers,2001,52:197-211.
    [27]Heiko I, Daniela Otto. Intercalation of organic dye molecules into double-stranded DNA-general principles and recent developments [J]. Top Curr Chem.2005,258:161-204.
    [28]Bailly C, Chaires J. B. Sequence-Specific DNA minor groove binders design and synthesis of netropsin and distamycin analogs [J]. Bioconjugate. Chem,1998,9(5):513-538.
    [29]Pommier Y, Kohlhagen G, Bailly C, et al, DNA Sequence-and Structure-Selective Alkylation of Guanine N2 in the DNA Minor Groove by Ecteinascidin 743, A Potent Antitumor Compound from the Caribbean Tunicate Ecteinascidia turbinate [J]. BioChemistry 1996, 35:13303-13309.
    [30]Liu C, Chen P.M. Oligonucleotide Studies of Sequence-Specific Binding of Chromomycin A3 to DNA [J]. Biochemistry 1994,33(6):1419-1424.
    [31]Pjura P, Grzeskowiak K, Dickerson E. R. Binding of Hoechst 33258 to the minor groove of B-DNA [J]. J. Mol. Biol,1987.197:257-271.
    [32]Baraldi P. G, Bovero A, Fruttarolo F, et al. DNA minor groove binders as potential antitumor and antimicrobial agents [J]. Med. Res Rev 2004,24:475-528.
    [33]Lerman L. S. The structure of the deoxyribonucleic acid (DNA)-acridine complex [J]. Proc Natl Acad Sci USA 1963,49:94-102.
    [34]Medhi C, Mitchell J. B, Price S. L, et al, Electrostatic factor in DNA intercalation [J]. Biopolymers,1999,52(2):84-93.
    [35]Gago F. Stacking interactions and intercalative DNA binding [J]. Methods.1998,14(3): 277-292.
    [36]Ren J, Jenkins T, Chaires J. B. Energetics of DNA intercalation reactions [J]. Biochemistry 2000,39(29):8439-8447.
    [37]Reha D, Kabelac M, Ryjacek F, et al, Intercalators.1. Nature of Stacking Interactions between Intercalators (Ethidium, Daunomycin, Ellipticine, and 4',6-Diaminide-2-phenylindole) and DNA Base Pairs. Ab Initio Quantum Chemical, Density Functional Theory, and Empirical Potential Study [J]. J Am Chem Soc.2002,124(13): 3366-3376.
    [38]Heiko I, Daniela Otto. Intercalation of organic dye molecules into double-stranded DNA-general principles and recent developments [J]. Top Curr Chem.2005,258:161-204.
    [39]Friedman R. A, Manning G. S. Polyelectrolyte effects on site-binding equilibria with application to the intercalation of drugs into DNA [J]. Biopolymers,1984,23: 2671-2614.
    [40]Frederick C. A, Williams L. D, Ughetto G, et al. Structural comparison of anticancer drug-DNA complexes:adriamycin and daunomycin [J]. Biochemistry,1990,29:2538-2549.
    [41]Adams A, Guss J. M, Collyer C. A, et al. Crystal Structure of the Topoisomerase Ⅱ Poison 9-Amino-[N-(2-dimethylamino)ethyl]acridine-4-carboxamide Bound to the DNA Hexanucleotide d(CGTACG)2 [J]. Biochemistry,1999,38:9221-9233.
    [42]Rohs R, Sklenar H, Lavery R, et al. Methylene Blue Binding to DNA with Alternating GC Base Sequence:A Modeling Study [J]. J Am Chem Soc,2000,122:2860-2866.
    [43]Tidwell, Thomas T. Ketene chemistry:the second golden age [J]. Acc Chem Res,1990, 23:273-279.
    [44]Suh D, Chaires J. B. Criteria for the mode of binding of DNA binding agents [J]. Bioorg Med Chem,1995,3:723-728.
    [45]Hyun K. M, Choi S. D, Lee S, et al. Can energy transfer be an indicator for DNA intercalation? [J]. Biochim Biophys Acta,1997,1334:312-316.
    [46]Wirth M, Buchardt 0, Koch T, et al. Interactions between DNA and mono-, bis-, tris-tetrakis-, and hexakis(aminoacridines). A linear and circular dichroism, electric orientation relaxation, viscometry, and equilibrium study [J]. J Am Chem Soc.1988, 110:932-939
    [47]Denny W. A Chemotherapeutic effects of acridine derivatives [J]. Med Chem Rev,2004, 1:257-266
    [48]Graves P. R, Kwiek J. J, Fadden P, et al. Discovery of novel targets of quinoline drugs in the human purine binding proteome Mol Pharmacol [J].2002,62:1364-1372.
    [49]Zwelling LA, Michaels S, Erickson LC, et al. Protein-associated deoxyribonucleic acid strand breaks in L1210 cells treated with the deoxyribonucleic acid intercalating agents 4'-(9-acridinylamino)methanesulfon-m-anisidide and adriamycin [J]. Biochemistry,1981,20:6553-6563.
    [50]Sajewicz W, Dlugosz A. Cytotoxicity of some potential DNA intercalators (carbazole, acridine and anthracene derivatives) evaluated through neutrophil chemiluminescence [J]. J Appl Toxicol 2000,20:305-312.
    [51]Tuite E, Kim SK, Norden B, et al. Effects of Intercalators on Complexation of RecA with Duplex DNA [J]. Biochemistry,1995,34:16365-16374.
    [52]Chen A. Y, Liu L. F. DNA topoisomerases:essential enzymes and lethal targets [J]. Annu Rev Pharmacol,1994,34:191-218.
    [53]Wang J. C. DNA topoisimerases [J]. Annu Rev Biochem,1996 65:635-692.
    [54]Li T. S, Liu L. F. Tumor cell death induced by topoisomerase-targeting drugs [J]. Annu Rev Pharmacol,2001,41:53-77.
    [55]Lober G, Achert G. Complex formation of acridine dyes with DNA. VII. Dependence of the binding on the dye structure [J]. Biopolymers 8:595.
    [56]Brake D. G, Thaler R, Evenson D. P. Evaluation of Bt (Bacillus thuringiensis) Corn on Mouse Testicular Development by Dual Parameter Flow Cytometry [J]. J Agr Food Chem,2004, 52:2097-2102.
    [57]Brauns E. B, Murphy C. J, Berg M. A. Local Dynamics in DNA by Temperature-Dependent Stokes Shifts of an Intercalated Dye [J]. J Am Chem Soc 120:2449-2459.
    [58]Gatto B, Zagotto G, Sissi C, et al, Peptidyl Anthraquinones as Potential Antineoplastic Drugs:Synthesis, DNA Binding, Redox Cycling, and Biological Activity [J]. J Med Chem, 1996,39:3114-3122.
    [59]McKnight R. E, Zhang J, Dixon D. W. Binding of a homologous series of anthraquinones to DNA [J]. Bioorg Med Chem Lett,2004,14:401-404.
    [60]Schuster G. B. Long-Range Charge Transfer in DNA:Transient Structural Distortions Control the Distance Dependence [J]. Acc Chem Res 2000,33:253-
    [61]Armitage B. Photocleavage of Nucleic Acid [J]. Chem Rev,1998,98:1171-1200.
    [62]Schuster G. B, Landman U. The mechanism of long-distance radical cation transport in duplex DNA:Ion-gated hopping of polaron-like distortions [J]. Top Curr Chem 2004, 236:139-161.
    [63]Borisova 0. F, Shchyolkina A. K, Karapetyan A. T, et al. Heterogeneity of ethidium bromide strong binding sites on DNA [J]. Fluorescent and nonf luorescent complexes Mol Biol 1998, 32:718-724..
    [64]Olmstedt J, Kearns D.R. Mechanism of ethidium bromide fluorescence enhancement on binding to nucleic acids [J]. Biochemistry 1977,16:3647-3654.
    [65]Cai J, Soloway A. H, Barth R. F, et al. Boron-containing polyamines as DNA targeting agents for neutron capture therapy of brain tumors:synthesis and biological evaluation [J]. J Med Chem 1997,40:3887-3896.
    [66]Lown J. W. Newer approaches to the study of the mecha nisms of action of antitumor antibiotics [J]. Acc Chem Res,1982,15:381-387.
    [67]Brana M. F, Castellano J. M, Roldan C.M, et al, Synthesis and Mode(s) of Action of a new series of imide derivalives of 3-nitro-1,8-naphthalic acid [J].Cancer Chemoth. Pharm,1980,4(1):61-66.
    [68]Waring M. J, Gonzalea A, Jimenez A, et al. Intercalative binding to DNA of antitumor drugs derived form 3-nitro-1,8-naphthalic acid. Nucleic Acids Res,1979,7:217-230.
    [69]Rosell R, Carles J, Abad A, et al, Phase I study of mitonafide in 120 hour continuous infusion in non-small cell lung cance [J]. Invest New Drugs,1992,10:171-175.
    [70]Llombart M, Poveda A, Fomer E, et al. Phase I study of mitonafide in solid tumor [J]. Invest New Drugs,1992,10:177-181.
    [71]Diza-Rubio E, Martin M, Lopez-Vege J. M, et al. Phase I study of mi tonaf ide with a 3-day administration schedule early interruption due to severe central nervous system toxicity [J]. Invest New Drugs,1994,12:277-281.
    [72]Sami S. M, Dorr R. T, Albert D.S, et al.2-Substituted 1,2-dihydro-3H-dibenz [de,h] isoquinoline-1,3-diones:A new class of antitumor agent [J]. J Med Chem,1993, 36:765-770.
    [73]Brana M.F, Cacho M, Garcia M.A, et al. Synthesis, antitumor activity, molecular modeling, and DNA binding properties of a new series of imidazonaphthalimides [J]. J. Med. Chem.2002,45(26):5813-5816.
    [74]Brana M. F, Cacho M, Ramos A, et al. Synthesis, biological evaluation and DNA-bingding properties of novel mono and binaphthalimies [J]. Org. Biomol.Chem.2003,1 (4):648-654.
    [75]解丽娟.含氮稠杂环化合物合成及抗肿瘤细胞活性研究:(博士学位论文)大连:大连理工大学,2008
    [76]Lijuan Xie, Xuhong Qian*, Jingnan Cui*, Yi Xiao, Kewei Wang, Peichun Wu, Liying Cong, "Novel angular furoquinolinones bearing flexible chain as antitumor agent:Design, synthesis, cytotoxic evaluation, and DNA-binding studies, " Bioorganic & Medicinal Chemistry,2008,16,8713-8718.
    [77]Allenmark S. Induced circular dichrosim by chiral molecular interaction [J]. Chirality,2003,15:409-422.
    [78]Zhou L, Li Y. Studies of interaction between poly (ally lamine hydrochloride) and double helix DNA by spectrol methods [J]. Biophysical chemistry,2004,107:273-281.
    [79]Palchaudhuri R, Hergenrother P J. DNA as a target for anticancer compounds:methods to determine the mode of binding and the mechanism of action [J]. Current Opinion in Biotechnology,2007,18:497-503.
    [80]Bailly C, Colson P, Henichart J P, et al. The different binding modes of Hoechst 33258 to DNA studied by electric linear dichroism [J].Nucl. Acids Res.,1993,21:3705-3709.
    [81]Graves D E, Velea L M. Intercalative binding of amall molecules to nucleic acids [J]. Curr. Org. Chem.,2000,4:915-929.
    [82]Colson P, Bailly C, Houssier C. Electric linear dichroism as a new tool to study sequence preference in drug binding to DNA [J]. Biophys. Chem.,1996,58:125-140.
    [83]毛希安.脱氧核苷酸的核磁共振研究简介.波谱学杂志,2003,20(1):75-90.
    [84]Bhattacharya P K, Lawson H J, Barton J K.1HNMR studies of Nickel(n) complexes bound to oligonucleotides:A novel technique for distinguishing the binding location of metal complexes in DNA. Inorganic chemistry,2003,42:8811-8817.
    [85]Mazzini S, Bellucci M, Mondelli R. Mode of binding of the cytotoxic alkaloid berberine with the double helix oligonucleotide d(AAGAATTCTT)2. Bioorgnaic &. medicinal chemistry, 2003,11:505-514.
    [86]Jahnchen J, Purwanto, et al. NMR studies on self-complementary oligonucleotides conjugated with methylene blue. Bioploymers,2005,79:335-343.
    [87]Scheek R M, Russo N, Boelens R, et al. Sequential resonance assignments in DNA 1HNMR spectra by two-dimensional NOE spectroscopy. Journal of American Chemistry Society, 1983,105:2914-2916.
    [88]Patel D J, Shapiro L. Sequence-dependent recognition of DNA duplexes:Netrospin complexation to the TATA site of the d(GGTATACC) duplex in aqueous solution. Bioploymers, 1986,25:707-727.
    [89]Eriksson M, Leijon M, Hiort C et al. Binding of Δ-and A-[Ru(phen)3]2+ to [d(CGCGATCGCG)]2 studied by NMR. Biochemistry,1994,33:5031-5040.
    [90]Sandstrom K, Warmlander S, Leijon M, et al.1HNMR studies of selectives interactions of norfloxacin with double-stranded DNA. Biochemical and biophyscial research communications,2003,304:55-59.
    [91]Gabbay E J, Scofield R E, Baxter C S. Steric effects on the interaction of aromatic cations to deoxyribonucleic acid. Journal of American chemistry soiciety,1973,95: 7850-7856.
    [92]Kapicak L, Gabbay E J. Effect of amromatic cations on the tertiary structure of deoxyribonucleic acid. Journal of American chemistry soiciety,1974,97(2):403-408.
    [93]顾晓天,周家宏,颜雪明等.DNA与识别分子相互作用的电化学研究.南京晓庄学院学报,2005,21(5):31-36.
    [94]王素芬,彭图治,李建平.更生霉素-DNA反应的电化学研究.高等学校化学学报,2002,24(8):1438-1471.
    [95]赵元弟,庞代文,王宗礼等.抗癌药物的电化学研究Ⅰ:一种Fe (Ⅲ) schiff碱配合物的基本电化学性质及其与DNA的相互作用.化学学报,1998,56:178-183.
    [96]马立波,石昕,牛淑妍等.溴化乙锭与DNA相互作用的电化学及紫外-可见光谱研究.青岛科技大学学报,2003,24(5):398-400.
    [97]BarceloF, Ortiz-Lombardia M, Portugal J. Heterogeneous DNA binding modes of berenil. Biochimica et biophysica Acta 2001,1519:175-184.
    [98]Wiseman T, Willis ton S, Brandts J F, et al. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Analytical biochemistry,1989, 179:131-137.
    [99]Chaires J B. Energetic of drug-DNA interactions. Biopolymcrs,1997,44(3):201-215.
    [100]Mosmann T. Rapid colorimetric assay for celluar growth and survival [J].J.Immumol. Methods,1983,65:55-57.
    [101]Hongo T, Fujii Y, Igarashi Y. An in vitro chemosensitivity test for the sereening of anti-cancer drug in childhood leukemia [J]. Cancer,1990,65 (6):1263-1272.
    [102]Maria L. Lopez-Rodriguez, et al. Optimization of the pharmacophore model for 5-HT7R antagonism. Design and synthesis of new naphtholactam and naphthosultarn derivatives. J. Med. Chem.,2003,46:5638-5650.
    [103]李付安.酰胺Schiff碱与不对称双Schiff碱及其配合物的设计合成、结构及性质:(硕士).河南大学,2005.
    [104]Parr R G,Yang W. Density-Functional Theory of the Electronic Structure of Molecules, Annual Review of Physical Chemistry,1995,46:701-728.
    [105]薛颖.分子动力学模拟与自由能计算在药物分子设计中的应用:(硕士).北京工业大学,2003.
    [106]黎新.青霉素模型化合物的密度泛函研究.武汉大学学报(理学版),2007,53(6):661-664.
    [107]John C Hackett, Young-Woo Kim, Bin Su, Robert W. Brueggemeier. Synthesis and characterization of azole isoflavone inhibitors of aromatase. Bioorganic & Medicinal Chemistry,2005,13:4063-4070.
    [108]S Tysoe, A Baker, T C Strekas. Spectroscopic investigation of differential binding modes of DELTA and LAMBDA-Ru (bpy) 2 (ppz) 2+ with calf thymus DNA. J. Phys. Chem.,1933, 97(8):1707-1711. S Tysoe, A Baker, T C Strekas. Spectroscopic investigation of differential binding modes of DELTA and LAMBDA-Ru(bpy)2(ppz)2+ with calf thymus DNA. J. Phys. Chem.,1933,97(8):1707-1711.
    [109]Long E C, Barton J K. On demonstrating DNA intercalation. Ace Chem Res.,1990,23: 271-273.
    [110]Palchaudhuri R, Hergenrother P J. DNA as a target for anticancer compounds:methods to determine the mode of binding and the mechanism of action. Curr Opin Biotech.2007, 18:497-503.
    [111]Graves D E, Velea L M. Intercalative Binding of Small Molecules to Nucleic Acids. Curr Org Chem.2000,4,915-929.
    [112]Ihmels H, Otto D. Intercalation of Organic Dye Molecules into Double-Stranded DNA General Principles and Recent Developments. Top Curr. Chem.,2005,258:161-204.
    [113]Chan H, Ma D, Yang M, et al. Synthesis and Biological Activity of a Platinum(Ⅱ) 6-Phenyl-2,2' -bipyridine Complex and Its Dimeric Analogue. Chem. Bio. Chem.,2003, 4:62-68.
    [114]张修景.摩尔吸光系数与表观摩尔吸光系数的关系.菏泽师范专科学校学报,2003,25(4):66-67.
    [115]彭俊峰等,虫草素与DNA作用的光谱研究,光谱学与光谱分析,2004,24(7):858-861.
    [116]Guan H, Chen H, Xu A, et al. Design of β-carboline derivatives as DNA-targeting antitumor agents. Eur. J. Med. Chem.,2006,41:1167-1179.
    [117]Marijana Hranjec, Ivo Piantanida, et al. Novel Amidino-Substituted Thienyl- and Furylvinylbenzimidazole: Derivatives and Their Photochemical Conversion into Corresponding Diazacyclopenta[c]fluorenes. Synthesis, Interactions with DNA and RNA, and Antitumor Evaluation. J. Med. Chem.,2008,51 (16),4899-4910.
    [118]S Satyanaryana, J C Dabrowial, J B Chaires. Neither DELTA nor LAMNDA-tris(phenanthroline) ruthenium(Ⅱ) binds to DNA by classical intercalation Biochemistry,1992,31(39):9319-9324.
    [119]Alexander Hegmans, Jana Kasparkova, et al. Amide-Based Prodrugs of Spermidine-Bridged Dinuclear Platinum. Synthesis, DNA Binding, and Biological Activity. J. Med. Chem., 2008,51 (7),2254-2260
    [120]Adina Ryckebusch, Deborah Garcin, et al. Synthesis, Cytotoxicity, DNA Interaction, and Topoisomerase Ⅱ Inhibition Properties of Novel Indeno[2, 1-c]quinolin-7-one and Indeno[1,2-c]isoquinolin-5,11-dione Derivatives. J. Med. Chem.,2008,51 (12), 3617-3629.
    [12l]Fatma Gumus, et al. Synthesis, Cytotoxicity and DNA Interactions of New Cisplatin Analogues Containing Substituted Benzimidazole Ligands. J. Med. Chem.,2009,52(5), 1345-1357.
    [122]Qing Yang, Jianqiang Xu, et al. Hydrolysis of plasmid DNA and RNA by amino alkyl naphthalimide as metal-free artificial nuclease. Bioorganic & Medicinal Chemistry Letters,2006 (16):803-806
    [123]Brueggemeir R W, Hackett J C, Diaz-Cruz E S. Aromatase inhibitors in the treatment of breast cancer. Endocrine Rev.2005,26 (3):331-345.
    [124]Bordie A. Aromatase inhibitors in breast, cancer. Trends Endocrinol. Metab.2002,13 (2):61-65.
    [125]Cuzick J, Anastrozole. D rugs Today,2005,41 (4):227-239.
    [126]Stephane P, SookW Y, Martyn j, et al. Synthesis andCYP26Al inhibitory activity of 1-[benzofuran-2-y1-(4-al-ky1/ary1-pheny1)-methyl]-1H-triazoles. Bioorg.Med. Chem. 2006,14:3643-3653.
    [127]Yang B, He Q J, Zhu D Y, et al. Antiproliferative activity of contragestazol (DL111-IT) in murine and human tumormodels in vitro and in vivo. Cancer Chem other. Pharm.2006, 57 (2):268-273.
    [128]Stefania, Sarno, Mauro, et al. Features and potentials of ATP-site directed CK2 inhibitors.Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics,2005,1754 (1-2):263-270
    [129]Lin R, Connolly PJ, Huang S, et al. 1-Acyl-1H-[1,2,4] triazole-3,5-diamine analogues as novel and potent anticancercyclin-dependent kinase inhibitors:synthesis and evaluation of biological activities.J Med Chem,2005,48 (13):4208-4211.
    [130]Guo L, Li Z S, Wang H L, et. al. Carboxyamido-triazoleinhibi ts prol iferation of human breast cancer cells via G2/M cell cycle arrest and apop tosis. Eur. J. Pharmacol,2006, 538:15-22.
    [131]Moody TW, Chiles J, Moody E, et al. CAI inhibits the growth of small cell lung cancer-cells. Lung Cancer,2003,39:279-288.
    [132]Kallander LS,Lu Q, Chen W,et al.4-Aryl-1,2,3-triazole:a novel template for a reversible methionine aminopeptidase 2 in-hibitor,optimi zed to inhibit angiogenesis in vivo. J Med Chem,2005,48 (18):5644-5647.
    [133]Kolb H C, Finn M G, Sharpless K B. Click Chemistry:Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed.,2001,40:2004-2021.
    [134]Brana M F, Cacho M, Gradillas A, et al Intercalators as Anlicancer Drugs. Curr Pharm. Des.2001,7:1745-1780.
    [135]Rostovtsev V V, Green L G, Sharpless K B. et al. A stepwise huisgen cycloaddition process:copper(Ⅰ)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angew. Chem., Int. Ed.2002,41,2596-2599.
    [136]Rogers J E, Weiss S J, Kelly L A.photoprocesses of naphthalene imide and dimide derivatives in aqueous solutions of DNA. J Am Soc Chem,2000,122:427-436.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.