水稻两优培九不同氮素处理叶片和籽粒蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以超级杂交水稻“两优培九”为实验材料,运用蛋白质组学方法和技术研究分析水稻生育后期不同氮素处理条件下叶片和籽粒蛋白质组变化,并鉴定分析了这些差异蛋白点的生物功能,试图从氮素营养方面来探讨氮素营养对杂交水稻灌浆过程中叶片及籽粒灌浆生理影响的分子机制,初步阐明制约生育后期弱势粒灌浆不足,充实度差的分子机制。
     本研究在水稻整个生育期设置不同的氮素处理(即正常供氮水平的1/2,正常供氮水平,正常供氮水平的2倍),并于开花期以及开花后25天分别提取不同处理叶片蛋白,通过双向电泳(2—DE)和图谱分析,叶片共发现17个蛋白质发生差异表达,这些蛋白质点经过质谱分析和数据库检索,其中有16个得到鉴定。根据其功能,分为与植物光合作用有关的(有6个)分别为核酮糖—1,5—二磷酸活化酶、碳酸酐酶、核酮糖—1,5—二磷酸羧化酶/加氧酶大亚基、光系统工,RieskeFe—s蛋白以及Cytb6/f;与植物体能量代谢途径相关(有2个)分别推定为叶绿体磷酸甘油酸激酶、核苷二磷酸激酶工;与清除自由基有关的(有3个)推定为超氧化物歧化酶铜—锌复合体、抗坏血酸过氧化物酶和Peroxiredoxin(PRX)家族蛋白;与蛋白质合成、贮藏蛋白及蛋白互作有关的酶(有3个)推定为叶绿体核糖体蛋白L1、Cupin家族、锚蛋白重复序列家族蛋白;与氮素同化有关的(有1个)为谷氨酰胺合成酶;其他功能类型蛋白(1个)其编号为0s07g0212200(推测为具有催化活性的辅酶结合蛋白)。于开花后25天分别提取不同氮素处理的强弱势粒蛋白,弱势粒共发现10个蛋白质发生差异表达,有9个蛋白得到鉴定。强势粒发现5个蛋白质发生差异表达,其中有4个蛋白得到鉴定。
     通过对叶片进行的差异蛋白质点鉴定结果的分析,研究发现与植物光合作用有关的蛋白占的比例比较大,而且表达量大,说明氮素营养对于光合的影响是通过影响与光合有关酶的活化、CO_2的活化、光系统单位和电子传递链构成来影响和调节光合作用。同时氮素还影响了能量的合成和植物体内氧自由基的产生和清除系统,在能量产生和氧自由基的清除方面起生理功能的调节作用。另外,氮素还影响到蛋白质的合成储藏及互作。在本研究中,一个与氮素同化有关的蛋白——谷氨酰胺合成酶被鉴定出,随着氮素水平的提高其表达量上调说明氮素直接促进了氮素代谢的同化酶GS的合成,从而影响氮素的同化和代谢。
     通过对弱势粒进行的差异蛋白质点鉴定结果的分析,发现ATP合酶、精氨(基)琥珀酸合酶、琥珀酰辅酶A合成酶、吲哚乙酸酰胺水解酶,苹果酸脱氢酶,二氢硫辛酸乙酰(基)转移酶,Ran GTP酶在二倍氮素处理下表达量上调,弱势粒中这些上调蛋白分别集中在:(1)能量合成的相关酶蛋白;(2)加速产能丰富的TCA循环;(3)促进生长和细胞分裂的生长素的释放。结果说明能量和促生长是弱势粒灌浆的主题。作为分子伴侣在籽粒灌浆中起调控作用的α-晶状体球蛋白类型热休克蛋白在正常氮素和2倍氮素处理时稳定表达。通过对强势粒进行的差异蛋白质点鉴定结果的分析,发现作为水稻储藏蛋白的谷蛋白表达量随着氮素水平的提高而提高,蓖麻蛋白B凝集素以及果糖二磷酸醛缩酶细胞质的同工酶与高低氮两种处理相比,正常氮素水平表达量最高。葡糖-1-磷酸腺苷酰基转移酶主要与籽粒中淀粉的形成有关,二倍氮素处理与正常氮素相比,其表达量反而下降。这些点的表达量变化说明了强弱势粒不同的灌浆阶段其代谢特点和中心具有明显区别,这时氮素影响的是强势粒相关蛋白的贮藏和碳水化合物的代谢以及对于其呼吸作用的调控,这一阶段的高氮水平对强势粒淀粉的合成并非积极因素。
     氮素是植物的生命元素,氮素营养对于植物生命活动的影响和调节具有重要作用,水稻生育后期合理运用氮素营养对于提高剑叶叶片的光合性能,增强源的供应能力和抗早衰能力等具有积极的作用;从结果来看能量和激素水平是制约弱势粒发育、充实的主要因素之一,生育后期充足的氮素供应对于弱势粒的充实具有重要的意义,虽然对于强势粒的灌浆影响没有弱势粒显著,但是充足、正常的氮素水平对于其贮藏物质的累积以及碳水化合物代谢等同样具有重要作用。
Proteomics was used as a tool to study changes in leaf and grain proteome at different Nitrogen treatments during the late growth stage of liangyoupeijiu which is the super cross rice,and then identified and analyzed the biological function of these differential proteins,attempted to discuss the molecular mechanism from Nitrogen on leaf and grain during grain filling periods of the cross rice,and clarify the molecular mechanism of the weak grain lack of filling and poor adequacy preliminarily.
     The research set different Nitrogen treatments during the whole rice growth period (half of normal nitrogen, normal nitrogen and doubleness of normal Nitrogen) and total leaf proteins of different treatments were extracted at 0 days,25 days after anthesis..By two-dimensional gel electrophoresis(2-DE) and image analysis,it was found that 17 leaf proteins expressed differentially in the three Nitrogen treatments,and 16 of them were identified by MALDI-TOF-TOF/MS and database searching.According to their function,those proteins were divided into these categories: about plant photosynthesis(the number was 6),they were ribulose-1,5-bisphosphate carboxylase activase, Carbonic Anhydrase, rubisco large subunit, photosystem I subunit VII,Rieske Fe—S protein,and Cytb6/f;about plant energy metabolic pathways(the number was 2)they were putative chloroplast phosphoglycerate kinase and Nucleoside diphosphate kinase I;about radical Scavenging(the number was 3)they were putative superoxide dismutase [Cu-Zn], Ascorbate peroxidase,and Peroxiredoxin (PRX) family;about protein synthesis , storage and protein-protein interaction (the number was 3)they were Putative chloroplast ribosomal protein L1, Cupin family and Ankyrin repeat domain protein;about Nitrogen assimilation(the number was 1),that was Glutamine synthetase , and others(the number was 1) that was No.Os07g0212200(.Speculate for the coenzyme binding protein with catalytic activity).Total strong and weak grain proteins of different treatments were extracted respectively 25 days after anthesis. It was found that 10 weak grain proteins expressed differentially in the three Nitrogen treatments and 9 were identified; it was found that 5 strong grain proteins expressed differentially in the three Nitrogen treatments and 4 were identified.
     By analysis of the identification results of the different leaf proteins,it was found that proteins about plant photosynthesis had the largest proportion and their expressional quantity were large,which showed Nitrogen affected and regulated photosynthesis by its impact on activating the photosynthetic enzyme,activating CO_2,PS unit and electronic transfer chain. Nitrogen also impacted energy synthesis,the formation and scavenging synstem of oxygen free radicals in plants,and regulated producing energy and scavenging oxygen free radicals as physiological function.Another,Nitrogen affected protein synthesis,storage and interaction..Duringmy research,a protein about Nitrogen assimilation——Glutamine synthetase was identified.Andwith the increasing of Nitrogen, its expressional quantity increased,which showed Nitrogen promoted the synthesis of GS which about Nitrogen metabolism, and affected Nitrogen assimilation and metabolism.
     By analysis of the identification results of the different weak grain proteins, it was found that the expressional quantity of ATP synthase, Argininosuccinate synthase, succinyl-CoA synthetase beta subunit, IAA amidohydrolase, malate dehydrogenase , dihydrolipoamide acetyltransferase and Ran GTPase were increased at doubleness Nitrogen treatment .And these increased proteins of the weak grain focused in these areas :(1)Proteins about synthesis energy;(2) Accelerate TCA cycle of producing energy;(3) Promote growth and cell division in the release of IAA.The results showed energy and growth were the theme of weak grain filling. alpha-crystallin-type heat shock proteins had stable expression at normal and doubleness Nitrogen treatments as molecular chaperone regulating graining filling.By analysis of the identification results of the different strong grain proteins,it was found with the increase of the Nitrogen, the expressional quantity of Glutelin as storage protein increased, the expressional quantity of Ricin B lectin and Fructose-bisphosphate aldolase cytoplasmic isozyme were the most at normal Nitrogen treatment compared with the high and the low Nitrogen treatments. The expressional quantity of glucose-1-phosphate adenylyltransferase which was about the formation of starch was decreased at doubleness Nitrogen treatments instead compared with the normal Nitrogen .Those changes of expressional quantity showed the strong and weak grain had clear distinctions in metabolic characteristics and center at different filling stages. Then Nitrogen affected the storage of related protein and carbohydrate metabolism and respiration regulation of strong grain, and the high Nitrogen level of this phase was not positive factor for starch synthesis of strong grain.
     Nitrogen is the life element in plant, and Nitrogen nutrition plays an important role in impacting and regulating plant life activity. Reasonable use of the Nitrogen nutrition has an important role for raising the flag leaf photosynthetic , enhancing supply capacity of source and the ability of preventing aging. From the results , the energy and hormone level is one of the main factors restricting development and filling of weak grain. Adequate supply of Nitrogen has great significance for weak grain filling at the late stage. Although the impact for strong grain filling is not significant compared with weak grain, adequate and normal level of Nitrogen also has an important role in cumulating storage material and carbohydrate metabolism .
引文
[1]Stanley Omar PB.Samonte,Nitrogen Utilization Efficiency:Relationships with Grain Yield,Grain Protein,and Yield-Related Traits in Rice,Agron.J.,Jan 2006:98:168-176.
    [2]刘宛,徐正进等.不同氮素水平对直立穗型水稻品种群体光合特性的影响[J].沈阳农业大学学报,2001,32(1):8-12.
    [3]Guo T-C(郭天财),Wang Z-JC(王之杰),Wang Y-H(王永华).Study on diurnal changes of flag leaf photosynthetic rate for two spike-type cultivarsof wheat Acta.Bot.Boreal-Occident Sin(西北植物学报),2002,22(3):554-560.
    [4]上官周平.氮素营养对旱作小麦光合特性的调控[J].植物营养与肥料学报,1997,3(2):105-110.
    [5]冯福生,陈文龙,李洁等.不同供氮水平下冬小麦叶片中Rubp羧化酶和硝酸还原酶的活性变化[J].植物生理学通讯,1986,(6):20-22.
    [6]金善宝.中国小麦科学[M].北京:中国农业出版社,1996,162-166.
    [7]陈光辉,官春云,陈立云,等.亚种间杂交稻子粒充实度研究进展[J].作物研究,2001,15(3):47-511.
    [8]刘建丰,康春林,伏军.水稻子粒充实状况指标测定法研究[J].作物研究,1993,7(1):16-19.
    [9]杨建昌,朱庆森,王志琴,等.亚优2号结实率与谷粒充实率的研究[J].江苏农学院学报,1994,15(4):14-181.
    [10]朱庆森,王志琴,张祖建,等.水稻子粒充实度的指标研究[J].江苏农学院学报,1995,16(2):1-41.
    [11]权太勇,孙立伟,韩显杰,等.水稻子粒充实程度术语与测定方法探讨[J].沈阳农业大学学报,1998,29(2):199-2001.
    [12]徐富贤,熊洪,朱永川,等.杂交中稻源库比对子粒充实的影响及其高产组合的源库特征[J].中国农业科学,2005,38(2):265-271.
    [13]杨连新,王余龙,董桂春等.供氮浓度对汕优63子粒性状及粒重的影响[J].江苏农业研究,2001,22(2):24-28.
    [14]杨连新,王余龙,董桂春等.施氮时期对“扬稻6号”水稻谷壳生长和谷粒充实度的影响[J].江苏农业学报,2002,18(2):71-741.
    [15]刘宛,徐正进等.氮素水平对不同穗型水稻品种植株衰老和产量的影响[J].沈阳农业大学学报,2001-08,32(4):243-246.
    [16]董树亭,高荣岐,胡昌浩,等.玉米花粒期群体光合性能与高产潜力研究[J].作物学报,1977,23(3):318-325.
    [17]杨建昌,王志琴,朱庆森.水稻产量源库关系的研究[J].江苏农学院学报,1993,14(3):47-53.
    [18]芦义.作物的光合作用与物质生产[M].北京:科学出版社,1971,365-373.
    [19]凌启鸿,杨建昌.水稻群体粒叶比与高产栽培途径的研究[C].见:凌启鸿主编.稻麦研究新进展.南京:东南大学出版社,1991,82-89.
    [20]袁隆平,两系法杂交稻研究进展[J].中国农业科学,1990,23(3):1-6.
    [21]钱月琴,贺东祥,沈允钢等.杂交稻籽粒充实度问题初探[J].植物生理学通讯,1992,28(2):121-123.
    [22]王天铎.水稻籽粒灌浆过程中粒重分布的动态研究[J].植物学报,1962,10(2):113-119.
    [23]王建军,徐云碧,申宗坦等.利用籼粳杂种一代若干问题的探讨[J].中国水稻科学,1991,24(1):27-33.
    [24]曹显祖,朱庆森.水稻品种的源库特征及其类型划分[J].作物学报,1987,13(4):265-271.
    [25]凌启鸿,等.水稻高产群体质量及优化调控探讨[J].中国农业科学,1993,26(6):1-11.
    [26]曹显祖,朱庆森.水稻品种的源库特征及其类型划分[J].作物学报,1987,13(4):265-271.
    [27]张洪程,王夫玉.中国水稻群体研究进展[J].中国水稻科学,2001,15(1):51-56.
    [28]王夫玉,黄丕生.水稻群体源库特征及高产栽培策略研究[J].中国农业科学,1997,30(5):26-33.
    [29]李义珍,等.水稻超高产库源结构的研究[A].见:中国作物学会.2001年全国水稻栽培理论与实践研讨会交流论文集[C].2001.
    [30]黄丕生,王夫玉.水稻群体源库质量特征及高产栽培策略[J].江苏农业科学,1997,(4):5-8.
    [31]郑华,屠乃美.水稻源库关系研究现状与展望[J].作物研究,2000,14(3):37-44.
    [32]凌启鸿,等.水稻高产群体质量及优化调控探讨[J].中国农业科学,1993,26(6):1-11.
    [33]李大恒,屠乃美.两系杂交水稻源库特征与栽培调控研究进展[J].作物研究,2002(5):226-229.
    [34]王志琴,杨建昌,朱庆森.亚种间杂交稻物质积累与运转特性的研究[J].江苏农学院学报,1996,17(4):1-5.
    [35]严进明,翟虎渠等.重穗型杂种稻光合和光合产物运转特性研究[J].作物学报,2001,27(2):261-266.
    [36]王国忠,刘秀丽.不同类型水稻品种的籽粒灌浆生理[J].江苏农学院学报,1997,18(4):19-22.
    [37]李木英,石庆华,潘晓华等.两系杂交稻籽粒灌浆物质积累与生理活性的研究[J].江西农业大学学报,2000,22(2):152-156.
    [38]CAIDINI C E,LELOIR L F,CHIRIBOGA J.The bio-synthesis of sucrose[J].Biol.Chem,1955,214:149-155.
    [39]AHMADIA,BAKER D A.The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat[J].Plant Growth Regulation,2001,35:81-91.
    [40]王维,蔡一霞,张建华,等.适度土壤干旱对贪青小麦茎贮藏碳水化合物向籽粒运转的调节[J].作物学报,2005,31(3):289-296.
    [41]KATO T.Change of sucrose synthase activity in developing endosperm of rice cultivars.Crop Science,1995,35:827-831.
    [42]WANG F,SANZ A,BRENNER ML,SMITH A.Sucrose synthase,starch accumulation,and tomato fruit sink sthength[J].Plant Physiology,1993,101:321-327.
    [43]杨建昌,徐国伟,王志琴,等.旱种水稻结实期茎中碳同化物的运转及其生理机制[J].作物学报,2004,30(2):108-114.
    [44]刘凌霄,沈法富,卢合全等.蔗糖代谢中蔗糖磷酸合成酶的研究进展[J].分子植物育种,2005,3(2):275-281.
    [45]HARBRON S,FOYER C,WALKER D,The purification and properties of sucrose phosphate synthetase from spinach leaves[J].Arch Biochem Biophys,1981,212:237-246.
    [46]CHATTERTON J,SILVIUS J E.Photosynthate partitioning into starch in soybean leaves[J].Plant Physiol,1979,6(4):749-753.
    [47]王宁宁,朱建新,王淑芳,等.苦参碱对小麦旗叶中蔗糖磷酸合成酶活性的调节[J].南开大学学报(自然科学,2000,33(1):19-22.
    [48]李永庚,于振文,姜东等.冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究[J].作物学报,2001,27(5):658-664.
    [49]谢潮添,魏冬梅,田惠桥.高等植物雄性不育的细胞生物学研究进展[J].植物生理与分子生物学学报,2006,32(1):17-23.
    [50]BISWAS A K.CHOUDHRUI M A.Mechanism of monocarpic senescence in rice[J].Plant Physiol 1980,6(5):340-345.
    [51]杨建昌,王志琴,朗有忠.亚种间杂交稻发育籽粒中ATP酶活性及其调节[J].扬州大学学报(自然科学版),1998,1(1):13-17.
    [52]Yu J,et al.Progress in Rice Proteomics[J].Science,2002,296:79-92.
    [53]Goff.,S.A.,et al.A draft sequence of the rice genome[J].Science,2002,296:92-100.
    [54]Feng Q,et al.Agribiotech More heat than light[J].Nature,2002,420:316-320.
    [55]Sasaki T,et al.The Genome Sequence and Structure of Rice Chromosome 1[J].Nature,2002,420:312-316.
    [56]G Paul Bolwell,Antoni R S P Whitelgg labas,Julian e.Phytochemistry and the new technologies[J].Phytochemistry,2004,65(12):1665-1669.
    [57]Wasinger VC,SJ.Cordwell,A.Cerpa-Poljak,et al.Current Opinion in Chemical Biology[J].Electrophoresis,1995,16:1090-1094.
    [58]Komatsu SA.Muhammad &R.Rakwal.Progress in model plant proteome research [J].Electrophoresis,1999a,20:630-636.
    [59]Ramani S&SK.Apte.Proteomics:a major new technology for the drug discovery process[J].Biochemical and Biophysical Research Communications,1997,233:663-667.
    [60]Salekdeh GHJ,Siopongco LJ.Wade B.Ghareyazie& J.Bennett,The Proteomics Research of Rice[J].Proteomics,2002,2:947-959.
    [61]KON ISH I H,ISH IGURO K,KOMATSU S A.A Proteomics App roach Toward Understanding Blast Fungus Infection of Rice Grown UnderDifferent Levels of Ritrogen Fertilization[J].Proteomics,2001,1(9):1162-1171.
    [62]KON ISH IH,KOMATSU S.A p roteomicsApp roach to Investigating Promotive Effects of Brassinolide on Lamina Inclination and Root Growth in Rice Seedlings[]].Biol Pharm Bu11,2003,26(4):401-408.
    [63]AGRAWAL G K,RAKWAL R,YONEKURM,et al.Proteome Analysis of Differentially Displayed Proteins as a Tool for Investigating Ozone Stress in Rice(O ryza sativa L.)Seedings[J].Proteomics,2002,2:947-959.
    [64]Shen,S.&Y.Jing & T.Kuang.Proteomics,2003,3:527-535.
    [65]MOONS A,GIELEN J,VANDEKERCKHOVE J,et al.An Abscisic Acid and Salt Stress Responsive Rice cDNA from a Novel Plant Gene Family[J].Planta.1997,202:443-454.
    [66]RAKWAL R,KOMTSU S.Role of JasMonate in the Rice(O ryza sativa L.)Self -Defense Mechanism Using Proteome Analysis[J].Electrophoresis,2000,21:2492-2500.
    [67]Shen S.&S.Komatsu.Biological and Pharmaceutical Bulletin,2003,26:129-136.
    [68]TSUGITA A,KAWAKM I T,UCH IYAMA Y,et al.Separation and Characterization of Rice Proteins[J].Electrophoresis,1994,15:708-720.
    [69]KOMATSU S,KAJ IWARAH,H IRANO H.Atrice Protein Library:a Sata2File of Rice Proteins Separated by Two2Dimensional Electrophoresis[J].Theor.App.Genet,1993,86:935-942.
    [70]KOMATSU S,RAKWAL R,L I Z.Separation and Characterization of Proteins in Rice (0ryza sativa)Suspension Cultured cells[J].Plant Cell,Tissue Organ Culture,1999,55,183-192.
    [71]ZHONG B,KAR IBE H,KOMTSU S,et al.Screening of Rice Genes from a cDNA Based on the Sequence Data-File of Proteins Separated by Two-Dimensional Electrophoresis[J].Breeding Sci.,1997,47,251-255.
    [72]KER IM T,IM IN N,WEINMAN J J,et al.Proteome Analysis of Male Gametophyte Development in Rice Anthers[J].Proteomics,2003,3(5):738-751.
    [73]KOMATSU S,K0J IMA K.Rice Proteome Database Based on Two Dimensional Polyacrylamide Gel Electrophoresis:Its Status in 2003[J].Nucleic,Acids Res 32 Database Issue:I003,D388-392.
    [74]BOUCHEZ D,HOFF H.Functional Genomics in Plants[J].Plant Physiology,1998,i18:725-732.
    [75]W IJK K J.Proteomics of Chlorop last:Experimentation and Prediction[J].Trends in Plant Science,2000,5:420-425.
    [76]HEAZLEWOOD J L,HOWELL K A,WHELAN J,et al.Towards an Analysis of the Mitochondrial Proteome[J].Plant Physiol,2003,132:230-242.
    [77]TANKA N,FUJ ITA M,HANDA H,et al.Proteomics of the Rice Cell:Systematic Edentification of the Protein Populations in Subcellular Compartments[J].Mol,Genet Genomics,2004,271:566-576.
    [78]魏敏,李阳生,傅彬英.水稻蛋白质组学研究进展[J].生物技术通报,2005,(6):1-6.
    [79]Cordwell SJ,Basseal DJ,Biellqvist B,et al.Capilliary isoelectric focusing and high-performance cation-exchange chromatography compared for qualitative and quantitative analysis of hemoglobin ariant[J].ElectroDhoresis,1997,18(8):1393-1398.
    [80]万晶宏,贺福初.蛋白质组技术的研究进展[J].科学通报,1999,44(9):904-910.
    [81]詹显全,陈主初.国外医学分子生物学分册,2002,24(3):129-133.
    [82]Lueking,et al.Protein chip technology[J].Anal Biochem,1999,270(1):103-111.
    [83]王志琴,杨建昌,朱庆森等.亚种间杂交稻籽粒充实不良的原因探讨[J].作物学报,1998,24(6):782-787.
    [84]汪家政,范明主编.蛋白质技术手册.科学出版社(北京),2000:42-46.
    [85]陈晓飞.两优培九生育后期氮代谢和籽粒灌浆的生理基础研究.2007:15-16,28,31.
    [86]吴在德,吴肇汉.外科学[M].北京:人民卫生出版社,2003,308.
    [87]杨金辉,余云,鞠新华,等.1470例甲亢手术并发症的分析[J].实用疑难杂症,1984,4(5):253.
    [88]吴金术.临床胆石病学[M].长沙:湖南科技出版社,1998,534.
    [89]Parks,R.E.,Jr.,and R.P.Agarwal.Nucleoside diphosphokinases[M].In P.D.Boyer(ed.),The enzyme.Academic Press,New York.1973.
    [90]Cipollini G.,et al.Down-regulation of the nm23.hl gene inhibits cell proliferation[J].Int J Cancer.1997,73:297-302.
    [91]Postel EH.,et al.Human c-myc transcription factor PuF identified as nm23-H2nucleoside diphosphate kinase,a candidate supressor of tumor metastasis[J].Science,1993,261:478-480.
    [92]Ji L,Arcinas M,Boxer LM.The transcription factor Nm23-H2,binds to and activates the translocated c-myc allele in Burkitt' s lymphoma[J].J Biol Chem1995,270:133392-13398.
    [93]Engel M.,et al.Glyceraldehyde-3-phosphate dehydrogenase and Nm23-H1/nucleoside diphosphate kinase A:two old enzymes for the novel Nm23 protein phosphotransferase function[J].J Biol Chem.1998,273:20058-20065.
    [94]Wagner PD,Vu ND.Histidine to aspartate phosphotransferase activity of nm23proteins:phosphorylation of aldolase C on Asp-319[J].Biochem J.2000,346:623-630.
    [95]Choi,G.,et al.Phytochrome signalling is mediated through nucleoside diphosphate kinase[J].Nature.1999,401:610-613.
    [96]Sen A,Heinin J L,Holaday S A,et al.Increased resistance to oxidative stress in transgenic plant that overexpressed chloroplastic Cu/Zn superoxide dismutase[J].Proc Natl Acad Sci USA,1993,90:1629-1633.
    [97]Badawi G H,Yamauchi Y,Shimada E,et al.Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco(Nicotiana tabacum)chloroplasts[J].Plant Sci,2004,166:919-928.
    [98]崔凯荣,等.植物体细胞胚发生的分子生物学[M].北京:科学出版社,2000.
    [99]沈文飚,等.植物抗坏血酸过氧化物酶[J].生命的化学,1997,17(5):112-115.
    [100]王月福等.氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响[J]作物学报,2002,28(6):743-748.
    [101]江绍玫等,水稻谷蛋白研究进展[J].江西农业大学学报,2002,24(1):14-19_
    [102]霍中洋等,氮肥对亚种间杂交水稻“两优培九”产量及氮素营养特性的影响[J].江苏农业学报,2003,19(4):223-227.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.