硝化对胰岛素结构、功能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病是一种常见的易发性代谢疾病。越来越多的证据表明,活性氧和活性氮介导糖尿病及其并发症的病理过程。蛋白质酪氨酸硝化是一种重要的蛋白质翻译后修饰,它与炎症、心血管疾病和神经退行性疾病等多种病症相关。过氧亚硝酸根(ONOO-)路径是促使蛋白质硝化最主要的一种途径,其反应为自由基机理。与糖尿病相关的蛋白质硝化已有较多文献报道,这不仅表现在硝基酪氨酸(NT)水平的增高,也有特定的硝化蛋白被发现。胰岛素是由脊椎动物胰腺β细胞分泌的一种多功能蛋白质激素,是治疗糖尿病最有效的药物。ONOO-可能会在β细胞内形成,对细胞造成损伤,而胰岛素也可能成为氧化应激条件下ONOO-的一个靶点。目前有关ONOO-对胰岛素及其信号转导系统影响的报道还较少。
     本文研究了体外ONOO-对胰岛素的硝化反应,探讨了硝化对胰岛素结构、功能的影响,并对抗氧化剂等因素对胰岛素硝化作用的影响进行了研究,取得了以下主要结果:
     ⑴采用紫外可见光谱、凝胶电泳、免疫印迹以及质谱等对胰岛素的硝化产物进行了表征,并考察了pH值、CO2、铁配合物等因素以及白蛋白对该反应的影响。结果显示ONOO-可以硝化胰岛素酪氨酸(Tyr)残基,且随浓度的不断增大,胰岛素4个酪氨酸残基都有可能被硝化。ONOO-硝化胰岛素的反应与pH值密切相关,在生理pH值条件下,ONOO-的硝化作用最强。CO2对胰岛素的硝化具有催化作用。乙二胺四乙酸铁配合物可催化胰岛素硝化,而二乙三胺五乙酸铁配合物对胰岛素硝化无影响。白蛋白对胰岛素的硝化具有竞争抑制作用,但在高浓度的白蛋白存在时,胰岛素依然可以被硝化。
     ⑵采用高效液相色谱分离制备得到了胰岛素的单硝化和二硝化组分。运用凝胶电泳、高效液相色谱和质谱等技术,结合A、B链拆分和V8蛋白酶酶解方法,对硝化胰岛素的硝化位点进行了分析。还原条件下硝化组分的常规聚丙烯酰胺凝胶电泳以及色谱分离出的单硝化胰岛素A链的质谱结果表明胰岛素的A链优先B链被硝化。V8蛋白酶酶切单硝化胰岛素后的质谱结果表明单硝化胰岛素的硝化位点是Tyr-A14。结合电泳的结果和晶体结构分析,Tyr-A19较B链上的Tyr残基更容易硝化,而Tyr-B26可能较Tyr-B16更容易硝化。
     ⑶运用光谱学方法研究了硝化对胰岛素二级结构的影响。综合荧光光谱、圆二色光谱和傅立叶变换红外光谱的测试结果,发现单硝化和二硝化胰岛素与胰岛素相比α-螺旋的含量下降,A链的硝化可能使A(12-17)的310螺旋肽段逐渐向不规则螺旋和无规结构方向变化,但对胰岛素与受体结合面的影响不大。同时硝基的引入使得单硝化和二硝化硝化胰岛素趋向于聚集,而二硝化胰岛素中Tyr-A19的硝化可能会改变胰岛素与受体的结合面疏水区的疏水性质。
     采用循环伏安法研究了Tyr、NT以及Tyr、NT与白蛋白相互作用后的伏安行为,结果表明硝基的引入将会改变酚羟基氢键的作用方式,影响Tyr与白蛋白的相互作用,这从一个侧面反映了硝化可能会影响胰岛素与受体的结合。
     ⑷测定了单硝化胰岛素的生物活力,并对硝化胰岛素刺激胰岛素受体磷酸化进行了初步的讨论。单硝化胰岛素的受体结合能力约为胰岛素的70%,动物实验与此结果相一致。
     ⑸采用紫外可见光谱测定胰岛素与ONOO-反应后NT产量的变化,研究了谷胱甘肽(GSH)和Ebselen等抗氧化剂对ONOO-硝化胰岛素的影响,并采用高效液相色谱和质谱等手段对GSH和Ebselen之间相互作用及其对ONOO-硝化胰岛素的影响机理进行了分析。结果表明,油酸和花生四烯酸对胰岛素的硝化具有很强的抑制作用,不饱和脂肪酸的抑制作用随其不饱和度的增大而增强。在实验浓度范围内,亚硒酸钠对胰岛素的硝化无明显影响;单独的GSH、抗坏血酸、Ebselen和维生素E等抗氧化剂对胰岛素的硝化均有不同程度的抑制作用;但在一定浓度范围内,GSH和Ebselen之间存在相互拮抗作用,原因是GSH和Ebselen可以生成加合物Ebselen-Se-SG。
Diabetes is a common kind of metabolic diseases. There is emerging evidence that RNS/ROS make a significant contribution to the progression of diabetes and its complications. Protein tyrosine nitration is an important posttranslational modification, and involved in a variety of diseases. Nitration by peroxynitrite is a principal pathway, and nitrotyrosine is formed by free radical reaction. Diabetes-associated protein nitration has been reported by several recent publications. Insulin is one of the most important versatile hormones, and it may be a potential target of peroxynitrite during conditions of oxidative stress in pancreatic isletβ-cells.
     In this paper the nitration of insulin by peroxynitrite in vitro and the effects of nitration on the structure and function of insulin were investigated. The influence of antioxidants and some facts on insulin nitration were also studied. The main results obtained were as follows:
     (1) The products of insulin nitration by peroxynitrite were characterized by UV-Vis, Native-PAGE, Western blotting and MALDI-TOF-MS, and the influence of the pH value, carbon dioxide, iron complexes and albumin was also investigated. The results showed that insulin could be nitrated by peroxynitrite in vitro, and with increasing the concentration of peroxynitrite all of the four tyrosine residues in insulin could be nitrated. The nitration reaction was correlated with the pH value of the solution, and at physiological pH peroxynitrite has the maximum nitration capability. Carbon dioxide and Fe(III)-EDTA could catalyze the nitration reaction, but Fe(III)-DTPA had no effect. Albumin could competitively inhibit the nitration of insulin by peroxynitrite, but in the presence of high concentrations of albumin insulin could still be nitrated.
     (2) Mononitrated and dinitrated insulin were purified by RP-HPLC. The preferential nitration site of the four tyrosine residues in insulin was confirmed by Native-PAGE, RP-HPLC and MALDI-TOF-MS. Following reduction of insulin disulfide bridges, Native-PAGE indicated that A-chain was preferentially nitrated. Combination of enzymatic digestion of mononitrated insulin with endoproteinase Glu-C, mass spectrometry confirmed that Tyr-A14 was the preferential nitration site when insulin was treated with peroxynitrite. Tyr-A19 maybe was the next preferential nitration site. According to the crystal structure, Tyr-B26 between the two tyrosine residues in insulin B-chain was likely easier to be nitrated by peroxynitrite.
     (3) The effects of nitration on the secondary structures of insulin were investigated by analysis of the fluorescence spectra, circular dichroism spectra and fourier transformation infrared spectra of the nitrated insulin. The contents ofα-helix of the mono and dinitrated insulin were decreased, and the nitration of A-chain could make the 310 helix of A(12-17) segment convert to irregular helix or unordered structures, but it didn’t influence the main part of the insulin binding surface with insulin receptor, and the nitration of Tyr-A19 may alter the hydrophobicity of the insulin binding surface. In the mean time the introduction of nitro group could incline the mono and dinitrated insulin to aggregation.
     The voltammetric response of Tyr and NT was investigated by cyclic voltammetry, and the results showed that introduction of nitro group could alter the hydrogen bonding manner of the phenol hydroxyl and influence the interaction between Tyr and albumin. These reflected that nitration could affect the binding between insulin and insulin receptor to some extent.
     (4) The biological activity of mononitrated insulin was assayed, and the phosphorylation of insulin receptor by stimulation of nitrated insulin was also investigated. The receptor binding capability of mononitrated insulin was about 70% of that of insulin, and the biological activity in vivo accorded with it.
     (5) The effects of antioxidants on the nitration of insulin by peroxynitrite were evaluated by determination of the production of nitrotyrosine by UV-Vis, and the interaction of GSH and Ebselen and the effects on the nitration of insulin were investigated by RP-HPLC and ESI-MS. Oleic acid and arachidonic acid have strong inhibition effects on nitration of insulin, and the inhibition capability of unsaturated fatty acids were increasing with the unsaturation degree. At the experimental concentration range sodium selenite had no effect on nitration of insulin. Individual GSH, VC, Ebselen and VE had different inhibition capabilities on nitration of insulin, but at a definite concentration range antagonism was occurred between GSH and Ebselen because an adduct, Ebselen-Se-SG, could be formed.
引文
[1] 钟慈声, 孙安阳. 一氧化氮的生物医学. 上海: 上海医科大学出版社, 1997, P6-11.
    [2] Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol, 1996, 271(5 Pt 1): C1424-1437.
    [3] Eiserich JP, Patel RP, O'Donnell VB. Pathophysiology of nitric oxide and related species: free radical reactions and modification of biomolecules. Mol Aspects Med, 1998, 19(4-5): 221-357.
    [4] Ducrocq C, Blanchard B, Pignatelli B, et al. Peroxynitrite: an endogenous oxidizing and nitrating agent. Cell Mol Life Sci, 1999, 55(8-9): 1068-1077.
    [5] Greenacre SA, Ischiropoulos H. Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic Res, 2001, 34(6): 541-581.
    [6] Turko IV, Murad F. Protein nitration in cardiovascular diseases. Pharmacol Rev, 2002, 54(4): 619-634.
    [7] Radi R. Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci U S A, 2004, 101(12): 4003-4008.
    [8] Honing ML, Morrison PJ, Banga JD, et al. Nitric oxide availability in diabetes mellitus. Diabetes Metab Rev, 1998, 14(3): 241-249.
    [9] Mercuri F, Quagliaro L, Ceriello A. Oxidative stress evaluation in diabetes. Diabetes Technol Ther, 2000, 2(4): 589-600.
    [10] Rosen P, Nawroth PP, King G, et al. The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab Res Rev, 2001, 17(3): 189-212.
    [11] Pacher P, Szabo C. Role of peroxynitrite in the pathogenesis of cardiovascular complications of diabetes. Curr Opin Pharmacol, 2006, 6(2): 136-141.
    [12] Suarez-Pinzon WL, Szabo C, Rabinovitch A. Development of autoimmune diabetes in NOD mice is associated with the formation of peroxynitrite in pancreatic isletbeta-cells. Diabetes, 1997, 46(5): 907-911.
    [13] 方运中, 郑荣梁. 自由基生物学的理论与应用. 北京: 科学出版社, 2002, P40-46.
    [14] Ischiropoulos H. Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch Biochem Biophys, 1998, 356(1): 1-11.
    [15] Patel RP, McAndrew J, Sellak H, et al. Biological aspects of reactive nitrogen species. Biochim Biophys Acta, 1999, 1411(2-3): 385-400.
    [16] Schopfer FJ, Baker PR, Freeman BA. NO-dependent protein nitration: a cell signaling event or an oxidative inflammatory response? Trends Biochem Sci, 2003, 28(12): 646-654.
    [17] Beckman JS, Beckman TW, Chen J, et al. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A, 1990, 87(4): 1620-1624.
    [18] Ischiropoulos H, Zhu L, Chen J, et al. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys, 1992, 298(2): 431-437.
    [19] Radi R, Peluffo G, Alvarez MN, et al. Unraveling peroxynitrite formation in biological systems. Free Radic Biol Med, 2001, 30(5): 463-488.
    [20] Alvarez B, Radi R. Peroxynitrite reactivity with amino acids and proteins. Amino Acids, 2003, 25(3-4): 295-311.
    [21] Hogg N, Singh RJ, Kalyanaraman B. The role of glutathione in the transport and catabolism of nitric oxide. FEBS Lett, 1996, 382(3): 223-228.
    [22] Sharpe MA, Cooper CE. Reactions of nitric oxide with mitochondrial cytochrome c: a novel mechanism for the formation of nitroxyl anion and peroxynitrite. Biochem J, 1998, 332 ( Pt 1): 9-19.
    [23] Denicola A, Freeman BA, Trujillo M, et al. Peroxynitrite reaction with carbon dioxide/bicarbonate: kinetics and influence on peroxynitrite-mediated oxidations. Arch Biochem Biophys, 1996, 333(1): 49-58.
    [24] Gow A, Duran D, Thom SR, et al. Carbon dioxide enhancement of peroxynitrite-mediated protein tyrosine nitration. Arch Biochem Biophys, 1996, 333(1): 42-48.
    [25] Yermilov V, Yoshie Y, Rubio J, et al. Effects of carbon dioxide/bicarbonate on induction of DNA single-strand breaks and formation of 8-nitroguanine, 8-oxoguanineand base-propenal mediated by peroxynitrite. FEBS Lett, 1996, 399(1-2): 67-70.
    [26] Squadrito GL, Pryor WA. Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic Biol Med, 1998, 25(4-5): 392-403.
    [27] Brennan ML, Wu W, Fu X, et al. A tale of two controversies: defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species. J Biol Chem, 2002, 277(20): 17415-17427.
    [28] Gunther MR, Hsi LC, Curtis JF, et al. Nitric oxide trapping of the tyrosyl radical of prostaglandin H synthase-2 leads to tyrosine iminoxyl radical and nitrotyrosine formation. J Biol Chem, 1997, 272(27): 17086-17090.
    [29] Beckman JS, Ischiropoulos H, Zhu L, et al. Kinetics of superoxide dismutase- and iron-catalyzed nitration of phenolics by peroxynitrite. Arch Biochem Biophys, 1992, 298(2): 438-445.
    [30] Quijano C, Hernandez-Saavedra D, Castro L, et al. Reaction of peroxynitrite with Mn-superoxide dismutase. Role of the metal center in decomposition kinetics and nitration. J Biol Chem, 2001, 276(15): 11631-11638.
    [31] Halliwell B. What nitrates tyrosine? Is nitrotyrosine specific as a biomarker of peroxynitrite formation in vivo? FEBS Lett, 1997, 411(2-3): 157-160.
    [32] van der Vliet A, Eiserich JP, Halliwell B, et al. Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. A potential additional mechanism of nitric oxide-dependent toxicity. J Biol Chem, 1997, 272(12): 7617-7625.
    [33] Sampson JB, Ye Y, Rosen H, et al. Myeloperoxidase and horseradish peroxidase catalyze tyrosine nitration in proteins from nitrite and hydrogen peroxide. Arch Biochem Biophys, 1998, 356(2): 207-213.
    [34] Wu W, Chen Y, Hazen SL. Eosinophil peroxidase nitrates protein tyrosyl residues. Implications for oxidative damage by nitrating intermediates in eosinophilic inflammatory disorders. J Biol Chem, 1999, 274(36): 25933-25944.
    [35] Monzani E, Roncone R, Galliano M, et al. Mechanistic insight into the peroxidase catalyzed nitration of tyrosine derivatives by nitrite and hydrogen peroxide. Eur J Biochem, 2004, 271(5): 895-906.
    [36] Kilinc K, Kilinc A, Wolf RE, et al. Myoglobin-catalyzed tyrosine nitration: no needfor peroxynitrite. Biochem Biophys Res Commun, 2001, 285(2): 273-276.
    [37] Grzelak A, Balcerczyk A, Mateja A, et al. Hemoglobin can nitrate itself and other proteins. Biochim Biophys Acta, 2001, 1528(2-3): 97-100.
    [38] Castro L, Eiserich JP, Sweeney S, et al. Cytochrome c: a catalyst and target of nitrite-hydrogen peroxide-dependent protein nitration. Arch Biochem Biophys, 2004, 421(1): 99-107.
    [39] Bian K, Gao Z, Weisbrodt N, et al. The nature of heme/iron-induced protein tyrosine nitration. Proc Natl Acad Sci U S A, 2003, 100(10): 5712-5717.
    [40] Thomas DD, Espey MG, Vitek MP, et al. Protein nitration is mediated by heme and free metals through Fenton-type chemistry: an alternative to the NO/O2- reaction. Proc Natl Acad Sci U S A, 2002, 99(20): 12691-12696.
    [41] Natake M, Ueda M. Changes in food proteins reacted with nitrite at gastric pH. Nutr Cancer, 1986, 8(1): 41-45.
    [42] Whiteman M, Siau JL, Halliwell B. Lack of tyrosine nitration by hypochlorous acid in the presence of physiological concentrations of nitrite. Implications for the role of nitryl chloride in tyrosine nitration in vivo. J Biol Chem, 2003, 278(10): 8380-8384.
    [43] Ischiropoulos H. Biological selectivity and functional aspects of protein tyrosine nitration. Biochem Biophys Res Commun, 2003, 305(3): 776-783.
    [44] Souza JM, Daikhin E, Yudkoff M, et al. Factors determining the selectivity of protein tyrosine nitration. Arch Biochem Biophys, 1999, 371(2): 169-178.
    [45] Berlett BS, Friguet B, Yim MB, et al. Peroxynitrite-mediated nitration of tyrosine residues in Escherichia coli glutamine synthetase mimics adenylylation: relevance to signal transduction. Proc Natl Acad Sci U S A, 1996, 93(5): 1776-1780.
    [46] Blanchard-Fillion B, Souza JM, Friel T, et al. Nitration and inactivation of tyrosine hydroxylase by peroxynitrite. J Biol Chem, 2001, 276(49): 46017-46023.
    [47] Daiber A, Bachschmid M, Beckman JS, et al. The impact of metal catalysis on protein tyrosine nitration by peroxynitrite. Biochem Biophys Res Commun, 2004, 317(3): 873-881.
    [48] Yamakura F, Taka H, Fujimura T, et al. Inactivation of human manganese- superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem, 1998, 273(23): 14085-14089.
    [49] MacMillan-Crow LA, Crow JP, Thompson JA. Peroxynitrite-mediated inactivationof manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry, 1998, 37(6): 1613-1622.
    [50] MacMillan-Crow LA, Thompson JA. Tyrosine modifications and inactivation of active site manganese superoxide dismutase mutant (Y34F) by peroxynitrite. Arch Biochem Biophys, 1999, 366(1): 82-88.
    [51] Mehl M, Daiber A, Herold S, et al. Peroxynitrite reaction with heme proteins. Nitric Oxide, 1999, 3(2): 142-152.
    [52] Schmidt P, Youhnovski N, Daiber A, et al. Specific nitration at tyrosine 430 revealed by high resolution mass spectrometry as basis for redox regulation of bovine prostacyclin synthase. J Biol Chem, 2003, 278(15): 12813-12819.
    [53] Batthyany C, Souza JM, Duran R, et al. Time course and site(s) of cytochrome c tyrosine nitration by peroxynitrite. Biochemistry, 2005, 44(22): 8038-8046.
    [54] Lin HL, Kent UM, Zhang H, et al. Mutation of tyrosine 190 to alanine eliminates the inactivation of cytochrome P450 2B1 by peroxynitrite. Chem Res Toxicol, 2003, 16(2): 129-136.
    [55] Lin HL, Zhang H, Waskell L, et al. The highly conserved Glu149 and Tyr190 residues contribute to peroxynitrite-mediated nitrotyrosine formation and the catalytic activity of cytochrome P450 2B1. Chem Res Toxicol, 2005, 18(8): 1203-1210.
    [56] Marla SS, Lee J, Groves JT. Peroxynitrite rapidly permeates phospholipid membranes. Proc Natl Acad Sci U S A, 1997, 94(26): 14243-14248.
    [57] Khairutdinov RF, Coddington JW, Hurst JK. Permeation of phospholipid membranes by peroxynitrite. Biochemistry, 2000, 39(46): 14238-14249.
    [58] Ormo M, Regnstrom K, Wang Z, et al. Residues important for radical stability in ribonucleotide reductase from Escherichia coli. J Biol Chem, 1995, 270(12): 6570-6576.
    [59] Liu A, Potsch S, Davydov A, et al. The tyrosyl free radical of recombinant ribonucleotide reductase from Mycobacterium tuberculosis is located in a rigid hydrophobic pocket. Biochemistry, 1998, 37(46): 16369-16377.
    [60] Denicola A, Souza JM, Radi R. Diffusion of peroxynitrite across erythrocyte membranes. Proc Natl Acad Sci U S A, 1998, 95(7): 3566-3571.
    [61] Boulos C, Jiang H, Balazy M. Diffusion of peroxynitrite into the human platelet inhibits cyclooxygenase via nitration of tyrosine residues. J Pharmacol Exp Ther, 2000, 293(1): 222-229.
    [62] Zhang H, Joseph J, Feix J, et al. Nitration and oxidation of a hydrophobic tyrosine probe by peroxynitrite in membranes: comparison with nitration and oxidation of tyrosine by peroxynitrite in aqueous solution. Biochemistry, 2001, 40(25): 7675-7686.
    [63] Liu X, Miller MJ, Joshi MS, et al. Accelerated reaction of nitric oxide with O2 within the hydrophobic interior of biological membranes. Proc Natl Acad Sci U S A, 1998, 95(5): 2175-2179.
    [64] Goss SP, Singh RJ, Hogg N, et al. Reactions of *NO, *NO2 and peroxynitrite in membranes: physiological implications. Free Radic Res, 1999, 31(6): 597-606.
    [65] Zhang H, Bhargava K, Keszler A, et al. Transmembrane nitration of hydrophobic tyrosyl peptides. Localization, characterization, mechanism of nitration, and biological implications. J Biol Chem, 2003, 278(11): 8969-8978.
    [66] Gole MD, Souza JM, Choi I, et al. Plasma proteins modified by tyrosine nitration in acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol, 2000, 278(5): L961-967.
    [67] Liu Y, Terata K, Chai Q, et al. Peroxynitrite inhibits Ca2+-activated K+ channel activity in smooth muscle of human coronary arterioles. Circ Res, 2002, 91(11): 1070-1076.
    [68] Li H, Gutterman DD, Rusch NJ, et al. Nitration and functional loss of voltage-gated K+ channels in rat coronary microvessels exposed to high glucose. Diabetes, 2004, 53(9): 2436-2442.
    [69] Gonzalez D, Drapier JC, Bouton C. Endogenous nitration of iron regulatory protein-1 (IRP-1) in nitric oxide-producing murine macrophages: further insight into the mechanism of nitration in vivo and its impact on IRP-1 functions. J Biol Chem, 2004, 279(41): 43345-43351.
    [70] Radi R, Cassina A, Hodara R, et al. Peroxynitrite reactions and formation in mitochondria. Free Radic Biol Med, 2002, 33(11): 1451-1464.
    [71] Aulak KS, Koeck T, Crabb JW, et al. Dynamics of protein nitration in cells and mitochondria. Am J Physiol Heart Circ Physiol, 2004, 286(1): H30-38.
    [72] Radi R, Cassina A, Hodara R. Nitric oxide and peroxynitrite interactions with mitochondria. Biol Chem, 2002, 383(3-4): 401-409.
    [73] Elfering SL, Haynes VL, Traaseth NJ, et al. Aspects, mechanism, and biological relevance of mitochondrial protein nitration sustained by mitochondrial nitric oxidesynthase. Am J Physiol Heart Circ Physiol, 2004, 286(1): H22-29.
    [74] Grune T, Reinheckel T, Davies KJ. Degradation of oxidized proteins in mammalian cells. Faseb J, 1997, 11(7): 526-534.
    [75] Grune T, Blasig IE, Sitte N, et al. Peroxynitrite increases the degradation of aconitase and other cellular proteins by proteasome. J Biol Chem, 1998, 273(18): 10857-10862.
    [76] Souza JM, Choi I, Chen Q, et al. Proteolytic degradation of tyrosine nitrated proteins. Arch Biochem Biophys, 2000, 380(2): 360-366.
    [77] Kamisaki Y, Wada K, Bian K, et al. An activity in rat tissues that modifies nitrotyrosine-containing proteins. Proc Natl Acad Sci U S A, 1998, 95(20): 11584-11589.
    [78] Kuo WN, Kanadia RN, Shanbhag VP, et al. Denitration of peroxynitrite-treated proteins by 'protein nitratases' from rat brain and heart. Mol Cell Biochem, 1999, 201(1-2): 11-16.
    [79] Irie Y, Saeki M, Kamisaki Y, et al. Histone H1.2 is a substrate for denitrase, an activity that reduces nitrotyrosine immunoreactivity in proteins. Proc Natl Acad Sci U S A, 2003, 100(10): 5634-5639.
    [80] Lightfoot RT, Shuman D, Ischiropoulos H. Oxygen-insensitive nitroreductases of Escherichia coli do not reduce 3-nitrotyrosine. Free Radic Biol Med, 2000, 28(7): 1132-1136.
    [81] Ohshima H, Friesen M, Brouet I, et al. Nitrotyrosine as a new marker for endogenous nitrosation and nitration of proteins. Food Chem Toxicol, 1990, 28(9): 647-652.
    [82] 池泉, 黄开勋. 过氧亚硝酸根与细胞信号转导. 生命的化学, 2006, 26(1): 14-17.
    [83] Klotz LO, Schroeder P, Sies H. Peroxynitrite signaling: receptor tyrosine kinases and activation of stress-responsive pathways. Free Radic Biol Med, 2002, 33(6): 737-743.
    [84] Minetti M, Mallozzi C, Di Stasi AM. Peroxynitrite activates kinases of the src family and upregulates tyrosine phosphorylation signaling. Free Radic Biol Med, 2002, 33(6): 744-754.
    [85] Monteiro HP. Signal transduction by protein tyrosine nitration: competition or cooperation with tyrosine phosphorylation-dependent signaling events? Free Radic Biol Med, 2002, 33(6): 765-773.
    [86] Jope RS, Zhang L, Song L. Peroxynitrite modulates the activation of p38 and extracellular regulated kinases in PC12 cells. Arch Biochem Biophys, 2000, 376(2): 365-370.
    [87] Pesse B, Levrand S, Feihl F, et al. Peroxynitrite activates ERK via Raf-1 and MEK, independently from EGF receptor and p21Ras in H9C2 cardiomyocytes. J Mol Cell Cardiol, 2005, 38(5): 765-775.
    [88] Zhang P, Wang YZ, Kagan E, et al. Peroxynitrite targets the epidermal growth factor receptor, Raf-1, and MEK independently to activate MAPK. J Biol Chem, 2000, 275(29): 22479-22486.
    [89] Bapat S, Verkleij A, Post JA. Peroxynitrite activates mitogen-activated protein kinase (MAPK) via a MEK-independent pathway: a role for protein kinase C. FEBS Lett, 2001, 499(1-2): 21-26.
    [90] el-Remessy AB, Bartoli M, Platt DH, et al. Oxidative stress inactivates VEGF survival signaling in retinal endothelial cells via PI 3-kinase tyrosine nitration. J Cell Sci, 2005, 118(Pt 1): 243-252.
    [91] Nomiyama T, Igarashi Y, Taka H, et al. Reduction of insulin-stimulated glucose uptake by peroxynitrite is concurrent with tyrosine nitration of insulin receptor substrate-1. Biochem Biophys Res Commun, 2004, 320(3): 639-647.
    [92] MacMillan-Crow LA, Greendorfer JS, Vickers SM, et al. Tyrosine nitration of c-SRC tyrosine kinase in human pancreatic ductal adenocarcinoma. Arch Biochem Biophys, 2000, 377(2): 350-356.
    [93] Klotz LO, Sies H. Defenses against peroxynitrite: selenocompounds and flavonoids. Toxicol Lett, 2003, 140-141: 125-132.
    [94] Arteel GE, Briviba K, Sies H. Protection against peroxynitrite. FEBS Lett, 1999, 445(2-3): 226-230.
    [95] Sies H, Arteel GE. Interaction of peroxynitrite with selenoproteins and glutathione peroxidase mimics. Free Radic Biol Med, 2000, 28(10): 1451-1455.
    [96] Sies H, Masumoto H. Ebselen as a glutathione peroxidase mimic and as a scavenger of peroxynitrite. Adv Pharmacol, 1997, 38: 229-246.
    [97] Schroeder P, Klotz LO, Buchczyk DP, et al. Epicatechin selectively prevents nitration but not oxidation reactions of peroxynitrite. Biochem Biophys Res Commun, 2001, 285(3): 782-787.
    [98] Schroeder P, Zhang H, Klotz LO, et al. (-)-Epicatechin inhibits nitration and dimerization of tyrosine in hydrophilic as well as hydrophobic environments. Biochem Biophys Res Commun, 2001, 289(5): 1334-1338.
    [99] Patel M, Day BJ. Metalloporphyrin class of therapeutic catalytic antioxidants. Trends Pharmacol Sci, 1999, 20(9): 359-364.
    [100] Groves JT. Peroxynitrite: reactive, invasive and enigmatic. Curr Opin Chem Biol, 1999, 3(2): 226-235.
    [101] Ferrer-Sueta G, Vitturi D, Batinic-Haberle I, et al. Reactions of manganese porphyrins with peroxynitrite and carbonate radical anion. J Biol Chem, 2003, 278(30): 27432-27438.
    [102] Muscoli C, Cuzzocrea S, Riley DP, et al. On the selectivity of superoxide dismutase mimetics and its importance in pharmacological studies. Br J Pharmacol, 2003, 140(3): 445-460.
    [103] Pacher P, Liaudet L, Bai P, et al. Potent metalloporphyrin peroxynitrite decomposition catalyst protects against the development of doxorubicin-induced cardiac dysfunction. Circulation, 2003, 107(6): 896-904.
    [104] Crow JP. Manganese and iron porphyrins catalyze peroxynitrite decomposition and simultaneously increase nitration and oxidant yield: implications for their use as peroxynitrite scavengers in vivo. Arch Biochem Biophys, 1999, 371(1): 41-52.
    [105] 徐辉碧, 黄开勋. 硒的化学、生物化学及其在生命科学中的应用. 武汉: 华中理工大学出版社, 1992, P106-121.
    [106] Sies H, Sharov VS, Klotz LO, et al. Glutathione peroxidase protects against peroxynitrite-mediated oxidations. A new function for selenoproteins as peroxynitrite reductase. J Biol Chem, 1997, 272(44): 27812-27817.
    [107] Arteel GE, Mostert V, Oubrahim H, et al. Protection by selenoprotein P in human plasma against peroxynitrite-mediated oxidation and nitration. Biol Chem, 1998, 379(8-9): 1201-1205.
    [108] Arteel GE, Briviba K, Sies H. Function of thioredoxin reductase as a peroxynitrite reductase using selenocystine or ebselen. Chem Res Toxicol, 1999, 12(3): 264-269.
    [109] Romero N, Radi R, Linares E, et al. Reaction of human hemoglobin with peroxynitrite. Isomerization to nitrate and secondary formation of protein radicals. J Biol Chem, 2003, 278(45): 44049-44057.
    [110] Cooper CE, Patel RP, Brookes PS, et al. Nanotransducers in cellular redox signaling: modification of thiols by reactive oxygen and nitrogen species. Trends Biochem Sci, 2002, 27(10): 489-492.
    [111] Forman HJ, Fukuto JM, Torres M. Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am J Physiol Cell Physiol, 2004, 287(2): C246-256.
    [112] MacMillan-Crow LA, Crow JP, Kerby JD, et al. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc Natl Acad Sci U S A, 1996, 93(21): 11853-11858.
    [113] Leeuwenburgh C, Hardy MM, Hazen SL, et al. Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima. J Biol Chem, 1997, 272(3): 1433-1436.
    [114] Zou MH, Leist M, Ullrich V. Selective nitration of prostacyclin synthase and defective vasorelaxation in atherosclerotic bovine coronary arteries. Am J Pathol, 1999, 154(5): 1359-1365.
    [115] Viner RI, Ferrington DA, Williams TD, et al. Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2+-ATPase in skeletal muscle. Biochem J, 1999, 340 ( Pt 3): 657-669.
    [116] Turko IV, Marcondes S, Murad F. Diabetes-associated nitration of tyrosine and inactivation of succinyl-CoA:3-oxoacid CoA-transferase. Am J Physiol Heart Circ Physiol, 2001, 281(6): H2289-2294.
    [117] Marcondes S, Turko IV, Murad F. Nitration of succinyl-CoA:3-oxoacid CoA-transferase in rats after endotoxin administration. Proc Natl Acad Sci U S A, 2001, 98(13): 7146-7151.
    [118] Aulak KS, Miyagi M, Yan L, et al. Proteomic method identifies proteins nitrated in vivo during inflammatory challenge. Proc Natl Acad Sci U S A, 2001, 98(21): 12056-12061.
    [119] Turko IV, Li L, Aulak KS, et al. Protein tyrosine nitration in the mitochondria from diabetic mouse heart. Implications to dysfunctional mitochondria in diabetes. J Biol Chem, 2003, 278(36): 33972-33977.
    [120] Aslan M, Ryan TM, Townes TM, et al. Nitric oxide-dependent generation ofreactive species in sickle cell disease. Actin tyrosine induces defective cytoskeletal polymerization. J Biol Chem, 2003, 278(6): 4194-4204.
    [121] Ara J, Przedborski S, Naini AB, et al. Inactivation of tyrosine hydroxylase by nitration following exposure to peroxynitrite and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Proc Natl Acad Sci U S A, 1998, 95(13): 7659-7663.
    [122] Przedborski S, Chen Q, Vila M, et al. Oxidative post-translational modifications of alpha-synuclein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. J Neurochem, 2001, 76(2): 637-640.
    [123] Giasson BI, Duda JE, Murray IV, et al. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science, 2000, 290(5493): 985-989.
    [124] Pignatelli B, Li CQ, Boffetta P, et al. Nitrated and oxidized plasma proteins in smokers and lung cancer patients. Cancer Res, 2001, 61(2): 778-784.
    [125] Banks BA, Ischiropoulos H, McClelland M, et al. Plasma 3-nitrotyrosine is elevated in premature infants who develop bronchopulmonary dysplasia. Pediatrics, 1998, 101(5): 870-874.
    [126] Lorch SA, Banks BA, Christie J, et al. Plasma 3-nitrotyrosine and outcome in neonates with severe bronchopulmonary dysplasia after inhaled nitric oxide. Free Radic Biol Med, 2003, 34(9): 1146-1152.
    [127] Shishehbor MH, Aviles RJ, Brennan ML, et al. Association of nitrotyrosine levels with cardiovascular disease and modulation by statin therapy. Jama, 2003, 289(13): 1675-1680.
    [128] Ye YZ, Strong M, Huang ZQ, et al. Antibodies that recognize nitrotyrosine. Methods Enzymol, 1996, 269: 201-209.
    [129] Viera L, Ye YZ, Estevez AG, et al. Immunohistochemical methods to detect nitrotyrosine. Methods Enzymol, 1999, 301: 373-381.
    [130] Herce-Pagliai C, Kotecha S, Shuker DE. Analytical methods for 3-nitrotyrosine as a marker of exposure to reactive nitrogen species: a review. Nitric Oxide, 1998, 2(5): 324-336.
    [131] Duncan MW. A review of approaches to the analysis of 3-nitrotyrosine. Amino Acids, 2003, 25(3-4): 351-361.
    [132] Tsikas D, Caidahl K. Recent methodological advances in the mass spectrometric analysis of free and protein-associated 3-nitrotyrosine in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci, 2005, 814(1): 1-9.
    [133] Beckmann JS, Ye YZ, Anderson PG, et al. Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol Chem Hoppe Seyler, 1994, 375(2): 81-88.
    [134] Khan J, Brennand DM, Bradley N, et al. 3-Nitrotyrosine in the proteins of human plasma determined by an ELISA method. Biochem J, 1998, 332 (Pt 3): 807-808.
    [135] ter Steege JC, Koster-Kamphuis L, van Straaten EA, et al. Nitrotyrosine in plasma of celiac disease patients as detected by a new sandwich ELISA. Free Radic Biol Med, 1998, 25(8): 953-963.
    [136] Petruzzelli S, Puntoni R, Mimotti P, et al. Plasma 3-nitrotyrosine in cigarette smokers. Am J Respir Crit Care Med, 1997, 156(6): 1902-1907.
    [137] Kaur H, Halliwell B. Evidence for nitric oxide-mediated oxidative damage in chronic inflammation. Nitrotyrosine in serum and synovial fluid from rheumatoid patients. FEBS Lett, 1994, 350(1): 9-12.
    [138] Kamisaki Y, Wada K, Nakamoto K, et al. Sensitive determination of nitrotyrosine in human plasma by isocratic high-performance liquid chromatography. J Chromatogr B Biomed Appl, 1996, 685(2): 343-347.
    [139] Massip C, Riollet P, Quemener E, et al. Choice of different dyes to label tyrosine and nitrotyrosine. J Chromatogr A, 2002, 979(1-2): 209-215.
    [140] Hensley K, Williamson KS, Floyd RA. Measurement of 3-nitrotyrosine and 5-nitro-gamma-tocopherol by high-performance liquid chromatography with electrochemical detection. Free Radic Biol Med, 2000, 28(4): 520-528.
    [141] Kumarathasan P, Vincent R. New approach to the simultaneous analysis of catecholamines and tyrosines in biological fluids. J Chromatogr A, 2003, 987(1-2): 349-358.
    [142] Shigenaga MK, Lee HH, Blount BC, et al. Inflammation and NO(X)-induced nitration: assay for 3-nitrotyrosine by HPLC with electrochemical detection. Proc Natl Acad Sci U S A, 1997, 94(7): 3211-3216.
    [143] Ohshima H, Celan I, Chazotte L, et al. Analysis of 3-nitrotyrosine in biological fluids and protein hydrolyzates by high-performance liquid chromatography using apostseparation, on-line reduction column and electrochemical detection: results with various nitrating agents. Nitric Oxide, 1999, 3(2): 132-141.
    [144] Sodum RS, Akerkar SA, Fiala ES. Determination of 3-nitrotyrosine by high-pressure liquid chromatography with a dual-mode electrochemical detector. Anal Biochem, 2000, 280(2): 278-285.
    [145] Jiang H, Balazy M. Detection of 3-nitrotyrosine in human platelets exposed to peroxynitrite by a new gas chromatography/mass spectrometry assay. Nitric Oxide, 1998, 2(5): 350-359.
    [146] Crowley JR, Yarasheski K, Leeuwenburgh C, et al. Isotope dilution mass spectrometric quantification of 3-nitrotyrosine in proteins and tissues is facilitated by reduction to 3-aminotyrosine. Anal Biochem, 1998, 259(1): 127-135.
    [147] Frost MT, Halliwell B, Moore KP. Analysis of free and protein-bound nitrotyrosine in human plasma by a gas chromatography/mass spectrometry method that avoids nitration artifacts. Biochem J, 2000, 345 Pt 3: 453-458.
    [148] Gaut JP, Byun J, Tran HD, et al. Artifact-free quantification of free 3-chlorotyrosine, 3-bromotyrosine, and 3-nitrotyrosine in human plasma by electron capture-negative chemical ionization gas chromatography mass spectrometry and liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Biochem, 2002, 300(2): 252-259.
    [149] Schwedhelm E, Tsikas D, Gutzki FM, et al. Gas chromatographic-tandem mass spectrometric quantification of free 3-nitrotyrosine in human plasma at the basal state. Anal Biochem, 1999, 276(2): 195-203.
    [150] Tsikas D, Schwedhelm E, Stutzer FK, et al. Accurate quantification of basal plasma levels of 3-nitrotyrosine and 3-nitrotyrosinoalbumin by gas chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci, 2003, 784(1): 77-90.
    [151] Soderling AS, Ryberg H, Gabrielsson A, et al. A derivatization assay using gaschromatography/negative chemical ionization tandem mass spectrometry to quantify 3-nitrotyrosine in human plasma. J Mass Spectrom, 2003, 38(11): 1187-1196.
    [152] Yi D, Ingelse BA, Duncan MW, et al. Quantification of 3-nitrotyrosine in biological tissues and fluids: generating valid results by eliminating artifactual formation. J Am Soc Mass Spectrom, 2000, 11(6): 578-586.
    [153] Delatour T, Guy PA, Stadler RH, et al. 3-Nitrotyrosine butyl ester: a novel derivative to assess tyrosine nitration in rat plasma by liquid chromatography-tandem mass spectrometry detection. Anal Biochem, 2002, 302(1): 10-18.
    [154] Tsikas D, Mitschke A, Suchy MT, et al. Determination of 3-nitrotyrosine in human urine at the basal state by gas chromatography-tandem mass spectrometry and evaluation of the excretion after oral intake. J Chromatogr B Analyt Technol Biomed Life Sci, 2005, 827(1): 146-156.
    [155] Althaus JS, Schmidt KR, Fountain ST, et al. LC-MS/MS detection of peroxynitrite-derived 3-nitrotyrosine in rat microvessels. Free Radic Biol Med, 2000, 29(11): 1085-1095.
    [156] Aulak KS, Koeck T, Crabb JW, et al. Proteomic method for identification of tyrosine-nitrated proteins. Methods Mol Biol, 2004, 279: 151-165.
    [157] Halliwell B, Zhao K, Whiteman M. Nitric oxide and peroxynitrite. The ugly, the uglier and the not so good: a personal view of recent controversies. Free Radic Res, 1999, 31(6): 651-669.
    [158] De Meyts P. Insulin and its receptor: structure, function and evolution. Bioessays, 2004, 26(12): 1351-1362.
    [159] De Meyts P, Whittaker J. Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov, 2002, 1(10): 769-783.
    [160] Yip CC, Ottensmeyer P. Three-dimensional structural interactions of insulin and its receptor. J Biol Chem, 2003, 278(30): 27329-27332.
    [161] Baumann CA, Saltiel AR. Spatial compartmentalization of signal transduction in insulin action. Bioessays, 2001, 23(3): 215-222.
    [162] Pirola L, Johnston AM, Van Obberghen E. Modulation of insulin action. Diabetologia, 2004, 47(2): 170-184.
    [163] Brader ML, Dunn MF. Insulin hexamers: new conformations and applications. Trends Biochem Sci, 1991, 16(9): 341-345.
    [164] Whittingham JL, Chaudhuri S, Dodson EJ, et al. X-ray crystallographic studies on hexameric insulins in the presence of helix-stabilizing agents, thiocyanate, methylparaben, and phenol. Biochemistry, 1995, 34(47): 15553-15563.
    [165] 北京胰岛素结构研究组. 胰岛素晶体结构的研究: 1.8 埃分辨率的胰岛素分子. 中国科学, 1974, 6: 591-611.
    [166] Pullen RA, Lindsay DG, Wood SP, et al. Receptor-binding region of insulin. Nature, 1976, 259(5542): 369-373.
    [167] 梁栋材, 常文瑞, 张季平, et al. 胰岛素分子与其受体结合的可能机制. 中国科学(B 辑), 1991, 7: 715-723.
    [168] Hubbard SR, Wei L, Ellis L, et al. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature, 1994, 372(6508): 746-754.
    [169] Schaffer L. A model for insulin binding to the insulin receptor. Eur J Biochem, 1994, 221(3): 1127-1132.
    [170] Taouis M, Levy-Toledano R, Roach P, et al. Structural basis by which a recessive mutation in the alpha-subunit of the insulin receptor affects insulin binding. J Biol Chem, 1994, 269(21): 14912-14918.
    [171] Delaney CA, Tyrberg B, Bouwens L, et al. Sensitivity of human pancreatic islets to peroxynitrite-induced cell dysfunction and death. FEBS Lett, 1996, 394(3): 300-306.
    [172] Hadjivassiliou V, Green MH, James RF, et al. Insulin secretion, DNA damage, and apoptosis in human and rat islets of Langerhans following exposure to nitric oxide, peroxynitrite, and cytokines. Nitric Oxide, 1998, 2(6): 429-441.
    [173] Rabinovitch A, Suarez-Pinzon WL. Cytokines and their roles in pancreatic islet beta-cell destruction and insulin-dependent diabetes mellitus. Biochem Pharmacol, 1998, 55(8): 1139-1149.
    [174] Suarez-Pinzon WL, Mabley JG, Strynadka K, et al. An inhibitor of inducible nitric oxide synthase and scavenger of peroxynitrite prevents diabetes development in NOD mice. J Autoimmun, 2001, 16(4): 449-455.
    [175] 汪家政, 明 范. 蛋白质技术手册. 北京: 科学出版社, 2000, P111-119.
    [176] E.哈洛, D.莱恩. 抗体技术实验指南. 北京: 科学出版社, 2002, P165-177.
    [177] Sarver A, Scheffler NK, Shetlar MD, et al. Analysis of peptides and proteins containing nitrotyrosine by matrix-assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom, 2001, 12(4): 439-448.
    [178] 郭尧君. 蛋白质电泳实验技术. 北京: 科学出版社, 1999, P54-57.
    [179] Cassina AM, Hodara R, Souza JM, et al. Cytochrome c nitration by peroxynitrite. J Biol Chem, 2000, 275(28): 21409-21415.
    [180] 廖力夫, 何玉媛, 刘传湘, et al. 柠檬酸铁对过氧亚硝酸根硝化酪氨酸反应的影响. 生物化学和生物物理进展, 1997, 24(5): 450-453.
    [181] Alvarez B, Ferrer-Sueta G, Freeman BA, et al. Kinetics of peroxynitrite reaction with amino acids and human serum albumin. J Biol Chem, 1999, 274(2): 842-848.
    [182] 周海梦, 王洪睿. 蛋白质的化学修饰(第一版). 北京: 清华大学出版社, 1998, P26-32.
    [183] 王琼庆, 冯佑民. 胰岛素蛋白质研究工程进展. 生物化学与生物物理进展, 1996, 23(5): 402-407.
    [184] Morris JW, Mercola DA, Arquilla ER. Preparation and properties of 3-nitrotyrosine insulins. Biochemistry, 1970, 9(20): 3930-3937.
    [185] Lesk AM. Introduction to Protein Architecture. London: Oxford University Press, 2000, P2-8.
    [186] 沈星灿, 梁宏, 何锡文, et al. 圆二色光谱分析蛋白质构象的方法及研究进展. 分析化学, 2004, 32(3): 388-394.
    [187] 王建华, 卫亚丽, 文宗河, et al. 蛋白质结构的 FT-IR 研究进展. 化学通报, 2004, 67(7): 482-486.
    [188] Failli P, Palmieri L, D'Alfonso C, et al. Effect of N-acetyl-L-cysteine on peroxynitrite and superoxide anion production of lung alveolar macrophages in systemic sclerosis. Nitric Oxide, 2002, 7(4): 277-282.
    [189] Frank BH, Veros AJ. Physical studies on proinsulin-association behavior and conformation in solution. Biochem Biophys Res Commun, 1968, 32(2): 155-160.
    [190] Brand JG, Cagan RH. Fluorescence characteristics of native and denatured monellin. Biochim Biophys Acta, 1977, 493(1): 178-187.
    [191] Goldman J, Carpenter FH. Zinc binding, circular dichroism, and equilibrium sedimentation studies on insulin (bovine) and several of its derivatives. Biochemistry, 1974, 13(22): 4566-4574.
    [192] Wei JA, Lin YZ, Zhou JM, et al. FTIR studies of secondary structures of bovine insulin and its derivatives. Biochim Biophys Acta, 1991, 1080(1): 29-33.
    [193] D.R.马歇克, J.T.门永, R.R.布格斯, et al. 蛋白质纯化与鉴定实验指南. 北京: 科学出版社, 2002, P226-228.
    [194] Hamlin JL, Arquilla ER. Monoiodoinsulin. Preparation, purification, and characterization of a biologically active derivative substituted predominantly on tyrosine A14. J Biol Chem, 1974, 249(1): 21-32.
    [195] Muller A, Cadenas E, Graf P, et al. A novel biologically active seleno-organiccompound--I. Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ 51 (Ebselen). Biochem Pharmacol, 1984, 33(20): 3235-3239.
    [196] 刘尚喜, 陈瑗, 周玫. Ebselen 和谷胱甘肽对低密度脂蛋白氧化修饰的抑制和终止作用. 生物物理学报, 1995, 11: 623-628
    [197] Daiber A, Zou MH, Bachschmid M, et al. Ebselen as a peroxynitrite scavenger in vitro and ex vivo. Biochem Pharmacol, 2000, 59(2): 153-160.
    [198] Masumoto H, Kissner R, Koppenol WH, et al. Kinetic study of the reaction of ebselen with peroxynitrite, 1996.
    [199] Kondo H, Takahashi M, Niki E. Peroxynitrite-induced hemolysis of human erythrocytes and its inhibition by antioxidants. FEBS Lett, 1997, 413(2): 236-238.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.