纳米材料固相萃取分离环境样品中的铊
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用纳米材料做为吸附剂,研究了在不同浓度、不同pH值、不同温度条件下的溶液中对铊的吸附性能及其机理。研究结果表明:
     1.微量铊的测定方法-镉试剂2B分光光度法,确定了在镉试剂2B分光光度法测定微量铊体系中各试剂的最佳用量为:5.0 mL pH 12的氨水缓冲溶液;1.0 mL 1%曲拉通-100;1.5 mL镉试剂2B溶液。整个体系10 min之后显色完全,12 h内显色稳定;最大吸收波长为500 nm;表观摩尔吸光系数为7.29×104 L·mol-1·cm-1。
     2.纳米TiO2和纳米Al2O3对Tl(III)离子的吸附性能良好,通过控制溶液的pH值,可定量的吸附和解吸Tl(III)离子。最佳吸附条件为pH 4.5,超声1 min,静置15 min,吸附率接近100%。可以用1mol/L HCl从纳米Al2O3,以及用水在微波照射下从纳米TiO2上把铊洗脱下来,Tl(III)的回收率接近100%,即能被定量解脱。常温下纳米TiO2和纳米Al2O3的饱和吸附量分别为4.09 mg g-1,5.78 mg g-1;富集倍数分别为12.5,25。
     3.该吸附过程符合准二级反应动力学模型,因此,对Tl(III)的吸附是一个化学吸附过程。纳米TiO2和纳米Al2O3的常温反应的速率常数分别为4.55 g mg- 1min- 1,11.89 g mg- 1min- 1;反应活化能分别为13.20 kJ mol-1,19.02 kJ·mol-1。
     4.纳米TiO2和纳米Al2O3对铊的等温吸附线呈现可逆的Langmuir吸附形式。本文还考察了吸附反应的焓变ΔH0和熵ΔS0均为正值,说明该过程是吸热化学吸附反应;ΔG0为负值,说明该吸附过程是一个自发的反应过程。纳米TiO2和纳米Al2O3对铊离子吸附的常温平均吸附能分别为12.06 kJ·mol-1,8.39 kJ·mol-1,说明此反应属于化学反应。
     5.本实验方法中纳米TiO2和纳米Al2O3的检出限分别为0.09μg mL-1和0.84μg mL-1,精密度分别为6.18%和2.37%。除Cd(II),Cu(II),Pb(II),Mn(II)离子对该吸附方法有一定的干扰外,其余离子的允许量均较大,基本不干扰对Tl(III)离子的吸附。用该富集方法对水样和实际样品进行分析,测定值与参考值一致,结果令人满意。
In this paper, we used nano-material as sorbents. The adsorptive capability and mechanism of Tl on nano-material in the different temperature, pH value, and concentration were studied in thesis. The research contents and experimental results as follows:
     1. Among the experiment mainly research the material conditions of Cadion 2B spectrophotometry to determine thallium, and the best conditions of Cadion 2B spectrophotometry to determine thallium are as follow: The dosage of different reagents are: 5.0 mL pH 12 NH3?H2O buffer solution, 1.0 mL 1% Triton X-100 solution and 1.5 mL Cadion 2B. The best pH of solution was 4.5, after 10 min the color development reaction completeded, steadied in 12 h, the wavelength of largest absorption was 500 nm, and the apparent molar absorptivity was 7.29×104 L·mol-1·cm-1.
     2. Both adsorption and desorption of nano-TiO2 and nano-Al2O3 to Tl(Ш) ions depended on the initial pH of the solution. The Tl(Ш) ions can be adsorbed and desorbed quantificationally at proper pH values. The optimum pH value to adsorb Tl(Ш) ions from solution was considered to be 4.5, after ultrasonically dispersed for 1 min and static adsorption for 15 min, and the adsorption percentage was closed to 100%. 1mol/L HCl was used for the desorption of Tl(Ш) on nano-Al2O3, and water for the desorption of Tl(Ш) on nano-TiO2 by microwave irradiation. The maximum adsorption capacity of thallium ions on nano-TiO2 and nano-Al2O3 were 4.09 mg g- 1, 5.78 mg g-1 at room temperature, respectively. The enrichment factor values of nano-TiO2 and nano-Al2O3 were 12.5 and 25, respectively.
     3. The adsorption of Tl(III) ions on nano-TiO2 and nano-Al2O3 properly correlate with the second-order rate equation, thus, the type of the adsorption are chemical adsorption. The rate constant of second-order adsorption of nano-TiO2 and nano-Al2O3 were 4.55 g mg- 1min- 1, 11.89 g mg- 1min- 1, respectively. The activation energy of nano-TiO2 and nano-Al2O3 were 13.20 kJ mol-1, 19.02 kJ·mol-1, respectively.
     4. The Langmuir model could describe the adsorption of nano-TiO2 and nano-Al2O3 to Tl(Ш) ions successfully over the whole range of concentration studied. The value of standard enthalpy and standard entropy (ΔH0,ΔS0 >0) may be interpreted as the endothermic adsorption process. The negative value ofΔG0 showed the adsorptions of thallium by nano-TiO2 and nano-Al2O3 were spontaneous process. The adsorption energy of nano-TiO2 and nano-Al2O3 were 12.06 kJ·mol-1, 8.39 kJ·mol-1, respectively, which indicate that the process belongs to chemical adsorption.
     5. The detection limits of determining Tl(Ш)ions with nano-TiO2 and nano-Al2O3 as sorbents were 0.09μg mL-1and 0.84μg mL-1, respectively, and the relative standard deviations were 6.18% and 2.37%, respectively. Except for Cd(II), Cu(II), Pb(II), Mn(II), other coexisting ions almost didn’t have effects and the allowable volume for these species were large. Water and practical samples have been analyzed by this enrichmental way. The results are accord to the reference.
引文
[1]董矛,谢湘红.碳酸铊的大小鼠LD50积蓄及毒性探讨[J].职业卫生与病伤, 2003, 3: 199~200
    [2]杨克敌.微量元素与健康[M].北京:科学出版社, 2003. 359~369
    [3]詹绍辉.又稀又疏漫话铊[J].知识介绍, 1998, 6: 29~30
    [4]史兵,罗海航,赵世彬等.铊中毒及解毒问题探讨[J].武汉纺织工学院学报, 1998, 1: 10~15
    [5]戴安邦.无机化学教程[M].北京:人民教育出版社, 1961, 633~634
    [6] Vartak S V, Shinde V M. An extraction study of gallium, indium and thallium using TPASO as an extractant[J]. Talanta, 1998, 45(5): 925~930
    [7] Nambiar D C, Gaudhj S, Shinde V M. Tris(2-ethylhexyl)phosphate as an extractant for trivalent gallium, indium and thallium[J]. Talanta, 1994, 41(11): 1951~1955
    [8]赵锦端,何应律,钱徐根等. 8-羟基喹啉-5-磺酸-溴化十六烷基三甲胺荧光光度法测定痕量铊[J].分析化学, 1994, 22(10): 1057~1060
    [9]王继森,周红英.脂胺泡沫塑料富集火焰和平台石墨炉原子吸收测定岩矿中微、痕量汞和铊的研究[J].分析化学, 1989, 17(11): 1000~1003
    [10]胡存杰,刘海玲.聚酰胺富集分离-光度法测定环境样品中痕量铊[J].分析试验室, 2000, 19(4): 30~32
    [11]熊昭春.聚醚泡塑对某些金属络离子吸附特性研究[J].分析化学, 1991, 19(3): 324~326
    [12]吴惠明,郭慧清,陈永亨等.活性炭吸附分离-分光光度法测定硫化矿和土壤中的痕量铊.矿岩测试[J]. 2001, 20(4): 275~278
    [13]吴惠明,郭慧清,陈永亨等.活性炭吸附分离-分光光度法测定硫化矿和土壤中的痕量铊[J].岩矿测试, 2001, 20(4): 275~278
    [14]岩矿分析编写组.岩石矿物分析[M].第3版.北京:地质出版社, 1991. 756~757
    [15]王建华,阮文举,何荣恒等. Tl(Ⅰ)-Cr(Ⅵ)-I~--淀粉体系催化光度法测定铊的研究[J].分析试验室, 1992, 11(5): 43~45
    [16]Bertazzi N, Silvestri A, Barbieri R. Anion exchange studies on lead(II) and thallium(I) thiocyanate complex systems[J]. Journal of Inorganic and Nuclear Chemistry, 1971, 33(3): 799~807
    [17]董贞俭,宋玉林,战凯. SAB-172萃取铼的研究[J].稀有金属, 1995, 19(4): 248~251
    [18]Ivanova E, Tsakovski S, Gentscheva G, et al. Anion-exchange enrichment of thallium and cadmium prior to their flame atomic absorption spectrometric determination in soils[J]. Talanta, 1996, 43(8): 1367~1370
    [19]Rehkamper M, Halliday A N. The precise measurement of Tl isotopic compositions by MC-ICP/MS: Application to the analysis of geological materials and meteorites-Reading theIsotopic Code[J]. Geochimica Cosmochimica Acta, 1999, 63(6): 935~944
    [20]罗津新. TBP萃淋树脂分离GFAAS测定水与废水中的铊[J].现代科学仪器, 2000, (4): 39~41
    [21]Kauffmann J M, Montenez T, Vandenbalck J L, et al. Ultra-microdetermin -ation of thallium ions and related toxic metals using a new modified electrode[J]. Microchimica Acta, 1984, 1(1-2): 95~105
    [22]Ciszewski A, Lukaszewski Z. Electrochemical masking for removal of the titanium matrix effect in DPASV determination of thallium[J]. Talanta, 1988, 35(3): 191~197
    [23]Ciszewski A. Determination of thallic and thallous ions by differential pulse anodic stripping voltammetry without preliminary separation[J]. Talanta, 1990, 37(10): 995~999
    [24]王富权,余益民,李顺玉等.流通池介质交换DPASV法同时测定铜铋锑铊铅锡[J].分析测试学报, 1994, 13(2): 79~82
    [25]Ostapczuk P. Present potentials and limitations in the determination of trace elements by potentiometric stripping analysis[J]. Analytical Chimica Acta, 1993, 273(1-2): 35~40
    [26]Cleven R, Fokkert L. Potentiometric stripping analysis of thallium in natural waters[J]. Analytical Chimica Acta, 1994, 289(2): 215~221
    [27]Otruba V, t pánkováJ, Sommer L. Selective preconcentration of thallium on modified silica gel for its determination by flame emission and absorption spectrometry[J]. Talanta, 1994, 41(7): 1185~1190
    [28]Nascimento D B D, Schwedt G. Polyethylene powder as an absorbent for preconcentration of aluminium, beryllium and thallium[J]. Microchimica Acta, 1997, 126(1-2): 159~166
    [29]Lederer M. Adsorption chromatography of metal halo complexes from sulphuric acid solutions[J]. Analytical Chimica Acta, 1991, 246(2): 451~453
    [30]谭龙华,汪模辉,廖梦霞等.硅胶-TBP反相萃取层析分离法测定金(Ⅲ)与铊(Ⅲ)的研究[J].分析试验室, 1999, 18(1): 1~4
    [31]朱良漪,孙亦梁,陈耕燕.分析仪器手册[M].北京:化学工业出版社, 1997. 1175~1187
    [32]Pozebon D, Dressler V L, Curtius A J. Determination of volatile elements in biological materials by isotopic dilution ETV-ICP-MS after dissolution with tetramethylammonium hydroxide or acid digestion[J]. Talanta, 2000, 51(5): 903~911
    [33]艾军,汤志勇,金泽祥.流动注射在线萃取-火焰原子吸收法测定化探样品中痕量铊[J].分析化学, 1997, 25(8): 988
    [34]Mohammad B, Ure A M, Littlejohn D. Study of the complexation chemistry and speciation of thallium for on-line preconcentration with immobilised quinolin-8-ol[J]. Microchimica Acta, 1994, 113(3-6): 325~337
    [35]Lukaszewski Z, Zembrzuski W, Piela A. Direct determination of ultratraces of thallium in water by flow-injection-differential-pulse anodic stripping voltammetry[J]. Analytical Chimica Acta, 1996, 318(2): 159~165
    [36]Liao Y P, Chen G, Yan D, et al. Investigation of thallium hydride generation using in situ trapping in graphite tube by atomic absorption spectrometry[J]. Analytical Chimica Acta,1998, 360(1-3): 209~214
    [37]岩矿分析编写组.岩石矿物分析[M].第3版.北京:地质出版社, 1991. 756~757
    [38]何应律,赵锦端,匡文心等.溶剂浮选吸光光度法测定痕量铊的研究[J].理化检验:化学分册, 1995, 31(5): 295~296
    [39]王献科,李玉萍,李莉芬.液膜分离富集与测定工业废水中痕量铊[J].湖南冶金, 1999, (3): 36~39
    [40]Hadjiivanov K, Klissurski D, Kantcheva M, et al. State and iocalization of cobalt, nickel and copper ions adsorbed on titania(anatase)[J]. Journal of the Chemical Society, Faraday Transactions, 1991, 87(6): 907~912
    [41]Vassileva E, Proinova I, Hadjiivanov K. Solid-phase extraction of heavy metal ions on a high surface area titanium dioxide (anatase)[J]. Analyst, 1996, 121(5): 607~612
    [42]Vassileva E, Hadjiivanov K. Determination of trace elements in AR grade alkali salts after preconcentration by column solid-phase extraction on TiO2 (anatase)[J]. Fresenius Journal of Analytical Chemistry, 1997, 357(7): 881~885
    [43]Vassileva E, Varimezova B, Hadjiivanov K. Column solid-phase extraction of heavy metal ions on a high surface area CeO2 as a preconcentration method for trace determination[J]. Analytica Chimica Acta, 1996, 336(1-3): 141~150
    [44]Vassileva E. Use of high surface area TiO2 for preconcentration and following determination of Cr species by on-line flow injection inductively coupled plasma atomic emission spectrometry[J]. Analysis, 2000, 28(9): 878~884
    [45]Vassileva E, Stoychev T, Daiev C, et al. Chromium speciation analysis by solid-phase extraction on a high surface area TiO2. Analyst, 2000, 125(4): 693~698
    [46]Vassileva E, Furuta N. Application of high-surface-area ZrO2 in preconcentration and determination of 18 elements by on-line flow injection with inductively coupled plasma atomic emission spectrometry[J]. Fresenius Journal of Analytical Chemistry, 2001, 370(1): 52~59
    [47]Venema P, Hiemstra T, Weidler P G, et al. Intrinsic proton affinity of reactive surface groups of metal(Hydr) oxides: Application to iron(Hydr) oxides[J]. Journal of Colloid and Interface Science, 1998, 198(2): 282~295.
    [48]张立德,年季灵.纳米材料学[M].辽宁出版社, 1994
    [49]张中太,林元华,唐子龙等.纳米材料及其技术的应用前景[J].材料工程,2000, 3: 42~48
    [50]彭子飞,于霞飞.纳米材料与技术在环保中的应用[J].中国高新技术企业,2000,第3-4期合刊: 11~12
    [51]段群章.矿冶物料中铊的光度分析[J].湿法冶金, 1999, 1(69): 59~63
    [52]李德先,高振敏,朱泳喧.环境介质中铊的分布及其分析测试方法[J].地质通报, 2002, 21(10): 682~687
    [53]胡开静等.泡沫塑料吸附分离石墨炉原子吸收法测定地质样品中的微量铊[J].分析化学, 1985, 13(3): 226~229
    [54]李玉秀等.以阴离子表面活性剂为掩蔽剂阳极溶出伏安法测定微量铊[J].分析化学, 1985, 13(1): 50~52
    [55]张月霞等.混合表面活性剂对铊(I)的示波极谱电流的增敏效应[J].分析化学, 1996, 24(12): 1391~1395
    [56]王银起等.计时电位溶出法测定痕量铊[J].环境与健康, 1996, (6): 272~273
    [57]赵锦瑞等. 8-羟基喹啉-5-磺酸-溴化十六烷基二甲胺荧光法测量痕量铊[J].分析化学, 1994, 22(10): 1057~1060
    [58]郭忠先,蔡蜀穗,郑国样等.邻羧基苯基重氮氨基偶氮苯胶束水相分光光度法测定痕量铊[J].化学试剂, 1997, 19(6): 356~358
    [59]朱玉瑞,单晓斌,江万权等.对偶氮苯重氮氨基偶氮苯磺酸与铊显色反应的研究[J].分析试验室, 1994, 13(6): 34~35
    [60]郑国祥,郭忠先,邵勇等. 2-羟基-3羧基-5-磺酸基苯基重氮氨基偶氮苯与铊反应的分光光度法研究[J].分析试验室, 1997, 16(2): 21~24
    [61]洪水皆,李庆喜.分光光度法测定铊的进展[J].化学试剂, 1989, 11(4): 212~215
    [62]武汉大学主编.分析化学[M].高等教育出版社, 1995,第三版:162~402
    [63]Hennion M C. Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography[J]. Journal of Chromatography A, 1999, 856(1-2), 53~54
    [64]张海霞,朱彭龄.固相萃取[J].分析化学, 2000, 28(9): 1172~1180
    [65]马万红,蔡汝秀,林智信.流动注射分析在线研究Cr(Ⅵ)在纳米TiO2表面上的吸附动力学性质[J].高等学校化学学报, 1998, 19(10): 1566~1569
    [66]Nguyen Huu Chung, Jun Nishimoto, Osamu Kato, et al. Selective extraction of thallium in the presence of gallium, indium, bismuth and antimony by salting-out of an aqueous mixture of 2-propanol[J]. Journal of Analytica Chimica Acta, 2003, 477: 243~249
    [67]Yuko Hasegawa, Toshiaki Shimada, Masaru Niitsu. Solvent extraction of 3B group metal ions from hydrochloric acid with trioctylphosphine oxide[J]. Journal of Inorganic and Nuclear Chemistry, 1980, 42: 1487~1489
    [68]Reddy A S, Reddy M L P. Solvent extraction separation of T1/I/ from T1/III/ with sulphoxides[J], Journal of Radionanal Nuclear Chemistry, 1985, 94: 259~264
    [69]Mizuike A. Enrichment Techniques for Inorganic Trace Analysis[M]. Springer-Verlag, Berlin, 1983, p 6
    [70]Kikuchi E, Itoh K, Fujishima A, et al. Removal of thallium from wastewater by using the iron metal and hydrogen peroxide[J]. Chemistry Letters, 1990, 2: 253~254
    [71]USEPA(Environmental Protection Agency), Technical Factsheet on: Thallium. Available from: . 2002
    [72]Yang C X, Chen Y H. FAAS determination of thallium in environmental sample after its separation by adsorption on active carbon[J]. Physical Testing and Chemical Analysis: (Part B Chemical Analysis), 2004, 40: 66~68
    [73]Cao X A, Chen Y H. Spectrophotometric Determination of Trace Thallium with Cadion 2BUsing Polyurethane Foam as an Adsorption-separating Material[J]. Journal of Instrument Analysis, 2000, 19: 11~14
    [74]Akl M A A, Kenawy I M M, Lasheen R R. Organically modified silica gel and flame atomic absorption spectrometry: employment for separation and preconcentration of nine trace heavy metals for their determination in natural aqueous systems[J]. J Microchem, 2004, 78: 143~156
    [75]Lagergren S. About the theory of so-called adsorption of soluble substances[J]. Kungliga Svenska Vetenskapsakademiens Handlinger, 1898, 24: 1~39
    [76]Ho Y S, McKay G. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents[J]. Trans IchemE, 1998, 76(B): 332~340
    [77]Kilner J A, Steele B C H. Nonstoichimetric Oxides[M]. Academic Press, New York, 1981: 233
    [78]Adamson A W, Gast A P. Physical Chemistry of Surfaces[M]. 6th ed. New York: John Wiley & Sons Inc, 1997
    [79]Anderson M A, Rubin A J(eds). Adsorption of Inorganics at Solid/Liquid Interfaces[M]. Michigan: Ann Arbor Sci Publishers,Inc,1981
    [80]赵振国. Langmuir方程在稀溶液吸附中的应用[J].大学化学, 1999,14(5):7~11.
    [81]顾惕人等.表面化学[M].北京:科学出版社, 1994年版
    [82]Ma C, Xia Y. Mixed adsorption of sodium dodecylsulfate and ethoxylated nonylphenol on TiO2 and the stability of TiO2 dispersions in sodium dodecylsulfate-ethoxylated nonylphenol mixed solutions[J]. Colloids & Surfaces, 1992, 68(3): 171
    [83]Huang C P, Cheng W P. Thermodynamic parameters of iron-cyanide adsorption onto g-Al2O3[J]. Journal of Colloid Interface Science, 1997, 188: 270~274
    [84]Gozen Bereket, Ayse Zehra Aroguz, Mustafa Zafer Ozel. Removal of Pb(II), Cd(II), Cu(II) and Zn(II) from aqueous solutions by adsorption on bentonite[J]. Journal of Colloid Interface Science, 1997, 187: 338~343.
    [85]Ayben K, Binay B. Thermodynamic and kinetic investigations of uranium adsorption on amberlite IR-118H resin[J]. Journal of Applied Radiation and Isotopes, 2003, 58: 155~160
    [86]Aksoyoglu S. Sorption of U(VI) on granite[J]. Journal of Radioanal Nuclear Chemistry, 1989, 134: 393~403
    [87]Riemam W, Walton H. Ion-Exchange in Analytical Chemistry, International Series of Monographs in Analytical Chemistry[M]. Pergamon Press, Oxford 1970, 38
    [88]杨春霞,陈永亨,彭平安等.活性炭吸附-火焰原子吸收光谱法测定环境样品中微量铊[J].理化检验-化学分册, 2004, 40(2): 66~68
    [89]李中玺,周丽萍.流动注射在线分离富集-电热原子吸收法测定地球化学样品中痕量金、铂、钯[J].分析试验室, 2003, 22(3): 8~12
    [90]郑浩,李红,曾扬等.阴离子交换树脂-活性炭动态吸附无火焰原子吸收法测定矿石中的微量金铂钯[J].岩矿测试, 2005, 24(4): 299~302
    [91]李春香,秦永超,梁沛等.用等离子体原子发射光谱法研究纳米二氧化钛对钨酸根离子的吸附行为[J].分析化学, 2001, 29(12): 1419~1422
    [92]喻德忠,蔡汝秀,潘祖亭.纳米级二氧化锆的合成及其在六价铬污染处理中的应用[J]. 分析科学学报, 2002, 18(5): 418~420
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.