甘草酸对大鼠肝星状细胞TGF-β/smad信号传导通路的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:肝纤维化是多种慢性肝病的共同病理基础。肝纤维化发展的各个时期,肝星状细胞的活化和细胞外基质合成与降解的失衡是重要病理机制。其中转化生长因子β_1(TGF-β_1)起了关键作用。TGF-β信号通过跨膜丝氨酸/苏氨酸受体激酶传递入核,胞浆内进化保守的smad蛋白家族起了重要的转导作用。它们主要分为3类:受体调控型smads(R-smads)可直接与活化的Ⅰ型受体结合而磷酸化;共同介导型smads(Co-smads)是必需的中转分子,当R-smads磷酸化并与之形成寡聚体后可转位入核调控靶基因转录;抑制型smads(Ⅰ-smads)是TGF-β信号通路的负反馈调节。其中Smad2、3、4、7参与了信号转导。
     甘草酸是目前广泛应用于临床的有效的慢性肝病治疗药物。它可能通过诱导干扰素α,抑制白介素6和肿瘤坏死因子表达,诱生前列腺素E,抑制磷脂酶A2的活性而起作用的。既往研究提示甘草酸可能通过干预TGF-B/smad信号通路来发挥抗纤维化作用的,但具体机制尚待进一步明确。
     目的:研究甘草酸对TGF-β_1刺激的大鼠肝星状细胞中TGF-β/smad信号通路的影响。以期揭示甘草酸抗纤维化的分子机制。
     方法:用SD大鼠分离肝星状细胞并体外培养。实验分成对照组和不同浓度甘草酸给药组(1μmol/l-1000μmol/l)。用MTT法研究对细胞增殖的抑制,台盼蓝拒染法和上清液LDH测定来研究对细胞活力的影响。ELISA法测定上清中HSC分泌的TGF-β_1。Western blot法检测α-SMA蛋白质表达水平。采用GEArray基因芯片检测对照组,TGF-β_1组,TGF-β_1+甘草酸100μmol/L组的基因表达,筛选与TGF-β/smad通路相关的有变化意义的靶基因。然后分成6组,分别为对照组、TGF-β_1组、TGF-β_1+不同浓度甘草酸组(1μmol/l-1000μmol/l)。采用半定量RT-PCR法检测smad2、smad3、smad7、α2Ⅰ型前胶原、α1Ⅲ型前胶原、纤溶酶原激活物抑制因子-1、TGFβ2型受体mRNA水平,采用Western blot法检测smad2、磷酸化-smad2、smad3、胞核-smad3、smad7、Ⅰ型胶原、Ⅲ型胶原、纤溶酶原激活物抑制因子-1和TGFβ2型受体蛋白质表达水平。
     结果:MTT实验显示100μmol/L-1000μmol/L甘草酸能明显抑制肝星状细胞增殖但不同浓度甘草酸并不影响肝星状细胞的活力。不同浓度甘草酸能逐渐抑制α-SMA蛋白质表达水平。1000μmol/L甘草酸能抑制上清液中肝星状细胞分泌的TGF-β1。基因芯片结果表明:经TGFβ_1作用后表达上调,再经甘草酸作用后表达下调的基因有16项;经TGFβ_1作用后表达下调,再经甘草酸作用后表达上调的基因有5项;经TGFβ_1作用后表达上调,再经甘草酸作用后表达上调更加明显的基因有2项。其中有7项基因与TGF-β/smad通路相关。RTR-PCR和Western blot结果验证了与基因芯片的一致性。表明TGF-β_1能增加smad2、smad3、smad7、α2Ⅰ型前胶原、α1Ⅲ型前胶原、纤溶酶原激活物抑制因子-1、TGFβ2型受体mRNA表达水平,同样增加smad2,磷酸化-smad2、smad3、胞核-smad3、smad7、Ⅰ型胶原、Ⅲ型胶原、纤溶酶原激活物抑制因子-1、TGFβ2型受体蛋白质表达。1μmol/l-1000μmol/l甘草酸能逐渐降低smad2、smad3、smad7、Ⅰ型胶原、Ⅲ型胶原、纤溶酶原激活物抑制因子-1的mRNA和蛋白质表达水平,但增加TGFβ2型受体的mRNA水平和蛋白质表达。
     结论:高浓度甘草酸能抑制肝星状细胞增殖和TGF-β_1分泌:不同浓度的甘草酸能减少smad2、smad3、smad7、Ⅰ型胶原、Ⅲ型胶原、纤溶酶原激活物抑制因子-1的mRNA和蛋白质表达水平,但上调TGFβ2型受体mRNA和蛋白质表达水平
Background: Liver fibrosis is the common pathological basis for diverse liver injuries. During the formation of liver fibrosis or cirrhosis, the activation of hepatic stellate cells (HSC) and the imbalance between synthesis and degradation of extracellular matrix (ECM) are important in the pathologenesis. Molecular mechanisms involved in fibrogenesis reveal that transforming growth factor β (TGF-β ), especially TGF- β 1, plays a pivotal role. The signal transduction of TGF-β through a family of transmemberane ser/thr kinase receptors to the nucleus is predominantly mediated by phosphorylation of evolutionarily conserved cytoplasmic mediators of the smad family. The smad family is divided into three functional groups: R-smads (receptor-associated smads) can directly interact with activated type 1 receptor and then be phosphorylated; Co-smads(Common mediated smads) is a common necessary mediator, upon R-smads phospharylation and oligomerization with Co-smads, they move into nucleus to regulate transcription of target genes; and I-smads (inhibitory smads) may function as a negative feedback loop in TGF- β signaling pathway. Smad2、 3、 4 and 7 are involved in TGF-β signaling. Glycyrrhizin is a widely used and effective agent in current clinic treatment for chronic hepatitis. Its effect might be associated with inducing α -Interferon, reducing the expression levels of interlukin 6 and tumor necrosis factor, producing prostaglandin E, and inhibiting the activities of Phospholipase A2. Previous research showed glycyrrhizin may inhibit fibrosis by intervention of TGF β /smad signal. However the accurate mechanism of glycyrrhizin still needs to be investigated. Objective: To investigation the effects of glycyrrhizin on TGF- β /smad pathway in cultured HSC stimulated by TGF- β_1 and then to reveal the possible molecular mechanism of glycyrrhizin on anti-fibrosis..
    Methods: Primary HSCs were isolated from SD rats and cultured in vitro. The inhibitory rate of proliferation was measured by MTT method, the viability of cells was tested by evaluation of supernant LDH and Trypan blue dye exclusion within control and of glycyrrhizin 4 groups (in different concentration of 1 μ mol/L-1000 μ mol/L). Protein expression of α -SMA was detected by western blot. TGF- β_1 concentration was also detected by ELISA. The gene expression profiles were compared within control group, TGF- β_1 group or TGF- β_1 with glycyrrhizin (100 μ
    mol/L) group. Using a cDNA microarray GEArray~(?)Q to screen changed target genes with significant change in TGF-β /smad pathway. Then HSCs were divided into 6 groups, as control group, TGF β_1 only group and TGF β_1 with different concentration glycyrrhizin(1 μ mol/L-1000 μ mol/L) groups respectively. The mRNA levels of smad2、 smad3、 smad7、 procollagen I α 2、 procollagen III α1、 PAI-1、 TGF β receptor 2 were assessed by semi-quantitative RT-PCR method , The protein level of smad2、 p-smad2、 smad3、 N-smad3、 smad7、 type I Collagen、 type III Collagen、 PAI-1 and TGF β receptor 2 were assessed by Western blot analysis. Results: MTT method showed an obvious inhibition of HSC proliferation after 100 μ mol/L -1000 μ mol/L glycyrrhizin treatment. Different concentrations of glycyrrhizin do not affect the vitality on HSC by LDH measurement and Trypan Blue dye exclusion method. Glycyrrhizin of different concentration could gradually decrease protein expression of α-SMA. Glycyrrhizin of 1000 μ mol/L could inhibit supernant TGF- β_1 secreted by HSC. The cDNA microarray identified that 16 genes were down-regulated by glycyrrhizin after being up-regulated by TGF β_1; 5 genes were up-regulated by glycyrrhizin after being down-regulated by TGF β_1; and 2 genes were up-regulated predominantly by glycyrrhizin after being up-regulated by TGF β_1 in HSC. Among these 7 genes were associated with TGF- β /smad signaling. The results of RT-PCR and Western blot identified the coincidence with those of cDNA microarray. It also demonstrated that TGF β_1 could increase mRNA level of Smad2、 3、 7、 procollagen I α 2、 procollagen III α 1, PAI-1 in HSC, and TGF-β_1 could also increase protein expression of Smad2、 3、 7、 p-smad2、 N-smad3、 type I collagen、 type III collagen PAI-1 and TGF-13 receptor 2. Glycyrrhizin of 1 μ mol/1-1000 μ mol/1 could gradually decrease the mRNA level and protein expression of Smad2、 3、 7、 type I collagen、 type III collagen and PAI-1, but increase those of TGF-β receptor 2.
    Conclusion: Glycyrrhizin with high concentration could inhibit HSC proliferation and TGF β_1 secretion. Glycyrrhizin in different concentrations could also decrease the mRNA level and protein expression of smd2、 smad3、 smad7、 type I 、 type III collagen and PAI-1 gradually. It could also up-graduate the mRNA level and protein expression of TGF- β receptor 2.
引文
1. Friedman SL. The cellular basis of hepatic fibrosis: mechanisms and treatment strageies. N Engl J Med 1993;323:1828-35
    2. Friedman SL. Cellular sources of collagen and regulation of collagen production in liver. Semin Liver Dis 1990; 10:20-9
    3. Arthur MJ. Matrix degradation in the liver. Semin Liver Dis 1990;10:45-55
    4. Piotrowska E, Piotrowski J, Grzeszczak W. Transforming growth factors and their role in chronic liver diseases. Wiad Lek 1993 ;46:378-81
    5. Fausto N. Growth factors in liver development, regeneration and carcinogenesis. Prog Growth Factor Res 1991;3:219-34
    6. Gressner AM, Weiskirchen R, Breitkopf K, et al. Roles of TGF-beta in hepatic fibrosis. Front Biosci 2002;7:793-807
    7. Okuno M, Moriwaki H, Imai S, et al. Retinoids exacerbate rat liver fibrosis by inducing the activation of latent TGF-beta in liver stellate cells. Hepatology 1997;26:913-21
    8.张敏,张玲霞,龙建银等。慢性病毒性肝炎肝组织转化生长因子β1及其mRNA分布的研究。中华肝脏病杂志1999;7:193-5
    9. Gramantieri L, Casali A, Trere D, et al. Imbalance of IL-1 beta and IL-1 receptor antagonist Mrna in liver tissue from hepatitis C virus (HCV)-related chronic hepatitis. Clin Exp Immunol 1999; 115:515-20
    10. Bunot D, Munoz C, Lopez M, et al. Interleukin 1 and tumor necrosis factor in obese alcoholics compared with normal-weight patients. A Mj Clin Nutr 1996; 63:272-76
    11. Plebani M, Panozzo MP, Basso D, et al. Cytokines and progression of liver damage in experimental bile duct ligation. Clin Exp Pharmacol Physiol 1999;26: 358-63
    12. Jinno K, Tnimizu M, Hyodo I, et al. Plasma level of basic fibroblast growth factor increases with progression of chronic liver disease. J Gastroenterol 1997; 32:119-21
    13. Grappone C, Pinzani M, Parola M, et al. Expression of platelet-derived growth factor in newly formed cholangiocytes during experiment biliary fibrosis in rats. J Hepatol 1993; 31: 100-9
    14. Gentilini A, Feliers D, Pinzani M, et al. Characterization and regulation of insulin -like growth factor binding proteins in human hepatic stellate cells. J Cell Physiol 1998; 174: 240-50
    15.吴裕忻。细胞因子与肝脏。中华消化杂志1999:19:166-70
    16. Benyon RC, Arhur MJ. Mechanisms of hepatic fibrosis. Pediatr Gastoenterol Nutr 1998;27:75-85
    17. Tykiya S, Tagaya T, Takahashi T. et al. Role of transforming growth factor beta 1 on hepatic regeneration and apoptosis in liver diseases. J Clin Patho 1995;48: 1093-97
    18. Casini A, Pinani M, Milani S, et al. Regulation of extracellular matrix synthesis by transforming growth factor beta 1 in human fat-storing cells. Gastroenterology 1993;105:245-53
    19. Alcolado R, Arthur MJP, Iredale P. Pathogenesis of live fibrosis. Clin Sci 1997; 92:103-12
    20. Massague J. TGF-beta signal transduction. Ann Rev Biochem 1998;67:753-791
    21. Wrana jl, Attisano L, Wieser R, et al. Mechanism of activation of the TGF-beta receptor. Nature 1994;370:341-47
    22. De Caestecker M. The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor 2004,15:1-11
    23.史永军,田字彬,赵清喜。Smads蛋白家族的研究现状.中华腹部疾病杂志2002;2:497-500
    24.吴建新,孟祥军,陈源文等。Smads信息分子与肝星状细胞的活化.胃肠病学和肝病学杂志2002;11:197-9
    25. Wrane JL. Regulation of smad activity. Cell 2000; 100:189-92
    26. Mehra A, Wrana JL.TGF-beta and the Smad signal transduction pathway. Biochem Cell Biol. 2002;80:605-22.
    27. Zhang Y, Chang C,Gehling D J, et al. Regulation of smad degradation and activity by smurf2, an E3 ubiquitin ligase. P Natl Acad Sci USA 2001; 98:974-79
    28. Kumada H. long-term treatment of chronic hepatitis C with glycyrrhizin for preventing liver cirrhosis and hepatocellular carcinoma. Oncology 2002;62 suppl 1: 94-100
    29. Bean P. The use of alternation medicine in the treatment of hepatitis C. Am Clin Lab 2002:21: 19-21
    30. Miyaji C, Miyakama R, Watanabe H, et al. Mechanisms underlying the activation of cytotoxic function mediated by hepatic lymphocytes following the administration of glycyrrhizin, Int Immunopharmacol 2002;2;1079-86
    31. Wang JY, Guo JS, Li H, et al. Inhibitory effect of glycyrrhizin on NF-B binding activity in CCl4-plus ethanol-included liver cirrhosis in rats. Liver 1998; 18:180-5
    32.蔡瑜,沈锡中,王吉耀。甘草酸对肝纤维化基因表达的影响。中华医学杂志2003;83:1122-5
    33. Wale W. Perisinusoidal stellate cells(fat-storing cells, interstitial cells, lipocytes) their related structure in and around ten liver sinu soids, and vitamin A-storing cells in extrahepatic organs. Int Rev Cytol 1980;66:303-53
    34. Friedman SL, Millward SGH, Arthur MJP. Liver fibrosis and cirrhosis. Wright's liver and biliary disease, 3rd ed. London: Bailliere Tindall 1992,822-81
    35. Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissues injury. J Biol Chem 2000;275:2247-50
    36. Theret N, Musso O, L Helgoualch, et al. Activation of matrix metalloproteinase-2 from hepatic stellate cells requires interaction with hepatocytes. Am J Pathol 1997;150:51-8
    37. Loreal O, Levavasseur F, Fromaget C, et al. Cooperation of Ito cells and hepatocytes in the deposition of an extracellular matrix in vitro. Am J Pathol 1993;143:538-44
    38. Bahr MJ, Vincent KJ, Arthur MJP, et al. Control of the tissue inhibitor of metalloproteinase-1 promoter in culture-activated rat hepatic stellate cells: regulation by activator protein-1 DNA binding protein. Hepatol 1999;29:839-48
    39. Ramadori G, Veit T, Schwogler S, et al. Expression of the gene of the α-SMA isoform in the rat liver and in rat fat-storing cell. Virchows Arch B Cell Pathol 1990;59:349-57
    40. Li D, Friedman SL. Liver fibrogenesis and the role of hepatic stellate cells: new insights and prospects for therapy. J Gastroenterol Hepatol 1999; 14:618-33
    41. Gressner AM: Perisinusoidal lipocytes and fibrogenesis. Gut 1994;35:1331-3
    42. Gressner AM, Bachem MG: Molecular mechanisms of liver fibrogenesis. A homage to the role of activated fat-storing cells. Digestion 1995; 56:335-46
    43. Vogel S, Piantedosi R, Frank J, et al. An immortalized rat liver stellate cell line (HSC-T6): a new cell model for the study of retinoid metabolism in vitro. J Lipid Res. 2000;41:882-93
    44.细胞活力的检测方法。见司徒镇强,吴军正,主编:细胞培养181—190页。兴界图书出版公司2001
    45. Inao M, Mochida S, Ikeda H, et al. Effects of neurotropic pyrimidine heterocyclic compound, MS-430 on cultrured hepatic parenchymal and stellate cells. Life Science 1997;61 ;273-82
    46. Gressner AM. Cytokines and cellular crosstalk involved in the activation of fat-storing cells. J Hepatol 1995;22(2 suppl):28-36
    47. Gressner AM, Chunfang G. A cascade-mechanism of fat storing cell activation forms the basis of the fibrogenic reaction of the liver. Verh-Stsch-Ges-Oathol 1995;79;1-14
    48. Roth S, Michel K, Gressener AM.(Latent) transforming growth factor-beta in liver parenchymal cells, its ijury-dependent release and paracrine effects on hepatic stellate cells. Hepatology 1998;27:1003-12
    49. Yoshiji H, Kuriyama S, Miyamato Y, et al. Tissue inhibitor of metalloproteinases-1 promote liver fibrosis development in a transgenic mouse model. Hepatology 2000;32:1248-54
    50. Knittel T, Mehde M, Kobold D, et al,. Expression patterns of matrix metallo proteinases and their inhibitors in parenchymal and noon-parenchymal cells of rat liver: regulation by TNF-alpha and TGF-betal. J Hepatol 1999;30;48-60
    51. Iredal JP. Tissue inhibitor of metalloproteinases in liver fibrosis. Int J Biochem Cell Biol 1997;29:43-54
    52. Bedossa P, Peltier E, Terris B, et al. Transforming growth factor-betal (TGF-betal) and TGF-betal receptors in normal, cirrhotic, and neoplastic human livers. Hepatology 1995;21:760-6
    53.刘芳,李兵顺,南月敏等。慢性乙型肝炎患者血清转化生长因子β1在肝纤维化中的作用。中华肝脏病杂志1999;7:196-8
    54. Kanzler S, Lohse AW, Keit A, et al. TGF-betal in liver fibrosis: an inducible transgenic mouse model to study liver fibrogenesis. Amer J Physiol-Gastrointest L1999; 39:G1059-68
    55. Ouyang QC, Hu CP, Liang QH. Gene expression of MMP1 and TIMP1 in lung cancer detected with a cDNA microarray technique. Hunan Yi Ke Da Xue Xue Bao 2003;28;227-8
    56. Swiami S, Raghavachari N, Muller UR, et al. Vitamin D growth inhibition of breast cancer cells: gene wxpression patterns assessed by cDNA microarray. Breast Cancer Res Treat 2003;80:49-62
    57. Li Y, Li X, Sarkar FH. Gene expression profiles of ~(13)C- and DIM-treated PC3 human prostate cancer cells determined by cDNA microarray analysis. J Nutr 2003;133:1011-19
    58. Yang SH, Kim JS, Oh TJ, et al. Genome-scale analysis of resveratrol-induced gene expression profile in human ovarian cancer cells using a cDNA microarray. Int J Oncol 2003;22:741-50
    59. Li Y, Sarker FH. Down-regulation of invasion and angiogenesis-related genes identified by cDNA microarray analysis of PC3 prostate cancer cells treated with genistein. Cancer Lett 2002; 186:157-64
    60. Sun Y, Huang PL, Li J J, et al. Anti-HIV agent MAP30 modulates the expression profile of viral and cellular genes for proliferation and apoptosis in AIDS-related lymphoma cells infected with Kaposi's sarcoma-associated virus. Biochem Biophys Res Commun 2001; 287:983-994
    61. Lee DK, Park SH, Yi Y, et al. The hepatitis B virus encoded oncoprotein pX amplifies TGF-beta family signaling through direct interaction with Smad4: potential mechanism of hepatitis B virus-induced liver fibrosis. Genes Dev 2001;15:455-66
    62. Wang S, Hirschberg R.BMP7 antagonizes TGF-beta -dependent fibro genesis in mesangial cells. Am J Physiol Renal Physiol. 2003;284: F1006-13.
    63. DeRisi J, Penland L, Brown PO, et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 1996; 14:457-60
    64. Schena M, Shalon D, Davis RW, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995;270:467-70
    65.王吉耀。肝现代肝病治疗—理论与进展。上海医科大学出版社,上海1999年第一版,115—118页。
    66. Castilla A, Prieto J, Fausto N. Transforming growth factor betal and alpha in chronic liver disease. Effects of interferon alpha therapy. N Engl J Med 1991; 324: 933-40
    67. Annoni G, Weiner ER, Zern MA. Increased transforming growth factor β gene expression in human liver disease. J Hepatol 1992; 14:259—64
    68. Castilla A, Prieto J, Fausto N. Transforming growth factors beta 1 and alpha in chronic liver disease. Effects of interferon alfa therapy. N Engl J Med 1991;324: 933-40
    69. Casini A, Pinzani M, Milani S, et al. Regulation of extracellular matrix synthesis by transforming growth factor beta 1 in human fat-storing cells. Gastroenterology 1993;105:245-53
    70. Hellerbrand C, Stefanovic B, Giordano F, et al. The role of TGF beta in initiating hepatic stellate cell activation in vivo. J Hepatol 1999;30:77-87
    71. Kanamaru Y, Nakao A, Tanaka Y. et al. Involvement of p300 in TGF-beta/smadpathway-mediated alpha2(I) collagen expression in mouse mesangial cells. Nephron Exp Nephrol 2003;95:36-42
    72. Lindahl GE, Chambers RC, Papakrivopoulou J, et al. Activation of fibroblast procollagen alpha 1(I) transcription by mechanical strain is transforming growth factor-beta-dependent and involves increased binding of CCAAT-binding factor (CBF/NF-Y) at the proximal promoter. J Biol Chem 2002,227:6153-61
    73. Philips N, Keller T, Gonzales S. TGF beta-like regulation of matrix metalloproteinases by anti-transforming growth factor-beta, and antitransforming growth factor-beta 1 antibodies in dermal firoblasts: Implications for wound healing. Wound Repair Regen,2004;12:53-9
    74. Arthur MJ. Fibrogenesis-Ⅱ. Metalloproteinases and their inhibitors in liver fibrosis. AAM J Physiol Gastrointest Liver Physiol 2000; 279:G245-9
    75. De Caestecker M. The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor 2004; 15:1-11
    76. Raftery LA, Ywombly V, Wharton K, et al. Genetic screens to identify elements of the decap-entaplegic signaling pathway in Drosophila. Genetics 1995;139:1347-1358
    77. Savage C, Das P, Finelli AL, et al. Caenorhabditis elegans genes sma-2,sma-3, and sma-4 define a conserved family of transforming growth factor β pathway components. Proc Natl Acad Sci USA 1996;93;:790-4
    78.吴建新,孟祥军,陈源文等.Smads信息分子与肝星状细胞的活化.胃肠病学和肝病学杂志2002;11:197-9
    79. Liu C, Gaca MD, Swenson ES, et al. SMAD2 and 3 are differentially activated by transforming growth factor-beta in quiescent and activated hepatic stellate cells. Constitutive nuclear location of smads in activated cells is TGFβ-independent. J Biol Chem 2003 ;278:11721-8
    80. Evans RA, Tian YC, Steadinan R, et al. TGF-betal-mediated fibroblast -myofibroblast terminal differentiation—the role of smad proteins. Exp Cell Res 2003:282:90-100
    81. Tahashi Y, Matsuzaki K, Date M, et al. Differential regulation of TGF-beta signal in hepatic stellate cells between acute and chronic rat liver injury. Hepatology 2002;35:49-61
    
    82. Schnabl B, Y.O Kweon, J.P Frederick, et al. The role of smad3 in mediating mouse hepatic stellate cell activation. Hepatology 2001 34:89-100
    
    83. Inagaki Y, Mamura M, Kanamaru Y, et al. Constitutive phosphorylation and nuclear localization of Smad3 are correlated with increase collagen gene transcription in activated hepatic stellate cells. J Cell Physiol 2001; 187:117-23
    
    84. 56.Inagaki Y, Nemoto T, Nakao A, et al. Interaction between GC box binding factors and smad proteins modulates cell lineage-specific alpha2(I) collagen gene transcription. J Biol Chem 2001;276:16573-9
    
    85. Kurisaki A, Kose S, Yoneda Y, et al.Transforming growth factor-beta induces nuclear import of Smad3 in an importin-betal and Ran-dependent manner. Mol Biol Cell. 2001;12:1079-91
    
    86. Crawford SE, Stellmach V, M urphy-Ullrich JE, et al. Thrombospondin-1 is a major activator of TGF-beta 1 in vivo. Cell 1998;93:1159-70
    1. Bissell DM, Roulot D, George J. Transforming growth factor b and the liver. Hepatology 2001; 34:859-67
    2. Schuppan D, Porov Y. Hepatic fibrosis:From bench to beside. J Gastroenterol Hepatol 2002; 17(Suppl 3):S300-S305
    3. Lang A, Brenner DA. Gene regulation in hepatic stellate cell. Ital J Gastroenterol Hepatol 1999; 31:173-9
    4. Gressner AM, Weiskirchen R, Breitkopf K, Dooley S. Roles of TGF-beta in hepatic fibrosis. Front Biosci 2002; 7:793-807
    5.吴裕忻。细胞因子与肝脏。中华消化杂志 1999;19:166-70
    6. Roberts AB, Anzano MA, Lamb LC, et al. New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues. Proc Natl Acad Sci USA 1981; 78:5339-43
    7. Gao CF, Kong XT, Gressner AM, et al. The expression and antigenecity identification of recombinant TGF β 1. Cell Res 2001; 11:95-100
    8. Saharinen J, Keki-Oja K. Specific sequence motif of 8-cys repeats of TGF β binding proteins, LTBP, creates a hydrophobic interaction surface for binding of small latent TGFβ. Mol Biol Cell 2000; 11:2691-704
    9. Ribeiro SMF, Poczatek M, Schultz-Cherry S, et al. The activation sequence of thrombospondin-1 interacts with the latency-associated peptide to regulate activation of latent transforming growth factor-β. J Biol Chem 1999; 274:13586-93
    10. Kinnman N, Andersson U, Hultcrantz C. In situ expression of transforming growth factor-beta 1-3, latent transforming growth factor-beta binding protein and tumor necrosis factor-alpha in liver tissue from patients with chronic hepatitis C. Scand J Gastroenterol 2000; 35:1294-1300
    11. Li D, Friedman SL. Liver fibrogenesis and the role of hepatic stellate cells:new insights and prospects for therapy. J Gastroenterol Hepatol 1999; 14:618-33
    12. Annes JP, Munger JS, Rifkon DB. Making sense of latent TGFβ activation. J Cell Sci 2003; 116:217-24
    13. Nunes I, Shapiro RL, Rifkin DB. Characterization of latent TGFβ activation by murine peritoneal macrophages. J Immunol 1995; 155:1450-9
    14. Crawford SE, Stellmach V, M urphy-Ullrich JE, et al. Thrombospondin-1 is a major activator of TGF-beta 1 in vivo. Cell 1998; 93:1159-70
    15. De Caestecker M. The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor 2004; 15:1-11
    16. Rius C, Smith JD, Almendro N, et al. Cloning of the promoter region of human endoglin, the target gene for hereditary hemorrhagic telangiectasia type Ⅰ. Blood 1998; 92:4677-90
    17. Kretzschmar M, Massague J. SMADs: mediators and regulators of TGF- beta signaling. Curr Opin Genet Dev 1998; 8:103-11
    18.史永军,田字彬,赵清喜.Smads蛋白家族的研究现状.中华腹部疾病杂志 2002:2:497-500
    19.吴建新,孟祥军,陈源文等.Smads信息分子与肝星状细胞的活化.胃肠病学和肝病学杂志 2002;11:197-9
    20. Tsukazaki T, Chiang TA, Davison AF, et al. SARA, a FYTE domain protein that recruits SMAD2 to the TGFP receptor. Cell 1998; 10:188-94
    
    21. Kavsak P, Rasmussen RK, Causing CG. et al. Smad7 binds to smurf2 to form E3 ubiquitin ligase that targets the TGFj3receptor for degradation. Mol Cell 2000;6:1365-75
    
    22. Ebisawa T, Fukuchi M, Murakami G. et al. smurfl interacts with transforming growth factor-p type I receptor through smad7 and induces receptor degradation. J Biol Chem 2001 ;276:12477-80
    
    23. Datta PK, Chytil A, Gorska AE, et al. Identification of STRAP, a novel WD domain protein in transforming growth factor-beta signaling. J Biol Chem 1998;273:34671-4
    
    24. Ferrigno O, Lellemand F, Verrecch F, et al. Yes-associated protein (YAP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-beta /smad signaling. Oncogene 20021:21:4879-84
    
    25. Dong C, Li Z, Alvarez Jr R, et al. Microtuble binding to smads may regulate TGFp activity. Mol Cell 2000;5:27-34
    
    26. Shi Y, Wang YF, Jayaraman L, et al. Crystal structure of a SMAD MH1 domain bound to DNA: insights on DNA binding in TGFp signaling. Cell 1998;94: 585-94
    
    27. Zawel L, Dai JL, Buckhaults P, et al. Human SMAD3 and SMAD4 are sequence-specific transcription activators. Mol Cell 1998;1:611-17
    
    28. Labbe E, Silestri C, Hoodless PA, et al. SMAD2 and SMAD3 positively and negatively regulate TGFp-dependent transcription through the forkhead DNA-binding protein FAST2. Mol Cell 1998;2:109-20
    
    29. Verrecchia F, Pessah M, Atfi A, et al. Tumor necrosis factor-a inhibits transforming growth factor-p/SMAD signaling in human dermal fibroblasts via AP-1 activation. J Biol Chem 2000;275:30226-31
    
    30. Ghosh AK, Yuan W, Mori Y, et al. Antagonisitic regulation of type I collagen gene expression by interferon-y and transforming growth factor-p.Integration at the level of p300/CBP transcriptional coactivors. J Biol Chem 2001; 276:11041-8
    
    31. Schiller M, Verrecchia F, Mauviel A, et al. Cyclic adenosine 3'5'-monophosphate -elevating agents inhibit transforming growth factor-P induced SMAD 3/4 -dependent transcription via a protein kinase A-dependent mechanism. Oncogene2003;22:8881-90
    
    32. Luo K, Stroschein SL, Wang W, et al. The Ski oncoprotein interacts with the SMAD protein to repress TGFβ signaling. Genes Dev 1999; 13:2196-206
    
    33. Sun Y, Liu X, Ng-Eaton E, et al. SnoN and Ski protooncoproteins are rapidly degraded in response to transforming growth factor β signaling. Proc Natl Acad Sci USA 1999;96:12442-7
    
    34. Kim RH, Wang D, Tsang M, et al. A novel SMAD nuclear interacting protein,SNIP-1, suppresses p300-dependent TGFβ signal transduction. Genes Dev 2000:14:1605-16
    
    35. Yang J, Dai C, Liu Y. A novel mechanism by which hepatocyte growth factor blocks tubular Epithelial to Mesenchymal Transition. J Am Soc Nephrol 2005; 16:68-78
    
    36. Takiya S, Tagaya T, Takahashi, et al. Role of transforming growth factor beta 1 on hepatic regeneration and apoptosis in liver diseases. J Clin Patho 1995; 48:1093-7
    
    37. Castilla A, Prieto J, Fausto N. Transforming growth factors beta 1 and alpha in chronic liver disease. Effects of interferon alfa therapy. N Engl J Med 1991 ;324: 933-40
    
    38. Ichkawa T, Zhang YQ, Kogure K, et al. Transforming growth factor beta and activin tonically inhibit DNA synthesis in the rat liver. Hepatology 2001 ;34:918-25
    
    39.周馨,李宣海,李定国.库普弗细胞与肝纤维化.世界华人消化杂志2002:10:65-98
    
    40. Cain K, Freathy C. Liver toxicity and apoptosis: role of TGF- β1, cytochrome c and apoptosome. Toxicol Lett 2001;31:916-21
    
    41. George J, Roulot D, Koteliansky VE, et al. In vivo inhibition of rat stellate cell activation by soluble transforming growth factor beta type II receptor: a potential new therapy for hepatic fbrosis. Proc Natl Acad Sci USA 1999;96; 12719-24
    
    
    42. Saile B, Matthes N, Knittel T, et al. Transforming growth factor beta and tumor necrosis factor alpha inhibit both apoptosis and proliferation of activated rat hepatic stellate cells. Hepatology 1999;30:196-202
    
    43. De M, Yan W, de Jonge RR, et al. Functional characterization of transforming growth factor beta type II receptor mutants in human cancer. Cancer Res 1998;58: 1986-92
    
    44. Lutz M, Knaus P. Integration of the TGF-beta pathway into the cellular signalling network. Cell Signal. 2002; 14:977-88.
    45. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425:577-84.
    
    46. Hayashida T, Decaestecker M, Schnaper HW. Cross-talk between ERK MAP kinase and Smad signaling pathways enhances TGF-beta-dependent responses in human mesangial cells. FASEB J. 2003;17:1576-8.
    
    47. Zhang XL, Topley N, Ito T, et al. IL-6 regulation of TGF-beta receptor compartmenta -lisation and turnover enhances TGF-betal signaling. J Biol Chem 2005 Jan 20;
    
    48. Zhang L, Keane MP, Zhu LX, et al. Interleukin-7 and transforming growth factor-beta play counter-regulatory roles in protein kinase C-delta-dependent control fibroblast collagen synthesis in pulmonary fibrosis. J Biol Chem 2004;297:28315-319
    
    49. Inagaki Y, Mamura M, Kanamaru Y, et al. Constitutive phosphorylation and nuclear localization of Smad3 are correlated with increased collagen gene transcription in activated hepatic stellate cells. J Cell Physiol 2001; 187:117-123
    
    50. Schnabl B, Kweon YO, Frederick JP, et al. The role of Smad3 in mediating mouse hepatic stellate cell activation. Hepatology 2001;34:89-100
    
    51. Liu C. Gaca MD, Swenson ES, et al. SMAD2 and 3 are differentially activated by transforming growth factor-beta in quiescent and activated hepatic stellate cells. Constitutive nuclear location of smads in activated cells is TGFβ-independent. J Biol Chem 2003;278:11721-8
    
    52. Evans RA, Tian YC, Steadinan R, et al. TGF-betal-mediated fibroblast -myofibroblast terminal differentiation-the role of smad proteins. Exp Cell Res 2003:282:90-100
    
    53. Casini A, Pinzani M, Milani S, et al. Regulation of extracellular matrix synthesis by transforming growth factor beta 1 in human fat-storing cells. Gastroenterology 1993;105:245-53
    
    54. Kanamaru Y, Nakao A, Tanaka Y, et al. Involvement of p300 in TGF-beta/smad- pathway-mediated alpha2(I) collagen expression in mouse mesangial cells. Nephron Exp Nephrol 2003;95:36-42
    
    55. Lindahl GE, Chambers RC, Papakrivopoulou J, et al. Activation of fibroblast procollagen alpha 1(I) transcription by mechanical strain is transforming growth factor-beta-dependent and involves increased binding of CCAAT-binding factor (CBF/NF-Y) at the proximal promoter. J Biol Chem 2002,227:6153-61
    56. Inagaki Y, Nemoto T, Nakao A, et al. Interaction between GC box binding factors and smad proteins modulates cell lineage-specific alpha2(I) collagen gene transcription. J Biol Chem 2001;276:16573-9
    
    57. Hubchak SC, Runyan CE, Kreisberg JL, et al. Cytoskeletal rearrangemant and signal transduction in TGFβ1-stimulated mesangial cell collagen accumulation. J Am Soc Nephrol 2003; 14:1969-80
    
    58. Philips N, Keller T, Gonzales S. TGF beta-like regulation of matrix metalloproteinases by anti-transforming growth factor-beta, and anti- transforming growth factor-beta 1 antibodies in dermal firoblasts: Implications for wound healing. Wound Repair Regen 2004; 12:53-9
    
    59. Arthur MJ. Fibrogenesis-II. Metalloproteinases and their inhibitors in liver fibrosis. AAM J Physiol Gastrointest Liver Physiol 2000;279:G245-9
    
    60. Ogama K, Chen F, Kuang C, et al. Suppression of matrix MMP-9 transcription by transforming growth factor-β is mediated by a nuclear factor-kappaB site. Biochem J 2004;38(pt2):413-22
    
    61. Tahashi Y, Matsuzaki K, Date M. et al. Differential regulation of TGF-beta signal in hepatic stellate cells between acute and chronic rat liver injury. Hepatology 2002;35:49-61
    
    62. Dooley S, Delvoux B, Streckert M, et al. Transforming growth factor beta signal transduction in hepatic stellate cells via Smad2/3 phosphorylation, a pathway that is abrogated during in vitro progression to myofibroblasts. TGF beta signal transduction during transdifferentiation of hepatic stellate cells. FEBS Lett 2001; 502:4-10
    
    63. Schnabl B, Kweon YO,Frederick JP, et al. The role of Smad3 in mediating mouse hepatic stellate cell activation. Hepatology 2001;34:89-100
    
    64. Furukawa K, Matsuzaki K, Mori S, et al. p38 MAPK mediates fibrogenic signal through Smads phosphorylation in rat myofibroblasts. Hepatology 2003;38:879-89
    
    65. Lee DK, Park SH, Yi Y, et al. The hepatitis B virus encoded oncoprotein pX amplifies TGF-beta family signaling through direct interaction with Smad4: potential mechanism of hepatitis B virus-induced liver fibrosis. Genes Dev 2001; 15:455-66
    
    66. Cheng PL, Chang mh, Chao CH, et al. Hepatitis C viral proteins interact with Smad3 and differentially regulate TGF-β7smad3-mediated transcriptional activation. Oncogene 2004; 23:7821-38
    67. Schuppan D, Koda M, Bauer M, et al. Fibrosis of liver, pancreas and intestine: common mechanisms and clear targets? Acta Gastroenterol Belg 2000; 63:366-70
    68.蒋树林,姚希贤,孙玉凤。肝纤维化的治疗。世界华人消化杂志 2000;8:684-6
    69. Kang KW, Choi SH, Ha JR, et al. Inhibition of dimethylnitrosamine-induced liver fibrosis by [5-(2-pyrazinyl)-4-methyl-1, 2-dithiol-3-thione] (oltipraz) in rats: suppression of transforming growth factor-betal and tumor necrosis factor-alpha expression. Chem Biol Interact 2002; 139:61-77
    70. Garcia L, Hemandez I, Sandoval A, et al J. Pirfenidone effectively reverses experimental liver fibrosis. J Hepatol 2002; 37:797-805
    71. Di Sario A, Bendia E, Svegliati Baroni G, et al. Effect of pirfenidone on rat hepa tic stellate cell proliferation and collagen production. J Hepatol 2002; 37:584-91
    72. Bissell DM. Chronic liver injury, TGF-beta, and cancer. Exp Mol Med 2001; 33: 179-90
    73. Kanzler S, Baumann M, Schirmacher P, et al. Prediction of progressive liver fibrosis in hepatitis C infection by serum and tissue levels of transforming growth factor-beta. J Viral Hepat 2001; 8:430-37
    74. Jonsson JR, Clouston AD, Ando Y, et al Angiotensin-converting enzyme inhibi tion attenuates the progression of rat hepatic fibrosis. Gastroenterology 2001; 121: 148-55
    75. Paizis G, Gilbert RE, Cooper ME, et al. Effect of angiotensin Ⅱ type 1 receptor blockade on experimental hepatic fibrogenesis. J Hepatol 2001; 35:376-85
    76. Yoshiji H, Kuriyama S, Yoshii J, et al. Angiotensin-Ⅱ type 1 receptor interaction is a major regulator for liver fibrosis development in rats. Hepatology 2001; 34: 745-50
    77. Li CX, Li L, Lou J, et al. The protective effects of traditional Chinese medicine prescription, Han-Dan-Gan -Le, on CC14-induced liver fibrosis in rats. Am J Chin Med 1998; 26:325-332
    78. Shimizu I. Sho-saiko-to: Japanese herbal medicine for protection against hepatic fibrosis and carcinoma. J Gastroenterol Hepatol 2000; 15:84-90
    79. Liu P, Hu YY, Liu C, et al. Clinical observation of salvianolic acid B in treatment of liver fibrosis in chronic hepatitis B. World J Gastroenterol 2002; 8:679-85
    80.杨新波,黄正明,王建华.肝纤维化的药物治疗.世界华人消化杂志 2002; 10:956-57
    
    81. Yata Y, Gotwals P, Koteliansky V. et al. Dose-dependent inhibition of hepatic fibrosis in mice by a TGF-beta soluble receptor: implications for antifibrotic therapy. Hepatology 2002;35:1022-30
    
    82. Cui X, Shimizu I, Lu G, et al. Inhibitory effect of a soluble transforming growth factor beta type II receptor on the activation of rat hepatic stellate cells in primary culture. J Hepatol 2003;39:856-9
    
    83. George J, Roulot D, Koteliansky VE, et al. In vivo inhibition of rat stellate cell activation by soluble transforming growth factor beta type II receptor: a potential new therapy for hepatic fibrosis. Proc Natl Acad Sci USA 1999;96:12719 -24
    
    84. Liu X, Zhang Z, Yang L, et al. Inhibition of the activation and collagen produc tion of cultured rat hepatic stellate cells by antisense oligonucleotides against transforming growth factor-beta 1 is enhanced by cationic liposome delivery. Hua Xi Yi Ke Da Xue Xue Bao 2000;31:133-5,142
    
    85. Arias M, Sauer-Lehnen S, Treptau J, et al. Adenoviral expression of a transform ing growth factor-beta1 antisense mRNA is effective in preventing liver fibrosis in bile-duct ligated rats. BMC Gastroenterol 2003;3(1):29
    
    86. Jiang W, Yang CQ, Liu WB, et al. Blockage of transforming growth factor beta receptors prevents progression of pig serum-induced rat liver fibrosis. World J Gastroenterol 2004 Jun;10(11): 1634-8
    
    87. Fukasawa H, Yamamoto T, Suzaki H, et al. Treatment with anti-TGF-beta antibody ameliorates chronic progressive nephritis by inhibiting Smad/ TGF-beta signaling. Kidney Int. 2004;65:65-74
    
    88. Peng SB, Yan L, Xia X, et al. Kinetic characterization of novel pyrazole tgf-Preceptor I kinase inhibitors and their blockade of the epithelial-mesenchymal transition. Biochemistry 2005;44:2293-304
    
    89. Inagaki Y, Nemoto T, Kashida M, et al. Interferon a down-regulates collagen gene transcription and suppresses experimental hepatic fibrosis in mice. Hepatology 2003;38:890-9
    
    90. Abdel Wahab N, Wicks SJ, Mason RM, et al. Decorin suppresses transforming growth factor-P-induced expression of plasminogen activator inhibitor-1 in human mesangial cells through a mechanism that involves Ca~(2+)-dependent phosphorylation of Smad2 at serine-240. Biochem J 2002;362(Pt 3):643-9
    
    91. Dooley S, Hamazavi J, Breitkopf K, et al. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology 2003;125:178-91
    
    92. Wells RG. Fibrogenesis. V. TGF-beta signaling pathways. Am J Physiol Gastroin test Liver Physiol 2000;279:G845-50
    
    93. Wu J, Zern MA. Hepatic stellate cells: a target for the treatment of liver fibrosis. J Gastroenterol 2000;35:665-72
    
    94. Fujimoto J. Gene therapy for liver cirrhosis. J Gastroenterol Hepatol 2000; 15:D 33-6
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.