2,4-D、柚皮素、防落素分子印迹聚合物的制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子印迹技术是近年来出现的一种对目标分子具有预定选择性识别的新技术。分子印迹聚合物中由于含有和目标分子高度互补的空穴结构,因而其往往表现出惊人的专一识别性。此外,它还具有物理性质及化学性质稳定、制备简单、成本低等优点,现已在色谱分离、传感器、模拟酶催化、膜分离及固相萃取等许多领域得到越来越广泛的应用。利用原位聚合制备的分子印迹整体柱不但具有分子印迹聚合物的高选择性,还具有整体柱制备过程简单、重复性好、柱压低以及模板分子用量少等优点。利用本体聚合制备的分子印迹聚合物对印迹分子具有良好的选择性和识别特性,且该方法具有制备装置简单,条件易于控制,便于普及等优点。基于上述两种方法各自的优点,本论文制备了几种印迹聚合物,并研究了其对环境中残留农药、药物分子及植物激素的识别选择性能。由于生物识别一般在水中进行,因此研究了水相中分子印迹聚合物的应用。这些研究成果不仅拓展了分子印迹在分析化学中的应用,而且对于生物样品的分离和纯化,具有重要意义。研究的主要内容有:
     (1)以2,4-二氯苯氧乙酸分子为模板,采用热引发原位聚合法合成了高效液相色谱固定相的整体柱。用红外光谱、扫描电镜、比表面积分析对聚合物进行了表征。考察了模板分子在不同条件下合成的印迹整体柱及空白整体柱上容量因子的变化规律,同时探讨了流动相中甲醇的含量、pH值、流速对印迹整体柱分离性能的影响。结果表明:在优化的合成条件下制备的分子印迹整体柱能够将2,4-二氯苯氧乙酸及其结构类似物苯氧乙酸完全分离开。并用其进行了柑桔提取液分离测试,结果满意。
     (2)以柚皮素分子为模板,采用热引发原位聚合法制备了柚皮素分子印迹整体柱,并将其作为高效液相色谱固定相,通过高效液相色谱对其识别性能进行研究。优化了聚合反应条件,即考察了模板分子在不同聚合条件下合成的印迹整体柱及空白整体柱上容量因子的变化规律,同时探讨了流动相中水的含量、pH值对印迹整体柱分离性能的影响。用扫描电镜、比表面积分析对聚合物进行了表征。对传统中药中的柚皮素成分进行了检测,结果令人满意。
     (3)以对氯苯氧乙酸为模板分子,采用热引发本体聚合法合成了分子印迹聚合物。为了研究聚合物的结合性质,分别测定了印迹聚合物与空白聚合物的结合等温线。与空白聚合物相比,印迹聚合物对模板分子表现出了更高的结合能力。Scatchard分析表明在所研究的浓度范围内,分子印迹聚合物中只存在一种等价结合位点。同时研究了印迹聚合物对模板分子及其结构类似物的选择性,证实了印迹聚合物对模板分子表现出更高选择识别能力。
Molecular Imprinting Technique is a new technique, which have the predetermined selectivity and recognition ability for the target molecules. Molecular imprinted polymers (MIPs) have cavity structure which is highly complementary to target molecule, as a result, the specificity recognition capability is very surprising.In addition, the stability of physical and chemical property, simple preparation, and low cost of molecularly imprinted polymers have led to their applications in many fields such as chromatographic separation, sensors, mimic enzyme catalysis, membrane separation and solid phase extraction. The molecularly imprinted monolithic columns (MIMC) prepared by in situ polymerization of monomers have not only the high stereo selectivity of MIPs, but also some advantages of simple preparation procedures, good reproducibility, low backpressure of column and low-consumption of template molecules. MIPs prepared by bulk polymerization have not only high selectivity and good recognition ability, but also some advantages of simple preparation device, easily controlled condition, conveniently popularization. In this paper, several MIPs based on the above-mentioned methods have been developed, and successfully applied to selectivity and recognition ability of environmental pesticide residue, some drugs, phytohormone. However, for some biological samples whose biological recognition mainly occurs in aqueous solution and the application of MIPs were limited to some extent. So it is extremely important to prepare MIPs that are able to go on biological recognition in aqueous solutions. These results extended the applications of MIPs in analytical chemistry. The foucus of this paper has been listed as follow:
     (1) Monolithic columns(MTC) were synthesized using 2,4-dichlorophenoxyacetic acid(2,4-D) as template molecules by in situ thermal-initiated polymerization method, which was used to be the stationary phase of the high performance liquid chromatography. The polymers were characterized with infrared spectrum, morphology was also analyzed with scanning electron microscopy and surface area analysis. The trends of retention factors of imprinted and blank MTC synthesized under different conditions were investigated. Furthermore, effects of methanol content, pH and flow rate on the separation performance of MIMC were discussed. Result show: The stationary phase of MIMC synthesized under optimization of preparation conditions could entirely separate 2,4-D and its analogues phenoxyacetic acid. The separation of 2,4-D from the distill liquid of orange on MIMC were tested with good result.
     (2) Monolithic columns were synthesized using naringenin as template molecules by in situ thermal-initiated polymerization method, which was used to be the stationary phase of the high performance liquid chromatography, selectivity and recognition ability of MIPs were studied. The trends of retention factors of imprinted and blank MTC synthesized under different conditions were investigated.Furthermore, effects of methanol content, pH on the separation performance of MIMC were discussed. The polymers morphology were characterized with scanning electron microscopy and surface area analysis. The MIPs has been successfully applied to the determination of naringenin in the Chinese traditional medicine with good results.
     (3) Molecular imprinted polymers were prepared using 4-chlorophenoxyacetic acid(4-CPA) as template molecules by thermal-initiated bulk polymerization method. In order to investigate the binding performance of the MIPs and blank polymers, their binding isotherm was determined. The polymer show much higher binding capacity for 4-CPA than the non-imprinted polymer with the same chemical composition. Scatchard analysis showed only one class of binding sites was formed in the imprinted polymer under the studied concentration. The experiment which MIPs was studied the selective recognition to 4-CPA and analogs, revealed that MIPs showed higher and better selective recognition abilities to 4-CPA.
引文
[1] [日]小宫山真等著.吴世康,汪彭飞译《.分子印迹学--从基础到应用》科学出版社, 2006年4月第一次印刷.
    [2] Pauling L J. A Theory of the Structure and Process of Formation of Antibodies[J]. Am. Chem Soc, 1940, 62(3): 2643-2657.
    [3] Wulff G, Sarhan A, Zabrocki K. Enzyme Analogue Built Polymers and Their Use for The Resolution of Racemates[J]. Tetrahedron Lett, 1973, 23(1): 4329-4332.
    [4] Vlatakis G, Andersson L I, Muller R, et al. Drug assay using antibody mimics made by molecular imprinting[J]. Nature, 1993, 361: 645-647.
    [5] Sellergren B. Imprinted dispersion polymers: A new class of easily accessible affinity stationary phases[J]. J.Chromatogr. A, 1994, 673(1): 133-141.
    [6] Wenz G. Cyclodextrins as Building Blocks for Supramolecular Structures and Functional Units[J]. Angew.Chem.Int .Ed., 1994, 33(8): 803-822.
    [7] Schneider H J. Mechanisms of Molecular Recognition: Investigations of Organic Host-Guest Complexes[J]. Angew.Chem.Int .Ed., 1991, 30(11): 1417-1436.
    [8] Rebek J. Molecular Recognition with Model Systems[J]. Angew.Chem.Int .Ed., 1990, 29(3): 245-255.
    [9] Andesson L I. Molecular imprinting: developments and applications in the analytical chemistry field[J]. J. Chromatogr. B, 2000, 745(1): 3-13.
    [10] Hage D S. Affinity chromatography: a review of clinical applications[J]. Clin.Chem., 1999, 45(5): 593-615.
    [11] Surugiu I, J Svitel, K Haupt, et al. Development of a flow injection capillary chemiluminescent ELISA using an imprinted polymer instead of the antibody[J]. Anal.Chem., 2001, 73(17): 4388-4392.
    [12] Wen Chen, Feng Liu, Ke An Li, et al. Molecular recognition of procainamide-imprinted polymer[J]. Anal.Chem.Acta. 2001, 432(2): 227-282.
    [13] Haupt K, Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors[J]. Chem. Rev., 2000, 100(7): 2495-2504.
    [14]赖家平,何锡文,郭洪声,等.分子印迹技术的回顾、现状与展望[J].分析化学研究报告, 2001, 29(7): 836-844.
    [15] Sellerg B. Direct drug determination by selective sample enrichment on an imprinted polymer[J]. Anal.Chem., 1994, 66(9): 1578-1582.
    [16] Nilsson G I, Sakaguchi K, Gemeiner P, et al. Molecular recognition in cinchona alkaloid molecular imprinted polymer rods[J]. J.Chromatogr. A, 1995, 707: 199-203.
    [17] Mathew-Krotz J, Shea K J. Imprinted Polymer Membranes for the selective transport of targeted neutral molecules[J]. J. Am. Chem. Soc., 1996, 118(34): 1913-1916.
    [18] Araki K, Goto M, Furusaki S. Enantioselective polymer prepared by surface imprinting technique using a bifunctional molecule[J].Anal.chim.Acta, 2002, 469(2): 173-181.
    [19] Shen S, Suodl M S. Control of particle size in dispersion polymerization of methyl methacrylate[J]. J. Polym. Sci., Part B: Polym. Chem., 1993, 31(6): 1393-1402.
    [20] Wulff G, Heide B, Helfmeier G. Simultaneous chiral separations using a combinatorial molecular imprinting phase[J]. Am.Chem.Soc, 1986, 108(1): 1089-1091.
    [21] Kubo T, Hosoya K. On-column concentration of bisphenol A with one-step removal of humic acids in water[J]. J.Chromatogr.A, 2003, 987(1-2): 389-394.
    [22] Whitecomb M J, Rodriguez M E, Villar P, et al. Molecularly imprinted polymer Combinatorial libraries for Multiple Simultaneous chiral separations[J]. Am.Chem. Soc, 1995, 117(8): 7107-7111.
    [23] Norrlow O, Glad M, Mosbach K. Acrylic Polymer Preparations Containing Recognition Sites Obtained by Imprinting with Substrates[J]. J.Chronatogr.A, 1984, 299: 29-41.
    [24] Davankov V A, Semechkin A V. Ligand-exchange chromatography[J]. J.Chromatogr.A, 1977, 141: 313-353.
    [25] Fujii Y, Kikuchi K, Matsutani K, et al. Template synthesis of polymer Schiff base Co(III)complex and formation of specific cavity for chiral amino acids[J]. Chem.Lett, 1984, 13(9): 1487-1490.
    [26] Fujii Y, Matsutani K, Kikuchi K. Formation of a Specific Co-ordination Cavity for a Chiral Amino Acid by Template Synthesis of a Polymer Schiff Base Cobalt(III)Complex[J]. J.Chem Soc., Chem Commun., 1985, 415-417.
    [27] Arshad Y R, Mosbach K. Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates[J]. Macromol.Chem, 1981, 128(2): 678-692.
    [28] Mahony J O, Nolan K, Smyth M R, et al. Molecularly imprinted polymers potential and challenges in analytical chemistry[J]. Anal.Chim.Acta, 2005, 534(1): 39.
    [29] Whitcombe M J, Rodriguez M E, Villar P, et al. A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: Synthesis and characterization of polymeric receptors for cholesterol[J]. J.Am.Chem.Soc., 1995, 117(27): 7105-7111.
    [30] Yilmaz E, Haupt K, Mosbach K. The use of immobilized templates-A new approach in molecular imprinting[J]. Angew.Chem .Int .Ed., 2000, 39(12): 2115-2118.
    [31] Dhal P K, Arnold F H. Template-Mediated Synthesis of Metal-Complexing Polymers for Molecular Recognition [J]. J.Am.Chem .Soc., 1991, 113(9): 7417-7418.
    [32] Dhal P K, Arnold F H. Metal-Coordination Interactions in the Template-Mediated Synthesis of Substrate-Selective Polymers: Recognition of Bis(imidazole) Substrates by Copper(II) Iminodiacetate Containing Polymers[J]. Macromolecules, 1992, 25(25): 7051-7059.
    [33] Andersson Lars I, Mosbach K. Enantiomeric resolution on molecularly imprinted polymers prepared with only non-covalent and non-ionic interactions[J]. J.Chromatogr.A, 1990, 516(2): 313-322.
    [34] Mosbach K, Mayes A G. Stabilizers, polymers, and emulsions useful for molecular imprinting technology[J]. Pantent number: US5821311, Publication date: 1998-10-13.
    [35] Svec F, Frecheet J M J. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media[J]. Anal. Chem., 1992, 64(7): 820-822.
    [36] Matsui J, Kato T, Takeuchi T, et al. Molecular recognition in continuous polymer rods prepared by a molecular imprinting technique[J]. Anal.Chem., 1993, 65(17): 2223-2224.
    [37] Schweitz L, Andersson L I, Nilsson S. Capillary electrochromatography with molecular imprint-based selectivity for enantiomer separation of local anaesthetics[J]. J.Chrornatogr. A, 1997, 792(1-2): 401-409.
    [38]黄晓冬,邹汉法,毛希琴,等.分子印迹手性整体柱的制备及对非对映异构体的分离[J].色谱, 2002, 20(5): 436-438.
    [39] Liao J L, Chen N, Hjerten S, et al. Preparation of continuous beds derivatized with one-step alkyl and sulfonate groups for capillary electrochromatography[J]. Anal.Chem, 1996, 68(19): 3468-3472.
    [40] Ericson C, Liao J L, Nakazato K, et al. Preparation of continuous beds for electrochromatography and reversed-phase liquid chromatography of low-molecular-mass compounds[J]. J.Chromatogr.A, 1997, 767(1-2): 33-41.
    [41] Petro M, Svec F, Gitsov I, et al. Molded monolithic rod of macroporous poly(styrene-co-divinylbenzene)as a separation medium for HPLC of synthetic polymers: ''On-column''precipitation-redissolution chromatography as an alternative to size exclusion chromatography of styrene oligomers and polymers[J]. Anal.Chem, 1996, 689(2): 315-321.
    [42] Xie S F, Svec F, Frechet J M J. Rigid porous polyacrylamide-based monolithic columns containing butyl methacrylate as a separation medium for the rapid hydrophobic interaction chromatography of proteins[J]. J.Chromatogr. A, 1997, 775(1): 65-72.
    [43] Xie S F, Svec F, Frechet J M J. Preparation of porous hydrophilic monoliths: Effect of the polymerization conditions on the porous properties of poly (acrylamide-co-N, N'-methylenebisacrylamide)monolithic rods[J]. J. Polym.Sci.A, 1997,35(6): 1013-1021.
    [44] Peters E C, Petro M, Svec F, et al. Molded rigid polymer monoliths as separation media for capillary electrochromatography. 1. Fine control of porous properties and surface chemistry[J]. Anal.Chem., 1998, 70(11-12): 2288-2295.
    [45] Peters E C, Petro M, Svec F, et al. Molded rigid polymer monoliths as separation media for capillary electrochromatography. 2. Effect of chromatographic conditions on the separation[J]. Anal. Chem., 1998, 70(11): 2296-2302.
    [46] Yin J F, Yang G L, Chen Y. Rapid and efficient chiral separation of nateglinide and its L-enantiomer on monolithic molecularly imprinted polymers[J]. J. Chromatogr. A, 2005, 1090(1-2): 68-75.
    [47]赵中璋,杨树明,杨彦果,等.分散聚合制备粒度均匀的聚甲基丙烯酸环氧丙酯微球[J].高分子学报, 1999, 2(1): 31-36.
    [48] Ye L, Ramstrom O, Mosbach K. Molecularly imprinted polymeric adsorbents for byproduct removal[J]. Anal. Chem., 1998, 70(14): 2789-2795.
    [49] Styrbjoern E, Anna Boerje, Akermark Bjoern. Selective reduction of steroid 3- and 17-ketones using lithium aluminum hydride activated template polymers[J]. J. Am. Chem. Soc., 1993, 115 (5): 2081-2083.
    [50] Matsui J, Okada M, Tsuruoka M, et al. Solid-phase Extraction of a Triazine Herbicide Using a Molecularly Imprinted Receptor[J]. Anal. Commun., 1997, 34: 85-87.
    [51]孟子晖,王进防,周良模,等.球形分子烙印聚合物分离立体异构体[J].色谱, 1999, 17(4): 323-325.
    [52] Mayes A G, Mosbach K. Molecularly imprinted polymer beads: Suspension polymerization using a liquid perfluorocarbon as the dispersing phase[J]. Anal. Chem., 1996, 68(21): 3769-3774.
    [53] Ansell R J, Mosbach K. Molecularly imprinted polymers by suspension polymerisation in perfluorocarbon liquids, with emphasis on the influence of the porogenic solvent[J]. J. Chromatogr. A, 1997, 787(1-2): 55-66.
    [54] Yoshida M, Uezu K, Goto M, et al. Metal ion imprinted microsphere prepared by surface molecular imprinting technique using water-in-oil-in-water emulsions[J]. J. Appl. Polym. Sci., 1999, 73(7): 1223-1230.
    [55] Yoshida M, Hatate Y, Uezu K, et al. Chiral-recognition polymer prepared by surface molecular imprinting technique[J]. Colloids. Surf., A: Physicochem.Eng.Asp., 2000, 169(1-3): 259-269.
    [56] Yoshida M, Hatate Y, Uezu K, et al. Metal-imprinted microsphere prepared by surface template polymerization and its application to chromatography[J]. J. Polym. Sci. A, 2000, 38(4): 689-696.
    [57] Yoshida M, Uezu K, Goto M, et al. Required properties for functional monomers to produce a metal template effect by a surface molecular imprinting technique[J]. Macromolecules, 1999, 32(4): 1237-1243.
    [58] Yoshida M, Uezu K, Nakashio F, et al. Spacer effect of novel bifunctional organophosphorus monomers in metal-imprinted polymers prepared by surface template polymerization[J]. Polym. Chem., 1998, 36(15): 2727-2734.
    [59] Yoshida M, Uezu K, Goto M, et al. Metal ion imprinted microsphere prepared by surface molecular imprinting technique using water-in-oil-in-water emulsions[J]. J. Appl. Polym. Sci., 1999, 73(7): 1223-1230.
    [60] Yoshida M, Uezu K, Goto M, et al. Surface imprinted polymers recognizing amino acid chirality[J]. J.Appl.Polym.Sci, 2000, 78(4): 695-703.
    [61] Yoshida M, Uezu K, Nakashio F, et al. Spacer effect of novel bifunctional organophosphorus monomers in metal-imprinted polymers prepared by surface template polymerization[J]. J.Polym.Sci.A, 1998, 36(15): 2727-2734.
    [62] Hosoya K, Yoshizako K, Tanaka N, et al. Uniform-size macroporous polymer-based stationary-phase for HPLC prepared through molecular imprinting technique[J]. Chem. Lett., 1994: 23(8): 1437-1438.
    [63] Hosoya K, Yoshizako K, Tanaka N, et al. Molecularly imprinted uniform-size polymer-based stationary phase for high-performance liquid chromatography-Structural contribution of cross-linked polymer network on specific molecular recognition[J]. J. Chromatogr. A, 1996, 728(1-2): 139-147.
    [64] Haginaka J, Sanbe H, Takehira H. Uniform-sized molecularly imprinted polymer for(S)-ibuprofen-Retention properties in aqueous mobile phases[J]. J.Chromatogr.A, 1999, 857(1-2): 117-125.
    [65] Haginaka J, Takekira H, Hosoya K, et al. Uniform-sized molecularly imprinted polymer for(S)-naproxen selectively modified with hydrophilic external layer[J]. J.Chromatogr.A, 1999, 849(2): 331-339.
    [66] Haginaka J, Sakai Y. Uniform-sized molecularly imprinted polymer material for(S)-propranolol[J]. J.Pharm..Biomed.Anal., 2000, 22(6): 899-907.
    [67] Haginaka J, Kagawa C. Uniformly sized molecularly imprinted polymer for d-chlorpheniramine-Evaluation of retention and molecular recognition properties in an aqueous mobile phase[J]. J.Chromatogr.A, 2002, 948(1-2): 77-84.
    [68] Yilmaz E, Ramstrom O, Moller P, et al. A facile method for preparing molecularly imprinted polymer spheres using spherical silica templates[J]. J.Mater.Chem., 2002, 12: 1577-1581.
    [69] Tamayo F G, Martin-Esteban A. Selective high performance liquid chromatography imprinted-stationary phases for the screening of phenylurea herbicides in vegetable samples[J]. J.Chromatogr.A, 2005, 1098(1-2): 116-122.
    [70] Peter A G, Cormack, Amaia Z E. Molecularly imprinted polymers: synthesis and characterization[J]. J.Chromatogr.B, 2004, 804(1): 173-182.
    [71] Ramstrom Olof, Andersson Lars I, Mosbach K. Recognition sites incorporating both pyridinyl and carboxy functionalities prepared by molecular imprinting[J]. J.Org.Chem., 1993, 58(26): 7562-7564.
    [72] Simon Ryan, Houck Stephen, Spivak David A. Comparison of particle size and flow rate optimization for chromatography using one-monomer molecularly imprinted polymers versus traditional non-covalent molecularly imprinted polymers[J]. Anal.Chem.Acta., 2005,542(1): 104-110.
    [73] Kempe M. Antibody-Mimicking Polymers as Chiral Stationary Phases in HPLC[J]. Anal. Chem., 1996, 68(11): 1948-1953.
    [74] Kempe M, Mosbach K. Structure and synthesis of mexolide: a new antibiotic dicoumarin from murraya exotica linn[J]. Tetrahed .Lett, 1995, 36(20): 3563-3566.
    [75] Lu Y, Li C X, Wang X D, et al. Influence of polymerization temperature on the molecular recognition of imprinted polymers[J]. J.Chromatogr.B, 2004, 804(1): 53-59.
    [76] Shannesy D J, Ekberg B, Mosbach K. Molecular imprinting of amino acid derivatives at low Temperature (0°C) using photolytic homolysis of azobisnitriles[J]. Anal.Biochem., 1989, 177(1): 144-149.
    [77] Piletsky S A, Mijangos I, et al. Polymer Cookery: Influence of Polymerization Time and Different Initiation Conditions on Performance of Molecularly Imprinted Polymers[J]. Macromolecules, 2005, 38(4): 1410-1414.
    [78] Sellergren B, Lepisto M, Mosbach K. Highly enantioselective and substrate-selective polymers obtained by molecular imprinting utilizing noncovalent inter-action NMR and chromatographic studies on the nature of recognition[J]. J.Am.Chem.Soc, 1998, 110(17): 5853-5860.
    [79] Schweitz L, Andersson L I, Nilsson S. Capillary electrochromatography with molecular imprint-based selectivity for enantiomer separation of local anaesthetics[J]. J.Chromatogr.A, 1997, 792(1-2): 401-405.
    [80] Schweitz L, Andersson L I, Nilsson S. Molecular imprint-based stationary phases for capillary electrochromatography[J]. J.Chromatogr.A, 1998, 817(1-2): 5-13.
    [81] Hwang Ch-Ch, Lee W-Ch. Chromatographic resolution of the enantiomers of phenylpropanolamine by using molecularly imprinted polymer as the stationary phase[J]. J. Chromatogr.B, 2001, 765(1): 45-53.
    [82] Haginaka J, Haruya S. Uniformly sized molecularly imprinted polymer for (s)-naproxen retention and molecular recognition properties in aqueous mobile phase[J]. J.Chromatogr.A, 2001, 913(1-2): 141-146.
    [83] Haginaka J.Uniform-sized molecularly imprinted polymer for(s)-naproxen selective transport of targeted neutral molecules[J]. J.Am.Chem.Soc., 1996, 118(34): 8154-8161.
    [84] Theodoridis G, Manesiotis P. Selective solid-phase sorbent for cafeine made by molecular imprinting[J]. J.Chromatogr. A, 2002, 948(1-2): 163-169.
    [85] Vallano P T, Remcho V T. Highly selective separations by capillary electrochromatogr: molecular imprint polymer sorbents[J]. J.Chromatogr . A, 2000, 887(1-2): 125-135.
    [86] Kriz D, Kriz C B, Andersson L I, et al. Thin-layer chromatography based on the molecular imprinting technique[J]. Anal.Chem., 1994, 66(1): 2636-2639.
    [87] Lin Jin-Ming, Nakagama Tatsuro, Uchiyama Katsumi, et al. Temperature Effect on Chiral Recognition of Some Amino Acids with Molecularly Imprinted Polymer Filled Capillary Electrochromatography[J]. Biomed. Chromatogr., 1997, 11(5): 298-299.
    [88] Lin Jin-Ming, Nakagama Tatsuro, Uchiyama Katsumi, et al. Enantioseparation of D,L-phenylalanine by molecularly imprinted polymer particles filled capillary electrochromatography[J]. J.Liq.Chromatogr.Related Technol., 1997, 20(10): 1489-1506.
    [89] Tabushi, Hamachi I. First member of artificial flavolipid family, its synthesis and incorporation into artificial liposomes[J]. Tetrahedron Lett., 1986, 27(44): 5401-5404.
    [90] Blanco-Lopez M C, Lobo-Castanon M J, Miranda-Ordieres A J, et al. Voltam-metric sensor for vanillylmandelic acid based on molecularly imprinted polymer-modified electrodes[J]. Biosens. Bioelectron., 2003, 18(4): 353-362.
    [91] Panasyuk T L, Mirsky V M, Piletsky S A, et al. Electropolymerized molecularly imprinted polymer as receptor layers in capacitive chemical sensors[J]. Anal.Chem, 1999, 71(20): 4609-4613.
    [92] Kriz D, Mosbach D. Competitive amperometric morphrine sensor based on an agarose immobilised molecularly imprinted polymer[J]. Anal.Chim.Acta, 1995, 300(1-3): 71-75.
    [93] Deore B, Chen Z H, Nagaoka T. Potential-induced enantioselective uptake of amino acid into molecularly imprinted overoxidized polypyrrole[J]. Anal.Chem, 2000, 72(17): 3989-3994.
    [94] Dickert F L, Hayden O. Molecularly fingerprints using imprinting techniques[J]. Adv. Mater., 2000, 12(4): 311-314.
    [95] Rachkov A, Minoura N. Recgnition of oxytocin and oxytocin-related peptides in aqueous media using a molecularly imprinted polymer synthesized the epitope approach[J]. J.Chromatogr.A,2000, 889(1-2), 111-118.
    [96] Shi X Z, WU AB, Zhang S L. Molecularly imprinted Polymer microspheres for Solid-Phase extraction of chloramphenicol residues in foods[J]. J.Chromatogra .B, 2007, 850(1-2): 24-30.
    [97] Yang G L, Liu H Y, Wang M M. Chromotographic characterization and solid-phase extraction on diniconazole-imprinted polymer stationary phase[J]. React .Funct .Polym., 2006, 66(5): 579-583.
    [98] Sellergren B, Direct drug determination by selective sample enrichinent on an imprinted polymer[J]. Anal.Chem., 1994, 66(9): 1578-1582.
    [99] Zander A, Findlay P, Renner T. Analysis of nicotine and its oxidation production in nicotine chewing gum by molecularly imprinted solid-phase extraction[J]. Anal.Chem., 1998, 70(7): 3304-3314.
    [100]李礼,胡树国,何锡文.应用分子印迹-固相萃取法提取中药活性成分非瑟酮[J].高等化学学报, 2006, 27(4): 608-611.
    [101]雷启福,钟世安,向春艳.儿茶素活性成分的分子印迹聚合物的分子识别特性及固相萃取研究[J].分析化学, 2005, 22(7): 857-860.
    [102] Hu S, Li L, He X W. Solid-Phase extraction of escuetin from the ash bark of Chinese traditional medicine by using molecularly imprinted polymer[J]. J.Chromatogr.A, 2005, 1062(1): 31-37.
    [103]刘鑫,李德红,李玲,等. 2,4-二氯苯氧乙酸的研究进展[J].生命科学研究, 2004, 8(4): 71-75.
    [104]李金昶,赵晓亮,铁雅文,等.薄层扫描法分离和测定苯氧乙酸和2,4-二氯苯氧乙酸[J].分析化学, 1999, 27(10): 1240.
    [105] Amarante O P, Brito N M, Santons T C R, et al. Determination of 2, 4 - dichlorophenoxyacetic acid and its major transformation product in soil samples by liquid chromatographic analysis[J]. Talanta., 2003, 60(1): 115-121.
    [106]陈友清,冯先桔.衍生化气相色谱法测定柑橘果实中的2,4-二氯苯氧乙酸[J].浙江柑橘, 2003, 20(1): 43-45.
    [107]怀其勇,杨俊佼,雷荣,等.用于分子识别的分子印迹聚合物固定相[J].分析测试学报, 2001, 20 (6): 84-89.
    [108]李萍,林保平,胡溶掂,等.苯丙氨酸衍生物的色谱手性拆分-采用分子印迹聚合物作为色谱固定相[J].分析测试学报, 2002, 21(3): 25-27.
    [109] Theodoridis G, Manesiotis P. Selective solid-phase extraction sorbent for caffeine made by molecular imprinting[J]. J.Chromatogr.A, 2002, 948(1-2): 163-169.
    [110]蔡亚歧,牟世芬.分子印迹固相萃取及其应用[J].分析测试学报, 2005, 24(5): 116-121.
    [111] Molinelli A, Weiss R, MizaikoffI B. Advanced solid phase extraction using molecularly imprinted polymers for the determination of quercetin in red wine[J]. J.Agric.Food.Chem, 2002, 50(7): 1804-1808.
    [112] Shoji R, Toakeuchi T,Kubo I. Atrazine sensor based on molecularly imprinted polymer-modified gold electrode[J]. Anal.Chem., 2003, 75(18): 4882-4886.
    [113]刘有芹,徐莉,颜芸,等.分子印迹聚合物传感器的研究与发展[J].分析测试学报, 2007, 26(3): 450-454.
    [114]王江干,徐伟箭.分子印迹聚合物模拟酶催化剂的设计合成[J].化学研究与应用, 2004, 16(4): 449-452.
    [115] Alfonso F G, Laura G, Rosana B L, et al. Mimicking molecular receptors for antibiotics-analytical implications[J]. Trends.Anal.Chem, 2006, 25(10): 949-957.
    [116] AlexandraL M, John O, Kiera N, et al. Analyzing the Mechanisms of Selectivity in Biomimetic Self-Assemblies via IR and NMR Spectroscopy of Prepolymerization Solutions and Molecular Dynamics Simulations[J]. Anal.Chem, 2005, 77(16): 5196-5204.
    [117]闰伟英,张智超,高如瑜,等. 4-氨基吡啶分子印迹聚合物毛细管整体柱的制备及电色谱性能研究[J].高等学校化学学报, 2003, 24(6): 1026-1030.
    [118]黄晓东,孔亮,厉欣,等.原位分子印迹毛细管电色谱柱的制备以及其对非对映异构体的分离[J].色谱, 2003, 21(3): 195-198.
    [119] C H Ping, D J Saville, P T Coville, et a1. Content of CYP3A4 inhibitors, naringin, naringenin and bergapten in grapefruit and grapefruit juice products[J]. Pharmaceut.Acta Helvet., 2000,74(4): 379-385.
    [120]赵雪梅,叶兴乾,席屿,等.胡柚皮中的黄酮类化合物[J].中草药, 2003, 34(1): 11-13.
    [121]莫顺燕,杨永春,石建功.桑黄化学成分研究[J].中国中药杂志, 2003, 28(4): 339-341.
    [122]尚明英,蔡少青,韩健,等.中药胡芦巴的黄酮类成分研究[J].中国中药杂志,1998,23(10): 614-6l6.
    [123]林立东,秦国伟,徐任生.华中化学成分的研究植物学报[J]. 1994, 36(5): 393-397.
    [124]隆长锋,王漩,杨宇新,等.大叶马蹄香根中的黄酮类成分[J].北京医科大学学报, 2000, 32(3): 229-231.
    [125] Kroyer G.The antioxidant activity of Citrus fruit peels[J]. Z Eranhrungswiss., 1986, 25(1): 63-69.
    [126] Jeon SM, Kim H K . Kim HJ, et a1. Hypocholesterolemic and antioxidative effects of naringenin and its two metabolites in highcholester fed rats[J]. Ttansl.Res., 2007, 149(1): 15-21.
    [127] Badary O A, Abdel-Maksoud S, Ahmed W A, et a1. Naringenin attenuates cisplatin nephrotoxicity in rats[J]. Life.Sci., 2005, 76(18): 2125- 2135.
    [128] Arafa H M, Abd-Ellah M F, Haffz H F. Abatement by naringenin of doxorubicin-induced cardiac toxicity in rats[J]. J.Egyt.Nat .Canc.Inst., 2005, 17(4): 291-300.
    [129]李瑞芳,左学兰,周颖,等.柚皮素对人类白血病K562细胞生长的作用及其机制探讨[J].白血病·淋巴瘤, 2007, 16(4): 241-243.
    [130] Kanno S, Tomizawa A, Hiura T, et a1.Inhibitory effects of naringenin on tumor growth in human cancer cell lines an d sarcoma S-180-implanted mice[J]. Biol.Pharm.Bull., 2005, 28(3): 527-530.
    [131]万丽丽,张剑萍,孙习鹏,等. HPLC法测定大鼠血浆中橙皮素和柚皮素的浓度[J].中国药师, 2009, 12(11): 1521-1523.
    [132]刘海兴,刘凤芹,崔敏,等.毛细管电泳法测定中药艾叶中脱氧肾上腺素和柚皮素[J].分析试验室, 2006, 25(8): 62-64.
    [133] Kanaze FI, Kokkalou E, Georgarakis M, et a1. Validated high-performance liquid chromatographic method utilizing solid-phase extraction for the simultaneous determination of naringenin and hesperetin in human plasma[J]. J.Chromatogr.B, 2004, 801(2): 363-367.
    [134] Ishii K, Furuta T, Kasuya Y. Determination of naringin and naringenin in humall urine by high-performance liquid chromatography utilizing solid-phase extraction[J]. J.Chromatogr. B, 1997, 704(1-2): 299-305.
    [135] Choudhury R, Chowrimootoo G, Srai K, et al. Interactions of the flavonoid naringenin in the gastrointestinal tract and the influence of glycosylation[J]. Biochem.Biophy.Res.Commun., 1999, 265(2): 410-415.
    [136] Erlund I, Meririnne E, Alflhan G, et a1. Plasma kinetics and urinary excretion of the flavanones naringenin and hesperetin in humans after ingestion of orange juice and grapefruit juiee [J]. J.Nut., 2001, 13l(6): 235-241.
    [137]齐英,吕久琢,潘九堂.植物激素和植物生长调节剂发展现状[J].农药, 2001, 9(1): 6-8.
    [138]邹盛欧.植物生长调节剂及其研究动向[J].农药, 2002, 5(3): 15-18.
    [139]张永华.聚乙二醇催化合成取代苯氧乙酸[J].现代农药, 2004, 3(6): 9-11.
    [140]廖文安,张玉良,曲士珍.对氯苯氧乙酸钾的合成与应用[J].辽宁化工, 1998, 27(1): 4345.
    [141]实用精细化学品手册编写组编,章思规主编.实用精细化学品手册有机卷(上).北京:化学工业出版社, 1996, 673.
    [142]丁有昌,姜爱香,钟鸣文. TLC法测定无根豆芽菜中4-氯苯氧乙酸钠残留量[J].中国公共卫生, 1997, 13(2): 77.
    [143] Wong Y S. Gas-liquid chromatography determination of 4-chlorophnoxy-acetic acid residues in mung bean sprouts[J]. J.Assoc.Off .Anal.Chem., 1982, 65(5): 1118-1121.
    [144]黄卫平.高效液相色谱法测定豆芽中4-氯苯氧乙酸钠残留量[J].中华预防医学杂志, 2002, 36(1): 44-45.
    [145]唐根源,吴红京.高效液相色谱法测定食用豆芽菜中激素物质的含量[J].色谱, 1993, 11(5): 321-323.
    [146]颜金良,颜勇卿,王立,等.离子色谱法快速测定豆芽中4-氯苯氧乙酸残留量[J].中国卫生检验杂志, 2006, 16(10): 1207-1208.
    [147]裘亚均,徐育,张佑球,等.离子色谱法电导检测测定土壤中的对氯苯氧乙酸[J].宁波高等专科学校学报, 2001, 13: 155-158.
    [148]施青红,袁丽霞,徐育,等.离子色谱法电导检测测定土壤中的对氯苯氧乙酸[J].仪器仪表学报, 2001, 22(4): 383-384.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.