高岭土制备纳米氧化铝工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用高岭土为原料制备纳米氧化铝具有成本低廉,可大幅度提高高岭土的产品附加值,增加经济效益等优点。采用正交试验法研究了酸溶分解高岭土时,高岭土的粒径、活化条件(煅烧温度、保温时间)及酸浸条件(浓度、温度、时间、反应比)等对Al3+浸取率的影响;采用碱法提纯酸浸液,研究了碱液浓度、反应比、温度、时间等对降低杂质(Fe3+、Ti4+)含量的影响;以提纯后浸取液为原料,采用勃姆石凝胶法和碳酸铝铵热解法制备纳米氧化铝粉体,研究了反应物浓度、浓度比、pH、分散剂、反应温度、反应时间、煅烧温度等对粉体粒径、松装密度、形貌、晶型、纯度及获得率的影响。采用TG-DTA、XRD、SEM、TEM、电感耦合等离子体原子发射光谱仪、傅立叶红外光谱仪、显微共焦拉曼光谱仪、表面电位粒径仪、激光粒度分析仪等测试方法和设备对前驱体和粉体性能进行了表征。
     通过大量实验及分析研究,得出如下结论:(1)苏州高岭土700℃左右煅烧后由晶相转变为非晶相,有利于提高与酸的反应活性。但温度过高,石英相增多,反应活性降低;(2)酸浸时,酸的浓度、反应时间、反应温度等对浸取率的影响较大,较低的酸浓度,较长的反应时间和较高的反应温度有利于浸取率的提高;(3)强碱处理浸取液,较高的碱液浓度、用量和反应温度能有效降低杂质离子含量;(4)碳酸铝铵热解法比薄姆石凝胶法更易获得粒径小、分散性好,纯度高的纳米氧化铝粉体。
     实验结果表明:高岭土煅烧活化后与20wt%的盐酸95-100℃反应3h,铝的浸取率可达~93.83%;2.5mol·L-1的NaOH处理浸取液,[Fe3+]降低了98.19mol%,[Ti4+]降低了98.30mol%;当[AlCl3]=1.5mol·L-1,[NH4HCO3]/[AlCl3]=10/3,pH=9时制备的AACH沉淀1150℃煅烧后得到松装密度0.36g·cm-3、纯度98.21%、粒径10-20nm的α-Al2O3粉体。
Using Kaolin as a raw material to prepare nanometer alumina powder can reduce the cost and improve the Kaolin’s attachment value and economic efficiency in a large scale. The orthogonal testing method has been used to study some preparing factors on the dipping reaction of Kaolin with acid, such as the particle size of Kaolin, Kaolin calcined temperature, holding time, concentration of HCl, reaction temperature, reaction time, molar ratio of reactants etc. Adopting alkaline process, the concentration of impurity, such as Fe3+ and Ti4+, has been reduced. In the process, the concentrate of NaOH, molar ration of Al3+ to NaOH, reaction temperature, reaction time have been studied. Nanometer alumina powder had been acquired from boehmite xerogel and ammonium aluminum carbonate hydroxide (AACH). The influence of the concentration of reactants, ratio of reactants' concentration, pH, kinds and addition amount of dispersant agents, reaction temperature, reaction time and calcined temperature of precursor on the particle size, packing density, morphology, crystal form and purity have been discussed. The precursor and nanometer Al2O3 powder were characterized by TG-DTA, XRD, SEM, TEM, ICP-AES, FT-IR, Raman, Superficial Electric Potential Particle Size Meter, Laser Granularity Analysis, et al.
     According to large numbers of experiments, some conclusions have been drew: (1) After calcining at 700℃, the reactivity of the Kaolin has been improved owing to the crystal form of Kaolin transformed from crystalling phase to the amorphous phase. But the hyperpyrexia could make the amount of the quartz increase, the reactivity reduced; (2) The higher leaching rate could be achieved when Kaolin reacted within acid of a lower concentration at a higher temperature for a longer time; (3) The concentration of Fe3+ and Ti4+ in the leaching fluid could be more reduced by reacting within more amount of higher concentration of NaOH solution at a higher temperature; (4) The smaller average particle size, better dispersivity, higher purity nanometerα-Al2O3 could be achieved by calcining AACH.
     The results show that the leaching rate of ~93.83% could be achieved when Kaolin calcined at 700℃for 2h, reacted within HCl of 20wt% at 95-100℃for 3h. After the reaction of leaching fluid with 2.5mol·L-1 NaOH, the concentration of Fe3+ in the filtrate has be reduced by 98.19mol% as well as Ti4+ by 98.30mol%. Particle size of 10-20nm, packing density of 0.36g·cm-3 nanometerα-Al2O3 with purity of 98.21% was prepared by calcining AACH synthesized from 1.5mol·L-1 AlCl3 react with NH3HCO3 at pH=9, [NH4HCO3]/[AlCl3]=10/3 and calcined temperature 1150℃.
引文
[1] Lan Wilson Kaolin Mining Communications Ltd., Mining Annual Review, 2003.
    [2] W·D·金格瑞等著,清华大学无机非金属材料教研室译.陶瓷导论[M],中国建筑工业出版社, 1982,第一版: 76.
    [3]陆佩文主编.无机材料科学基础(硅酸盐物理化学)[M],武汉理工大学出版社, 1996,第一版: 51.
    [4]宋振动.煤系高岭土及加工工艺[J].中国矿业, 1997, 6(4): 69.
    [5]朱粉利,周汉文.高岭土在材料学方面的应用[J].矿产保护与利用, 2004, 1: 22-26.
    [6]刘宇,韩星霞,曾玉风.高岭土(岩)增白技术研究[J].焦作工学院学报, 1999, 18(2): 145-149.
    [7]侯太鹏.高岭土除铁、增白试验研究[J].非金属矿, 2001, 24(4): 10, 32-35.
    [8] P. Raghavan, S. Chandrasekhar, V. Vogt, E. Gock. Separation of titanoferrous impurities from kaolin by high shear pretreatment and froth flotation[J]. Applied Clay Science, 2004, 25(1-2):111-120.
    [9] P. Raghavan, S. Chandrasekhar, V. Vogt, E. Gock, N. Suresh. Additional investigations on the separation of titanoferrous impurities from kaolin by high shear pretreatment and froth flotation– Part I[J]. Applied Clay Science, 2007, 38(1-2)33-42.
    [10] Raghavan, P., Chandrasekhar, S., Vogt, V., Gock, E., Suresh, N., Additional investigations on the separation of titanoferrous impurities from Kaolin by high shear pretreatment and froth flotation–Part II[J]. Applied Clay Science (2008), doi: 10.1016/j.clay.2008.02.007.
    [11] Stadtmuller A.A., Goode J.A., Riches N.J. Developments in super-conducting magnetic separation[J]. Industrial Minerals, 1988, 248(May): 58-69.
    [12] Watson J.H.P. Selectivity and mechanical retention in the magnetic separation of polydisperse, mixed mineral particle system– Part 1[J]. Minerals Engineering, 1994, 7 (5/6): 769-791.
    [13]绍绪新,杜泽学,刘振东.煤系高岭土除铁、钛的途径探讨[J].煤炭加工与综合利用, 1995, (3): 40-44.
    [14]吴基球,简秀梅,李红敏,李竞先.高岭土除铁增白技术的研究[J].中国陶瓷, 2006, 42(2): 46-48.
    [15]唐志阳.化学法去除高岭土中的铁杂质[J].佛山陶瓷, 2005, 15(3): 16-17.
    [16] Jing-Yuan Wang, Xiang-Jun Huang, Jimmy C.M. Kao, Olena Stabnikova. Removal of heavy metals from kaolin using an upward electrokinetic soil remedial (UESR) technology[J]. Journal of Hazardous Materials B, 2006, 136(3): 532-541.
    [17] Hosseini, M.R., Pazouki, M., Ranjbar, M., Habibian, M., Bioleaching of Iron from Highly Contaminated Kaolin Clay by Aspergillus niger[J], Applied Clay Science (2007), doi: 10.1016/j.clay.2007.01.010.
    [18]郑水林编著.粉体表面改性[M].中国建材工业出版社, 1995,第一版, 1.
    [19]刘钦甫,朱在兴,许红亮,杨晓杰.煤系煅烧高岭土表面改性研究[J].中国矿业大学学报, 1999, 28(1): 86-89.
    [20]李宝智,徐星佩.煅烧高岭土表面改性[J].非金属矿, 2002,25(增刊): 13, 48-49.
    [21]任子平,鲁安怀,周平,方勤方.高岭土有机改性实验研究[J].岩石矿物学杂志, 2001, 20(4): 485-489.
    [22]王绪海,卢旭晨.高岭土表面改性研究进展[J]. IM&P化工矿物与加工, 2004, (3): 1-3, 10.
    [23]刘卓钦,皮振邦,田熙科,杨超,王圣平.纳米高岭土表面改性的初步研究[J]. IM&P化工矿物与加工, 2005, (5): 18-20.
    [24]王宝祥,左朝阳,赵晓鹏.包覆型高岭土/二氧化钛纳米复合颗粒的电流变效应[J].无机材料学报, 2004, 19(3): 492-496.
    [25]林海.超细煤系煅烧高岭土颗粒表面包裹二氧化钛膜的工艺研究[J].中国矿业, 1999, 9(4): 61-64.
    [26]郭奋,高立东,刘润静,赵永华,梁磊,陈建峰.高岭土/钛白复合粉体的制备与表征[J].材料科学与工艺, 2001, 9(4): 427-430.
    [27]丁希楼,张国栋.高岭土颗粒表面包覆二氧化钛膜的工艺研究[J].矿业研究与开发, 2004, (1): 34-36.
    [28]殷海荣,武丽华,陈福,马亮,亓丰源.纳米高岭土的研究与应用[J].材料导报, 2006, 20(专辑Ⅵ): 196-199.
    [29]张彦军,秦永宁,马智等.高岭土制备纳米材料的研究进展[J].天津化工, 2002, (3): 19.
    [30]殷海荣,陈福,李启甲.纳米抗菌玻璃的研究[J].云南大学学报(自然科学版), 2005, 27(3A): 74-76.
    [31]陈福,赵恩录,张文玲,苟金芳,曾雄伟.纳米高岭土的制备方法及应用展望[J].陶瓷, 2007, (5): 9-12, 35.
    [32]贾修伟.纳米阻燃材料[M].北京:化学工业出版社, 2005.
    [33]曹秀华,王炼石.高岭土夹层复合物的合成、结构和应用[J].材料科学与工程学报, 2003, 21(3): 456-459.
    [34] Ledoux R L, White J L. Infrared studies of hydrogen bonding interaction between kaolinite surfaces and intercalated potassium acetate, hydrazine, formamide and urea[J]. Journal of Colloid and Interface Science, 1966, 21: 127-152.
    [35] Olejnit S L. Infracted spectra of kaolinite mineral-dimethyiduford complex[J]. Physics Chemistry, 1968, 72(1): 241-249.
    [36] Frost R L, Kristof J, Horvath E, et al. Effect of water on the formamide-intercalation of kaolinite[J]. Spectrochimica Acta (part A), 2000, 56: 1711-1729.
    [37] Sugahara Y, Satokawa S, Kuroda K, et al. Evidence for the formation of interlayer polyacrylonitrile in kaolinite[J]. Clays and Clay Minerals, 1988, 36(4): 343-348.
    [38] Chris B M, Prakash B M. Kaolin– potassium acetate intercalation complex process of forming same[P]. US Pat, 5672555. 1997-09-30.
    [39]刘研,李宪洲,苏克,刘丽华,张军.高岭土插层材料制备β-Sialon材料[J].世界地质, 2007, 26(1): 130-134.
    [40]赵前,王怀德,汤李缨.用高岭土尾矿研制CaO-Al2O3-SiO2-K2O-Na2O微晶玻璃装饰板[J].中国建材科技, 1996, 5(6): 23-26.
    [41]姚广春,孙挺,张晓明,于先进,王贵民.电热还原高岭土制取硅铝合金的研究[J].有色金属, 1997, 49(4): 45-48, 81.
    [42]雷家珩,佟钰,罗大兵,袁启华.高岭土水热合成4A分子筛及其性能研究[J].武汉工业大学学报, 1998, 20(4): 15-17.
    [43]张金峰,李瑞丰,王思晨.高岭土合成4A分子筛及其在牙膏磨擦剂中的应用[J].应用化工, 2007, 36(4): 412-413, 417.
    [44]杨久义,崔敏,郭子成.高岭土复合絮凝剂的制备及应用[J].矿产综合利用, 2006, (1): 18-21.
    [45]陈海群,龚方红,邱滔,杨绪杰,陆路德,汪信.高岭土和三氯化铝废水制备聚合氯化铝研究[J]. IM&P化工矿物与加工, 2004, (11): 412-413, 417.
    [46]田晨播,尹荔松,岳新雨,战杰.利用廉价高岭土制备纳米氧化铝的工艺研究[J].中国材料科技与设备(双月刊), 2006, (3): 30-32.
    [47]苗建国,李小斌,龚辉辉.多品种氧化铝的研究进展[J].轻金属, 1997, (8): 12-16.
    [48] Igor Levin, D.G, Brandon et al. Metastable Alumina Polymorphs: Crystal structures and Transition Sequences[J]. Journal of the American Ceramic Society, 1998, 81(8): 1995-2012.
    [49] A. M.卡里尼娜等著,刘文启等译.氧化铝化学与工艺学译文集[M],中国工业出版社, 1964,第一版: 2.
    [50] H.萨尔满, H.舒尔兹著,黄照柏译.陶瓷学上册[M],轻工业出版社, 1989,第一版: 32.
    [51]车丽秀.我国非冶金用氧化铝生产综述[C].第三届全国轻金属冶金学术会议论文集, 1995.10.10.
    [52] R. B. Bagwell, G. L. Messing. Critical Factors in the Production of Sol-Gel Derived Porous Alumina[J]. Journal of the American Ceramic Society, 1999, 82(4): 25-32.
    [53] Yuan Go-Wang, Paul M. Bronsveld, et al. Ordering of Octahedral Vacancies in Transition Aluminas[J]. Journal of the American Ceramic Society, 1998, 81(6): 1655-1660.
    [54] Ting C. Chou, Tai G. Nieh. Nucleation and Concurrent Anomalous Grain Growth ofα-Al2O3 Duringγ–αPhase Transformation[J]. Journal of the American Ceramic Society, 1991, 74(9): 2270-2279.
    [55]毕诗文主编.氧化铝生产工艺[M],化学工业出版社, 2006,第一版: 2-10.
    [56]宋晓岚,邱冠周,吴雪兰,曲选辉.特种氧化铝生产研究开发现状及其展望[J],材料导报, 2004, 18(4): 12-16.
    [57] Taniguchi N. On the basic concept of‘nanotechnology’. In: Proceedings of the International Conference On Production Engineering Tokyo, PartⅡ[J]. Japan Society of Precision Engeineering, 1974.
    [58] Drexler KE. Engines of ceration: the coming era of nanotechnology[J]. New York:Anchor, 1986.
    [59]刘焕彬,陈小泉编著.纳米科学与技术导论[M].化学工业出版社, 2006,第一版: 5.
    [60]郑水林.超微粉体加工技术与应用[M].化学工业出版社, 2005,第一版: 12.
    [61] Vuk Uskokovic. Nanotechnologies: What we do not know[J]. Technology in Society, 2007, 29(1):43-61.
    [62]张李德,牟季美.纳米材料学[M].沈阳:辽宁科学技术出版社, 1994.10.
    [63]付高峰,毕诗文,孙旭东.超细氧化铝粉末制备技术[J].有色矿冶, 2000, 16(1): 12-15.
    [64]丁安平,饶拴民.“纳米氧化铝”的用途和制备方法初探[J].有色冶炼, 2001, 6 (3): 6-9. 16.
    [65]吴志鸿.纳米氧化铝的制备及其在催化领域的应用[J].工业催化, 2004, 12(2): 36.
    [66]杜艳君,王利娟,王茂生,董丽新,高慧颖,崔永涛,秦磊,侯婧,杜宝安.固相法制备纳米α-Al2O3粉体[J].化学世界, 2004, (3): 115-117.
    [67] Edouard Debry, Bruno Sportisse. Reduction of the condensation/evaporation dynamics for atmospheric aerosols: Theoretical and numerical investigation of hybrid methods[J]. Journal of Aerosol Science, 2006, 37(8): 950-966.
    [68] O. Dezellus, F. Hodaj, et al. Influence of evaporation–condensation in reactive spreading[J]. Acta Materialia, 2002, 50(19): 4727-4740.
    [69] Y.-T. O, S.-W. Kim, D.-C. Shin, Fabrication and Synthetic of a-Alumina Nanopowders by Thermal Decomposition of Ammonium Aluminum Carbonate Hydroxide (AACH)[J], Colloids and Surfaces A: Physicochemical and Engineering Aspects (2007), doi:10.1016/j.colsurfa.2007.04.123.
    [70] M. Vallet-Regí, L.M. Rodrfguez-Lorenzo, C.V. Ragel, A.J. Salinas,J.M. González-Calbet. Control of structural type and particle size in alumina synthesized by the spray pyrolysis method[J]. Solid State Ionics, 1997, 101-103(Part1): 197-203.
    [71] J.M.A. Caiut, J. Dexpert-Ghys, Y. Kihn, M. V′erelst, H. Dexpert, S.J.L. Ribeiro, Y. Messaddeq, Elaboration of boehmite nano-powders by spraypyrolysis[J]. Powder Technology (2008), doi: 10.1016/j.powtec.2008.04.054.
    [72]刘粤惠,素雪筠,陈楷.喷雾热解法制备高纯超细氧化铝粉[J].中国陶瓷, 1996,32(4): 7-9, 26.
    [73] Y. Yoshizawa, K. Yamauchi, T. Yamane, H. Sugihara. Common mode choke cores using the new Fe-based alloys composed of ultrafine grain structure[J]. Journal of Applied Physics. 1988, 64(10): 6047-6049.
    [74]卢柯.非晶态合金向纳米晶体的相转变[J].金属学报, 1994, 30(1): B001-B021.
    [75] Constantin Vahlas, Bri gitte Caussat, Philippe Serp, George N. Angelopoulos. Principles and applications of CVD powder technology[J]. Materials Science and Engineering, 2006, R53:1-72.
    [76] Chen Y. J., Glumar N. G., Skandan G. High Rate Production of Nanogglomerated Nanoparticle by Flame Synthesis[M]. Chem Phys Nanostruct Relat Non-equlilb Mater[symp], 1997: 143-148.
    [77] E. Borsella, S. Botti, R. Giorgi, S. Martelli, S. Turtù, G. Zappa. Laser-driven synthesis of nanocrystalline alumina powders from gas-phase precursors[J]. Applied Physics Letters, 1993, 63(10) :1345-1347.
    [78]张永刚,闫裴.纳米氧化铝的制备及应用[J].无机盐工业, 2001, 33(3): 19-22.
    [79] Bharti A., Goel D. B., Sivakumar R. Laser Engineering, 1999, 8(3):215-227.
    [80]丁安平,饶拴民.“纳米氧化铝”的用途和制备方法初探[J].有色冶炼, 2001, 6(3): 6-9, 16.
    [81] P.V. Ananthapadmanabhan, T.K. Thiyagarajan, K.P. Sreekumar, N. Venkatramani. Formation of nano-sized alumina by in-flight oxidation of aluminium powder in a thermal plasma reactor[J]. Scripta Materialia, 2004, 50(1): 143–147.
    [82]沈志刚,陈建峰,刘润静等.无机纳米粉体制造技术的现状及展望[J].无机盐工业, 2002, 34(3): 18-21.
    [83]英宏,赵志江,李继光,李晓东,孙旭东.纳米AI(OH)3煅烧制备α-Al2O3纳米粉[J].东北大学学报(自然科学版), 2000, 21(1): 90-92.
    [84]英宏,李继光,赵志江,李晓东,修稚萌,孙旭东.沉淀法制备单分散纳米AI(OH)3先驱沉淀物[J].东北大学学报(自然科学版), 1999,20(5): 515-518.
    [85]李继光,孙旭东,茹红强,宋丹,孙祥云,李晓东,郝士明.湿化学法合成α-Al2O3纳米粉[J].材料研究学报, 1998, 12(1): 105-107.
    [86] JI GUANG LI, XUDONG SUN. SYNTHESIS AND SINTERING BEHAVIOR OF ANANOCRYSTALLINEα-ALUMINA POWDER[J]. Acta Materialia, 2000,48(12):3103-3112.
    [87] Yong-Taeg O, Sang-Woo Kim, Dong-Chan Shin. Fabrication and synthesis ofα-alumina nanopowders by thermal decomposition of ammonium aluminum carbonate hydroxide (AACH)[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008, 313-314: 415-418.
    [88] K. MORINAGA, T. TORIKAI, K. NAKAGAWA, S. FUJINO. FABRICATION OF FINE a-ALUMINA POWDERS BY THERMAL DECOMPOSITION OF AMMONIUM ALUMINUM CARBONATE HYDROXIDE (AACH) [J]. Acta Materialia, 2000, 48(18-19): 4735-4741.
    [89] Chi-Cheng Ma, Xue-Xi Zhou, Xin Xu, Tun Zhu. Synthesis and thermal decomposition of ammonium aluminum carbonate hydroxide (AACH) [J]. Materials Chemistry and Physics, 2001, 72(3): 374–379.
    [90]周曦亚,欧阳世翕,程吉平.液相共沉淀法制Al2O3超细粉过程及防团聚措施[J].华南理工大学学报(自然科学版), 1996, 24(7): 78-82.
    [91] H.S. Potdar, Ki-Won Jun, Jong Wook Bae, Seung-Moon Kim, Yun-Jo Lee. Synthesis of nano-sized porous g-alumina powder via a precipitation/digestion route[J]. Applied Catalysis A: General, 2007, 321(2):109-116.
    [92]冯若,李化茂.声化学及其应用[M].合肥:安徽科学技术出版社, 1992, 24-25.
    [93]袁易全,陈思中,冯若.近代超声原理及应用[M].南京:南京大学出版社, 1996, 116-119.
    [94]宋文植,刘晓秋,孙宏晨,杨海滨,邹广田.超声波-化学沉淀法制备牙科纳米氧化铝陶瓷粉体[J].口腔医学研究, 2006, 22(1): 15-17.
    [95]王世敏,许祖勋,傅晶编.纳米粉体制备技术[M].北京:化学工业出版社, 2002.
    [96] Briuker C J, Scherer G W. Sol-gel Science: The Physics and Chemistry of S-G Processing[M]. Academic Press, INC, 1990.
    [97] Bulent E Yoldas. Hydrolysis of aluminum alkoxides and bayerite conversion[J]. Journal of Applied Chemistry Biotechnology, 1973, 23: 803.
    [98] S Remsh, E Sominska, B Cina, et al. Nanocrystallineγ-alumina synthesized by sonohydrolysis of alkoxide precursor in the presence of organic acides: structure and morphological properties[J]. Journal of America Ceramic Society, 2000, 83(1): 89-94.
    [99] C P Lin, S B Wen, T T Lee. Preparation of nanometer-sizedα-alumina powders bycalcining an emulsion of boehmite and oleic acid[J]. Journal of America Ceramic Society, 2002, 85(1):129-133.
    [100] J Y Chane-Ching, L C Klein. Hydrolysis in the aluminum sec-butoxide-water-isopropyl alcohol system: I, rheology and gel structures[J]. Journal of American Ceramic Society, 1988, 71(1): 83-85.
    [101]吴建锋,徐晓虹,张欣.以硝酸铝为原料制备铝溶胶的研究[J].陶瓷学报, 2007, 28(3): 155-159.
    [102]谢刚,侯怀宇,王达健,刘国华.溶胶-凝胶法制备α-Al2O3超细粉的研究[J].昆明理工大学学报, 23(3): 67-70, 77.
    [103]彭天右,常钢,胡斌,王雷,江祖成.改进的溶胶一凝胶法制备纳米氧化铝粉体研究[J].武汉大学学报(自然科学版), 46(化学专刊): 241-242.
    [104]万静,廖戎,马晨,刘东.溶胶—凝胶法制备超细三氧化铝粉末工艺条件研究[J].西南民族大学学报·自然科学版, 2006, 32(6): 1166-1168.
    [105] Jiang Li, Yubai Pan, Changshu Xiang, Qiming Ge, Jingkun Guo. Low temperature synthesis of ultrafine a-Al2O3 powder by a simple aqueous sol-gel process[J]. Ceramics International, 2006, 32(5): 587–591.
    [106]王洪志,高镰,李炜群等.高分子网络凝胶法制备纳米α-Al2O3粉体[J].无机材料学报, 2000, 15 (2): 356-360.
    [107]甘礼华,岳天仪,李光明.微乳液法制备γ-Al2O3超细粉及其表征[J].同济大学学报, 1996, 24 (2): 194-197.
    [108] Pontheiu E. eta. Ultrafine Alumina Powders Via A Solemulsion-gel Method[J]. Journal of Nano-crystalline Solids, 1992, 147&148: 598-605.
    [109]冯丽娟,赵宇,陈诵英,彭少逸.超细氧化铝的研究Ⅰ.超细氧化铝的制备[J].石油学报(石油加工), 1994, 10(2):69-74.
    [110]徐成海,邹惠芬.张世伟.真空冷冻干燥技术的现状和发展趋势[J].真空与低温, 2000, 6(2): 71-74.
    [111]程江,涂伟萍,杨卓如.粉体真空冷冻干燥制备技术的应用与进展[J].真空, 2001, 2: 21-24.
    [112]栗伟玲,高镰,郭景坤.纳米粉体干燥方法的研究[J].无机材料学报, 1997, 12 (6): 835-839.
    [113] Carolina Tallón, Rodrigo Moreno, Ma Isabel Nieto. Synthesis of g-Al2O3 nanopowders by freeze-drying[J]. Materials Research Bulletin, 2006, 41(8): 1520-1529.
    [114]曾文明,陈念贻,林归华等.无机盐制备氧化铝纳米粉及其物理化学的研究[J].无机材料学报, 1998, 13(6): 887-892.
    [115]刘军,徐成海,窦新生.真空冷冻干燥法制备纳米氧化铝陶瓷粉的试验研究[J].真空, 2004, 41(4): 80-83.
    [116]王政红,陈派明.发泡法制备泡沫铝[J].材料开发与应用, 1998, 13(3): 30-32.
    [117]孙家跃,肖昂,杜海燕,李庚申.溶胶-发泡法制备超细氧化铝[J].精细化工, 2004, 21(4): 257-261.
    [118]程志林,晁自胜,万惠霖.发泡法合成纳米氧化铝[J].应用化学, 2002, 19(11): 1032-1036.
    [119]伊藤征司郎.色材, 1984, 57(7): 394.
    [120]李东红,周海龙.溶胶—相转移法制备纳米氧化铝的研究[J].轻金属, 2001, (10): 9-11.
    [121]金春华,方佑玲,赵文宽.想转移法制备α-Al2O3纳米微粒的研究[J].广西化工, 1996, 25(1): 27-29.
    [122]李懋强.湿化学法合成陶瓷粉料的原理和方法[J].硅酸盐学报, 1994, 22(1): 89-94.
    [123]许可敬,杨新春,田贵山等.采用引入晶种的水热合成法制备α-Al2O3纳米粉[J].硅酸盐学报, 2001, 29(6): 576-579.
    [124] Xiang Ying Chen, Zhong Jie Zhang, Xue Liang Li, Soon W. Lee. Controlled hydrothermal synthesis of colloidal boehmite (γ-AlOOH) nanorods and nanoflakes and their conversion intoγ-Al2O3 nanocrystals[J]. Solid State Communications, 2008, 145(7-8):368–373.
    [125]柳妙修,曹益林,陈念贻,庄志诚.高苛性比铝酸钠溶液的Raman光谱研究[J].金属学报, 1991, 27(6): B443-B445.
    [126]李小斌,周秋生,刘桂华,彭志宏.高苛性比铝酸钠溶液中硅,铝分离的研究[J].矿冶工程, 1998, 18(2): 46-48.
    [127]刘洪霖,曹益林,陈念贻.铝酸钠溶液的紫外吸收峰[J].物理化学学报, 1992, 8(4): 441-444.
    [128]艾勇.氧化铝生产母液红外光谱分析的研究[J].轻金属, 2002, (3):25-28.
    [129]谢雁丽,毕诗文,杨毅宏,王志.氧化铝生产中铝酸钠溶液结构的研究[J].有色金属, 2001, 53(2):59-61,76.
    [130]梁成,陈启元,李洁,尹周澜.硅在铝酸钠溶液分解过程中的行为[J].有色金属(冶炼部分), 2007, (5):10-13.
    [131]陈斌.高纯偏铝酸钠的研制[J].无机盐工业, 2002, 34(4):42-43.
    [132]陈滨,李小斌,吴晓华,彭志宏,刘桂华.从铝酸钠溶液中析出水合氧化铝的热力学分析[J].湿法冶金, 2006, 25(9):124-129.
    [133]陈滨,李小斌,周秋生,彭志宏,刘桂华.铝酸钠溶液中析出一水软铝石过程的宏观动力学[J].化学研究, 2006, 17(3): 60-63.
    [134] Hui Li, Hongxia Lu, Song Wang, Janfeng Jia, Hongwei Sun, Xing Hu. Preparation of a nano-sized a-Al2O3 powder from a supersaturated sodium aluminate solution[J]. Ceramics Internationa, Available online 4 May 2008.
    [135]高建峰,徐春彦,王建中,王久芬,庄源益.由偏铝酸钠直接制取高纯γ-Al2O3[J].化工学报, 2003, 54(12): 1783-1786.
    [136] Ford K. J. R. Leaching of Fine and Pelletised Natal Kaolin using Sulphuric Acid[J]. Hydrometallurgy, 1992, 29: 109.
    [137] Hulbert S. F., Huff D. E. Kinetics of Alumina Removal from a Calcined Kaolin with Nitric, Sulphuric and Hydrochloric Acids[J]. Clay Miner, 1970, 8(3):337.
    [138] Ziegenbalg S., Haake G. Investigations into the Alumina Extraction from Clay by Hydrochloric and Sulphuric Acid Leaching[J]. Light Met. 1983, 1119.
    [139] Bayer G., Kahr G., Mueller-Vonmoos M. Reactions of Ammonium Sulphates with Kaolinite and other Silicate and Oxide Minerals[J]. Clay Miner, 1982, 17:271.
    [140] Davies H., Dering H.O., Parker T. W. Al2O3 from Clay by an NH4 Alum-NH3 Process[P]. U.S. Patent 2,375,977, 1945.
    [141] Fetterman J. W., Sun S. C. Alumina Extraction from a Pennsylvania Diaspore Clay by an Ammonium Sulfate Process[J]. Alumina, 1963, 1:333.
    [142] Fouda M. F. R., Amin R. S., Abd-Elzaher M. M. Characterization of Products of Interaction between Kaolin Ore and Ammonium Sulphate[J]. Journal of Chemical Technology and Biotechnology, 1993, 56(2):195.
    [143] Nagaishi T., Ishiyama S., Yoshimura J., Matsumoto M., Yoshinaga S. Reaction ofAmmonium Sulphate with Aluminium Oxide[J]. Journal of Thermal Analysis and Calorimetry, 1982, 23:201-207.
    [144] Peters F. A., Johnson P. W., Kirby R. C. Methods for Producing Alumina from Clay: an Evaluation of Two Ammonium Alum Process[R]. U.S. Department of the Interior, Bureau of Mines. Report of Investigations RI 6573, 1965.
    [145] Seyfried W. R. The Ammonium Sulfate Process for the Extraction of Alumina from Clay and its Application in a Plant in Salem, Oregon[J]. Trans. AIME, 1949, 182:39.
    [146] St. Clair H. W., Ravitz S. F., Sweet A. T., Plummer C. E. The Ammonium Sulfate Process for Production of Alumina from Western Clays[J]. Trans. AIME, 1944, 159: 255.
    [147] Garcia-Clavel M. E., Mart?′nez-Lope M. J., Casais-Alvarez M. T. Method for Obtaining Alumina from Clays[P]. U.S. Patent 4,342,729, 1982.
    [148] Mart?′nez-Lope M., Garc?′a-Clavel M. E., Casais-Alvarez M. T. Solubilization Reaction of the Alumina from Kaolin by Solid State Reaction[J]. Thermochimica Acta, 1991, 177: 77-82.
    [149] Kyun Young Park, Jinki Jeong. Manufacture of Low-Soda Alumina from Clay[J]. Industrial and Engineering Chemistry Research, 1996, 35(11):4379-4385.
    [150] Fernando G. Colina, Santiago Esplugas, Jose Costa. High-Temperature Reaction of Kaolin with Sulfuric Acid[J]. Industrial and Engineering Chemistry Research, 2002, 41: 4168-4173.
    [151] Fernando G. Colina, Jose Costa. High-Temperature Reaction of Kaolin with Sodium Hydrogen Sulfate[J]. Industrial and Engineering Chemistry Research, 2005, 44: 4495-4500.
    [152] Fernando G. Colina, Maria N. Abellan, Ivan Caballero. High-Temperature Reaction of Kaolin with Ammonium Sulfate[J]. Industrial and Engineering Chemistry Research, 2006, 4: 495-502.
    [153]唐凤翔,张济宇.两种高岭土的酸浸反应宏观动力学的比较[J].煤炭转化, 25(2): 91-95.
    [154]高峰,赵增立,崔洪,张济宇,张碧江.煤系高岭土热化学反应动力学[J].燃料化学学报, 1998, 26(2): 135-139.
    [155]张兴法,徐超,韩效钊,许民才.高岭土酸浸反应操作条件研究[J].非金属矿, 1999, 22(6): 11-12.
    [156]张兴法,徐超,韩效钊,许民才.高岭土酸浸反应器体积计算[J].非金属矿, 1999, 22(1): 10-11.
    [157] Seong Soo Park, Eun Hee Hwang, Byoung Chan Kim, Hee Chan Park. Synthesis of Hydrated Aluminum Sulfate from Kaolin by Microwave Extraction[J]. Journal of the American Ceramic Society, 2000, 83(6): 1341-1345.
    [158] J. H. Park, S. W. Kim,S. H. Lee,H. S. Kim, S. S. Park, H. C. Park1, Synthesis of Alumina Powders from Kaolin with and without Ultrasounds[J]. Journal of Materials Synthesis and Processing, 2002, 10(5): 289-293.
    [159]诸华军,姚晓,华苏东,王道正.煅烧制度对偏高岭土胶凝活性的影响[J].非金属矿, 2007, 30(3): 6-8.
    [160]唐光宝.以煤系高岭岩酸析-溶胶、凝胶法制备高纯纳米氧化铝工艺研究[D].天津:天津大学, 2002.
    [161] V.R. Ambikadevi, M. Lalithambika. Effect of organic acids on ferric iron removal from iron-stained kaolinite[J]. Applied Clay Science, 2000(16): 133-145.
    [162]韩效钊,徐超,张兴法,陈敏,吴国荣.高岭土酸熔法制备硫酸铝和铵明矾的研究[J].非金属矿, 2002, 25(5): 26-27.
    [163]江在成.利用煤系高岭(岩)土制备高纯纳米氧化铝粉体的研究[J].中国非金属矿工业导刊, 2004, (2): 16-17, 39.
    [164]季惠明,吴萍,张周,徐明霞.利用粉煤灰制备高纯氧化铝纳米粉体的研究[J].地学前缘, 2005, 12(1): 220-224.
    [165]徐建升.煤系高岭岩制备超细氧化铝的试验研究[J].选煤技术, 2005, (4): 9-10.
    [166]田晨播,尹荔松,岳新雨,战杰.利用廉价高岭土制备纳米氧化铝的工艺研究[J].中国材料科技与设备(双月刊), 2006,(3): 30-32.
    [167]季惠明,马艳红,吴萍,徐明霞.由粉煤灰提取高纯纳米氧化铝活化过程研究[J].环境化学, 2007, 26(4): 448-451.
    [168]罗永康,马智,吴杰,齐晓周.煅烧温度对高岭土结构及其氧化铝浸出率的影响[J].化学工业与工程, 2005, 22(4): 263-266.
    [169]孙宝岐.高岭土的化学漂白提纯[J].江苏陶瓷, 1994, (1): 2-7.
    [170]徐竞,胡岳华,邱冠周,郑晓倩.泰国复杂高岭土矿除铁的试验研究[J].矿产保护与利用, 2000, (5): 20-22.
    [171]许莹.煤系优质高岭土增白提质工艺研究[J].矿产保护与利用, 2003, (1): 24-27.
    [172]郑成,于欣伟,蔡肇佳,孙小欣,容璧云.高岭土的还原、络合漂白工艺研究[J].无机盐工业, 2004, 36(1): 32-34.
    [173]杨晓杰,张荣曾,陈开惠.高岭土浸出除铁试验及铁、铝溶解动力学分析[J].选煤技术, 2004, (4): 43-45.
    [174]高惠民,曹小康,袁继祖,管俊芳.茂名高岭土的物质组成及增白研究[J].国外金属矿选, 2006.8: 33-35.
    [175] Bulente. Yoldas. Hydrolysis of Aluminum Alkoxides and Bayerite Conversion[J].Journal of Applied Chemistry Biotechnology, 1973(23): 803-809.
    [176]张长栓,赵峰,张继军,王向宇,鲍改玲.纳米尺寸氧化铝的红外光谱研究[J].化学学报, 1999, 57(3): 49-54.
    [177]程志林,晁自胜,万惠霖.发泡法合成纳米氧化铝[J].应用化学, 2002, 19(11): 1032-1035.
    [178]林元华,张中太,黄传勇,唐子龙,陈清明.前驱体热解法制备高纯超细α-Al2O3粉体[J].硅酸盐学报, 2000, 28(3): 268-271.
    [179]顾峰,沈悦,徐超等.分散剂聚合度对纳米氧化铝粉体特性的影响[J].功能材料, 2005, 36(2): 318.
    [180]叶云,李巧玲,景红霞等.分散剂对纳米铁酸盐制备的影响及TEM表征[J].电子显微学报, 2006, 25(增刊): 75.
    [181]邹同征,涂江平,夏正志等.聚乙二醇为分散剂的沉淀法制备IF-MoS2[J].无机化学学报, 2005, 21(8): 1170.
    [182]刘付胜聪,肖汉宁,李玉平等.纳米TiO2表面吸附聚乙二醇及其分散稳定性的研究[J].无机材料学报, 2005, 20(2): 310.
    [183] Kang Yilan, Qiu Yu, Lei Zhenkun, et al. An Application of Raman Spectroscopy on the Measurement of Residual Stress in Porous Silicon[J]. Optical Laser Engineering, 2005, 43: 847-855.
    [184] Li C, Li M J. UV Raman Spectroscopic Study on the Phase Transformation of ZrO2,Y2O3-ZrO2 and SO42-/ZrO2[J]. Journal of Raman Specroscop, 2002, 33: 301-308.
    [185] Mortensen A, Christensen D H, Nielsen F O, et al. Raman Spectra of Amorphous Al2O3 and Al2O3/MoO3 Obtained by Visible and Infrared Excitation[J]. Journal of Raman Specroscop, 1991, 22: 47-49.
    [186] Kákos J, Baca L, Veis P, et al. Photoluminescence Spectra and Crystallization ofθ-Al2O3 andα-Al2O3 from AlOOH-Fe(NO3)3 Gels[J]. Journal of Sol-Gel Science and Technology, 2001, 21: 167-172.
    [187] Bulyarskii S V, Kozhevin A E, Mikov S N, et al. Anomalous R- line Behaviour in Nanocrystalline Al2O3: Cr3+[J]. Physical Status Solidi A, 2000, 180: 555-560.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.