金属纳米薄膜表面的光力与光热操控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在麦克斯韦建立电动力学理论体系的时候,他预言了光对物体会有力的作用,并且可以用麦克斯韦张量计算出来.在上世纪初,两个俄罗斯科学家在实验上证实了光力的存在[P. Lebedev, Annalen der Physik (1901), E. F. Nichols and G. F. Hull, The Astrophysical Journal17,315(1903)]到上世纪70年代,美国贝尔实验室的科学家Ashkin第一次用实验验证光力可以用来操控微小颗粒的运动,并且把这种效应称为"optical tweezer"。近几十年来,光力与光操控一直是一个非常热门的研究课题,已经发展成为一项应用于物理、化学、生物等各个领域的现代科技工具,特别是随着金属表面等离激元、超构材料等人工微结构材料的发展,传统光镊与纳米人工微结构材料的融合,使得光镊技术延伸到纳米光子学的领域,发挥着越来越重要的作用。本论文在传统光镊和近场光镊的基础上,引进金属纳米薄膜结构,研究了金属纳米薄膜上的近场光力操控和光热操控,主要内容包括以下几点:
     一:研究了金纳米棒与金属薄膜之间磁等离激元近场耦合所导致的光操控:
     我们设计了一个金纳米棒与金纳米薄膜的磁等离激元共振耦合体系,纳米棒与金属薄膜之间的磁等离激元共振耦合将导致它们之间产生非常强的吸引力。当以某一特定频率的激光激发磁共振时,吸引力与纳米棒的几何尺寸相关。利用这一原理,我们从数值上证明了对于不同长度的纳米棒选择性捕获的可能性。与此同时,我们还研究了在磁等离激元共振情况下,通过改变光的偏振,来控制纳米棒的转动和定向排列行为。
     二:研究了基于一维牛眼结构的表面等离激元聚焦产生局域场增强用于近场光学捕获:
     我们设计了一个一维牛眼结构,即在亚波长狭缝周围通过设计与入射电磁波波矢匹配的光栅结构,实现对表面等离激元的聚焦效果,使狭缝处局域场显著增强。通过数值模拟证明了狭缝处电磁场的增强将大大增加近场光学捕获力和近场光学辐射力,可以用来作为近场纳米光镊和近场纳米粒子发射枪。我们通过数值模拟详细研究了牛眼的各种参数对近场纳米光镊和纳米粒子发射枪的性能的影响。
     三:研究了基于金属纳米薄膜增强光热效应导致的水蒸气泡的产生和气泡稳态控制,以及利用水蒸气泡和热对流实现微米粒子捕获和微米尺度图案直写:
     研究了通过金属薄膜的增强光热效应,利用一束较低功率的连续激光在金属薄膜表面产生、控制热气泡,分析了激光功率和薄膜厚度对气泡生长动力学的影响。激光在液体中产生热效应,将导致在液体中同时产生热对流和热气泡。均匀分布在液体中的直径为1微米的聚苯乙烯小球在热对流和热气泡的共同作用下能实现在气泡底部快速沉积。通过操控气泡位置,可以实现在金属纳米薄膜上进行微米尺度图案的直写。
     四:研究了利用激光的光热效应诱导的热扩散现象实现对由金属纳米薄膜形成的法布里-珀罗腔的调控和对渔网超构材料中磁等离激元共振频率的调控:
     由于激光光热效应导致液体温度升高,均匀分布在液体中的纳米介质小球沿着温度梯度由光斑中心向四周排开,造成光斑中心等效折射率低,周围等效折射率高的效果。通过这个方法,我们有效的改变了法布里-珀罗腔的等效腔长,实现了对法布里-珀罗腔共振频率和金属渔网超构材料中磁等离激元共振频率调控。
The fact that electromagnetic (EM) radiation exerts pressure on any surface was deduced theoretically by Maxwell in1871, and demonstrated experimentally by Lebedev in1900[P. Lebedev, Annalen der Physik (1901)] and by Nichols and Hull in1903[E. F. Nichols and G. F. Hull, The Astrophysical Journal17,315(1903)]. In1970, Ashkin proposed that optical force can be used to manipulate microparticles. Such an effect is called as "optical tweeer". In recent decades, optical force and optical manipulation has been received more and more attentions. As the three-dimensional optical tweezers was realized in1986, optical manipulation techniques have become an important tool for research in the fields of biology, physical chemistry and other field. With the rapid development of near-field optics, the integration of conventional optical tweezers and near field optics made the optical tweezers technology extends to the field of nanotechnology and play a more and more important role. This thesis will investigate the optical manipulation based on plasmonic coupling and enhanced photothermal on metal film. Our work and main conclusions are as follows:1:We study the selective optical trapping and optical rotor based on the strong plasmonic coupling between gold nanorods and slab.
     We designed a simple system of the plasmonic coupling between gold nanorods and metal film. The strong plasmonic coupling between gold nanorods and metal film will lead to a very strong attraction force between them. When a particular frequency of the laser is used to excitated the system, then the attraction force is closely related to the geometric size of nanorods. Base on this principle, we numerically prove the possibility of selectively trapping of nanorods with this attraction force. Meanwhile, we also studied the rotation and orientation behavior of nanorods caused by this strong plasmonic coupling.
     2:We study the enhancement of local field based on surface plasmon focus using a one-dimensional bull's-eye structure for near-field optical trapping.
     We have designed a namely one-dimensional bull's-eye structure, which is a sub-wavelength slit surround by grating structure, to achieve significantly enhancement of local field by the focusing of surface plasmon. Through numerical simulation, we find that the local electromagnetic field enhancements will greatly increase the near-field optical trapping force and scattering force, which can be used as a near-field nano-optical tweezers and near-field nano-particle emission gun. Detailed studies on the parameter of the bull's-eye were carried by numerical simulation.
     3:We study the creating, controlling of vapor bubble by a low power CW laser beam due to the enhanced photothermal effect of metal film. Farther, we study the accumulating microparticles and direct-writing micropatterns using continuous-wave laser-induced vapor bubble and convection.
     We used a low power laser to create a vapor bubble on the metal film and control the size of it through the enhanced photothermal effect of metal film. The effects of laser power and film thickness on the dynamics of bubble growth were analyzed experimentally. Thermal effect of laser produces thermal convection and thermal bubbles in the liquid synchronously. Polystyrene spheres distributed in the liquid will be dragged by the convection and accumulated at the bottom of the vapor bubble. Direct writing of micron-scale patterns on the metal film can be achieved through steering the position of vapor bubble position.
     4:We study the tuning of opto-fluidic Fabry-Perot cavity and metal fishnet meta-materials by a weak CW Laser induced thermophoresis due to the enhanced photothermal effect.
     Photothermal effect of laser will higher the temperature of liquid, Polystyrene spheres distributed in the liquid will move along the temperature gradient either from the hot center to cold region or from the cold region to hot spot. This movement of nano-particles then induced a change of effect refractive index of media in opto-fluidic Fabry-Perot cavity and metallic fishnet meta-materials. With this method, we effectively tuned the frequency of opto-fluidic Fabry-Perot cavity and magnetic plasmon resonance of fishnet meta-materials.
引文
[1]D. E. Smith, S. J. Tans, S. B. Smith, S. Grimes, D. L. Anderson, C. Bustamante, Nature,413,748-752(2001).
    [2]H. B. Li, A. F. Oberhause, S. D. Redick, M. Carrion, H. P. Eriekson, J. M. FemandeZ, Proeeedings of the National Academy of Sciences of the United States of America,98,10682-10686 (2001).
    [3]H. M. Hertz, Journal of Applied Physies,78,4845-4849 (1995).
    [4]N. Ribeck, O. A. Saleh, Review of Scientific Instruments,79,094301(2008).
    [5]L. Kremser, D. Blaas, E. Kenndl, Eleetrophoresis,25,2282-2291(2004).
    [6]P. R. C. Gaseoyne, J. Vykoukal, Electrophoresis,23,1973-1983 (2002).
    [7]X. H. Zhang, K. Halvorsen, C, Z. Zhang, W. P. Wong, T. A. Springer, Seienee, 324,1330-1334(2009).
    [8]A. Ashkin, J. M. Dziedzie, J. E. Bjorkholm, S. Chu, Optics Letters,11,288-290 (1986).
    [9]W. J. Greenleaf, M. T. Wbodside, S. M. Bloek, Annual Review of Bio-Physics and Bio-molecular structure,36,171-190 (2007).
    [10]P. Y. Chiou, A. T. Ohta, M. C. Wu, Nature,436,370-372 (2005)
    [11]J. C. Croeker, D. G. Grier, Physical Review Letters,73,352-355(1994).
    [12]J. Leaeh, H. Mushfique, S. Keen, R. D. Leonardo, G. Ruoceo, J. M. CooPer, M. J. Padgett, Physical Review E,79,026301 (2009).
    [13]G. Knoner, S. Parkin, T. A. Nieminen, N. R. Heekenberg, H. Rubinsztein-Dunlop, Physical Review Letters,97,4(2006).
    [14]H. W. Wang, X. H. Liu, Y. M. Li, B. Han, L. R. Lou, K. J. Wang, Journal of Opticala-Pure and Applied Optics,6,89-93(2004).
    [15]J. Guok, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, J. Kas, Physical Review Letters,84,5451-5454 (2000).
    [16]G. V. Shivashankar, G. Stoldvitzky, A. Libehaber, Applied physical Letters,73, 291-293 (1998).
    [17]A.1. BishoP, T. A. Nieminen, N. R. Heekenberg, H. Rubinsztein-Dunlop, Physical Review Letters,92,198104 (2004).
    [18]R. J. Pauzauskie, A. Radenovie, E. T. Pagnier, H. Shroff, P. D. Yang. J. L. Phardt, Nature Materials,5,97-101(2006).
    [19]F. Svedberg, Z. P. Li, H. X. Xu, M. Kall, Nano Letters,6,2639-2641 (2006).
    [22]M. E. J. Fries, T. A. Nieminen, N. R. Heekenberg, H. Rubinsztein-Dunlop, Nature,394,348-350(1998)
    [23]C. Deufel, S. Forth, C. R.Simmons, S. Dejgosha, M. D. Wang, Nature methods 4 223-225 (2007)
    [24]S. Parkin, G. Knoner, T. A. Nieminen, N. R. Heekenberg, H. Rubinsztein-Dunlop, Optics Express,14,6963-6970 (2006)
    [25]Novotny L. Forces in optical near-fields [A]. Near-field Optics andSurface Plasmon Polaritons [Z]. Springer Verlag, Berlin,123-141 (2001)
    [26]A. Ashkin, Phys. Rev. Lett.24,156 (1970)
    [27]Ashkin A, Dziedzic J M, Bjorkholm J E, et al. Optics Letters,11 (5):288-290 (1986)
    [28]Ashikin A. IEEE Journal on selected topics in Quantum Electronics,6 (6): 841-856(2000)
    [29]K. Dholakia,a P. Reecea and M. Gu, Chem. Soc. Rev.,2008,37,42-55 (2008)
    [30]Svoboda K, Block S M. Annual Review of Biophysics and Biomolecular Structures,23:247-285 (1994).
    [31]K. Svoboda and S. M. Block, Opt. Lett.,19,930-932 (1994).
    [32]A. S. Zelenina, R. Quidant, G. Badenes and M. Nieto-Vesperinas,Opt. Lett.,31, 2054-2056 (2006).
    [33]P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff,P. D. Yang and J. Liphardt, Nat. Mater.,5,97-101 (2006).
    [34]B. Saleh and M. Teich, Fundamentals of Photonics, John Wiley andSons, Inc., New York, New York,1991.
    [35]C. Pollock and M. Lipson, Integrated Photonics, Kluwer, Norwell,Massachusetts, 2003
    [36]L. Novotny, R. X. Bian, X. S. Xie, Physical Review Letters,79 (4),645-648 (1997)
    [37]P. C. Chaumet, A. Rahmani, M. Nieto-Vesperinas, Phys Rev Lett,88,123601(4) (2002)
    [38]P. C. Chaumet, Physical Review B,66,195405 (11) (2002)
    [39]M. Nieto-Vesperinas, P. C. Chaumet, A. Rahmani, Phil Trans R Soc Lond A,362, 719-737(2004)
    [40]S. Kawata and T. Sugiura, Opt. Lett.,17,772-774 (1992)
    [41]S. Kawata and T. Tani, Opt. Lett.,21,1768-1770 (1996)
    [42]L. N. Ng, B. J. Luff, M. N. Zervas and J. S. Wilkinson, Opt.Commun.,208, 117-124(2002)
    [43]K. Grujic, O. G. Helleso, J. P. Hole and J. S. Wilkinson, Opt. Express,13,1-7 (2005).
    [44]S. Gaugiran, S. Getin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain and J. Derouard, Opt. Express,13,6956-6963 (2005).
    [45]T. Tanaka and S. Yamamoto, Appl. Phys. Lett.,77,3131-3133 (2000).
    [46]K. Grujic and O. G. Helleso, Opt. Express,15,6470-6477 (2007).
    [47]B. S. Schmidt, A. H. J. Yang, D. Erickson and M. Lipson, Opt. Express,15, 14322-14334(2007).
    [48]A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson and D. Erickson, Nature,457,71-75 (2009).
    [49]A. H. J. Yang, T. Lerdsuchatawanich and D. Erickson, Nano Lett.,9,1182-1188 (2009).
    [50]A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson and D. Erickson, Nature,457,71-75 (2009).
    [51]S. Lin, E. Schonbrun and K. Crozier, Nano Lett.,10,2408-2411 (2010).
    [52]S. Mandal, X. Serey and D. Erickson, Nano Lett.,10,99-104 (2010).
    [53]G. Mie, Ann. Phys.,25,377-445 (1908).
    [54]58 R. H. Ritchie, Phys. Rev.,106,874-881 (1957)
    [55]J. Henzie, J. Lee, M. H. Lee, W. Hasan and T. W. Odom, Annu. Rev. Phys. Chem., 60,147-165 (2009).
    [56]J. Homola, Chem. Rev.,108,462-493 (2008).
    [57]S. A. Maier and H. A. Atwater, J. Appl. Phys.,98,011101 (2005).
    [58]R. Quidant and C. Girard, Laser Photonics Rev.,2,47-57 (2008).
    [59]Righini, M., Zelenina, A. S., Girard, C.& Quidant, R. Nature Phys.3,477-480 (2007).
    [60]Righini, M., Volpe, G., Girard, C., Petrov, D.& Quidant, R. S. Phys. Rev. Lett. 100,183604(2008).
    [61]Tang, L. et al., Nature Photon.2,226-229 (2008).
    [62]Kinkhabwala, A. et al., Nature Photon.3,654-657 (2009).
    [63]Acimovics, S., Kreuzer, M. P., Gonzalez, M. U.& Quidant, R., ACS Nano 3, 1231-1237(2009)
    [64]Garcia-Parajo, M. F., Nature Photon.2,201-203 (2008).
    [65]Kim, S. et al., Nature 453,757-760 (2008).
    [66]Grigorenko, A. N., Roberts, N. W., Dickinson, M. R.& Zhang, Y., Nature Photon. 2,365-370 (2008).
    [67]Righini, M. et al., Nano Lett.9,3387-3391 (2009).
    [68]Dieter Braun and Albert Libchaber,89,188103 (2002)
    [69]Stefan Duhr and Dieter Brauna, APPLIED PHYSICS LETTERS 86,131921 (2005)
    [70]Stefan Duhr and Dieter Braun, PRL 97,038103 (2006)
    [1]Dong L. X, Arai F., Fukuda T.,2000 InternationalSymposium on Micromechatronics and Human Science,151-156 (2000).
    [2]Eigler D. M., Schweizer E. K., Nature,344 (5),524-526 (1990).
    [3]Kim P, Lieber C. M., Science,286,2148-2150 (1999).
    [4]Haber C, Wirtz D., Review of Scientific Instruments,71(12),4561-4570 (2000).
    [5]Schnelle Th., Muller T, Fuhr G., Journal of Electrostatics,50,17-29 (2000).
    [6]Ashkin A., Physical Review Letters,24 (4),156-159 (1970).
    [7]Ashkin A., Dziedzic J. M., Applied Physics Letters,19 (8),283-285 (1971).
    [8]Ashkin A., Dziedzic J M, Bjorkholm J E W.,Optics Letters,11(5),288-290 (1986).
    [9]M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl.Phys. Lett. 84,4236 (2004)
    [10]P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, Phys. Rev. Lett.88, 123601 (2002)
    [11]K. Okamoto and S. Kawata, Phys. Rev. Lett.83,4534 (1999)
    [12]H. X. Xu and M. Kall, Phys. Rev. Lett.89,246802 (2002)
    [13]G. Volpe, R. Quidant, G. Badenes, and D. Petrov, Phys. Rev. Lett.96,238101 (2006)
    [14]M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, Nat. Phys.3,477 (2007)
    [15]A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nat. Photonics 2,365 (2008)
    [16]Z. Y. Fang, F. Lin, S. Huang, W. T. Song, and X. Zhu, Appl. Phys. Lett.94, 063306(2009)
    [17]M. Liu, T. Zentgrafl, Y. M. Liu, G. Bartall, and X. Zhang, Nature Nanotechnol.5, 570(2010)
    [18]P. J. Reece, V. Garces-Chavez, and K. Dholakia, Appl. Phys. Lett.88,221116 (2006)
    [19]M. Barth and O. Benson, Appl. Phys. Lett.89,253114 (2006)
    [20]D. M. Eigler and E. K. Schweizer, Nature London 344,524 (1990)
    [21]C. Bustamante, Z. Bryant, and S. B. Smith, Nature,421,423 (2003)
    [22]P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, Nano Lett.4,899 (2004)
    [23]E. Prodan and P. Nordlander, J. Chem. Phys.,120,5444 (2004)
    [24]F. M. Wang, H. Liu, T. Li, S. N. Zhu, and X. Zhang, Phys. Rev. B 76,075110 (2007)
    [25]H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, Phys. Rev. Lett.97,243902 (2006)
    [26]N. Liu, H. Liu, S. N. Zhu, and H. Giessen, Nat. Photonics 3,157 (2009)
    [27]P. Nordlander and E. Prodan, Nano Lett.4,2209 (2004)
    [28]J. L. Stratton, Electromagnetic Theory McGraw-Hill, New York, Chap.2 (1941).
    [29]B. Nikoobakht and M. A. El-Sayed, Chem. Mater.,15,1957 (2003)
    [30]L. Novotny, R. X. Bian, X. Sunney., Phys. Rev. Lett.,79(4),645-648 (1997).
    [31]M. Tanaka, K. Tanaka., J. Opt. Soc. Am. A,15(1),101-108 (1998).
    [32]K. O kamoto, S. Kawata., Phys. Rev. Lett,83(22),4534-4537 (1999)
    [1]. D. Braun, and A. Libchaber, Phys. Rev. Lett.,89,188103 (2002),
    [2]. S. Duhr, and D. Braun, Appl.Phys. Lett.,86,131921 (2005),
    [3]. D. R. Mason, D. K. Gramotnev, and G. Gramotnev, J. Appl. Phys.,104,064320 (2008),
    [4]. R. D. Leonardo, F. Ianni, and G. Ruocco, Langmuir,25,4247-4250 (2009),
    [5]. C. B. Mast, and D. Braun, Phys. Rev. Lett.,104,188102 (2010)
    [6]R. Di Leonardo, F. Ianni, and G. Ruocco, Langmuir,25(8),4247-4250 (2009).
    [7]S. J. Williams, A. Kumar, N. G. Green and S. T. Wereley, Nanoscale,1,133-137 (2009).
    [8]D. Braun and A. Libchaber, Phys. Rev. Lett.,89,188103 (2002).
    [9]V. G. Chavez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, Phys. Rev. B,73,085417 (2006).
    [10]S. Duhr and D. Braun, Phys. Rev. Lett.,97,038103 (2006).
    [11]C. B. Mast and D. Braun, Phys. Rev. Lett.,104,188102 (2010).
    [12]W. M. Rohsenow, Annu. Rev. Fluid Mech.3,211-236 (1971)
    [13]V. K. Dhir, Annu. Rev. Fluid Mech.30,365-401 (1998)
    [14]V. P. Carey, Liquid-Vapor Phase-Change Phenomena, Routledge, New York, (1992)
    [15]L. Lin, Nanoscale and Microscale Thermophysical Engineering,2,71-85 (1998).
    [16]K. Forster and N. Zuber, J. Appl. Phys.,25,474-478 (1954);
    [17]S. W. J. Welch, Int. J. Heat Mass Iran.,41,1655-1666 (1998);
    [18]L. Lin, A.P. Pisano, and V.P. Carey, Journal of Heat Transfer,120,735 (1998).
    [19]J. H. Tsai and L. Lin, Journal of Heat Transfer,124,375 (2002).
    [20]K. T. Kotz, K. A. Noble, and G. W. Faris, Applied Physics Letters,85,2658 (2004).
    [21]R. H. Farahi, A. Passian, S. Zahrai, A. L. Lereu, T. L. Ferrell, and T. Thundat, Ultramicroscopy,106,815-821 (2006).
    [22]A. T. Ohta, A. Jamshidi, J. K. Valley, H. Y. Hsu, and M. C. Wu, Applied Physics Letters,91,074103(2007).
    [23]R. A. Taylor, P. E. Phelan, T. Otanicar, R. J. Adrian, and R. S. Prasher, Appl. Phys. Lett.,95,161907(2009).
    [24]W. Wagner, A. Sokolow, R. Pearlstein, and G. Edwards, Appl. Phys. Lett.,94, 013901 (2009).
    [25]J. Neumanna and R. Brinkmann, Appl. Phys. Lett.,93,033901 (2008).
    [26]J. C. Ramirez, E. R. Aboytes, A. E. Martinez, O. B. Pantaleon, A. R. Martinez, N. Korneev and R. R. Garcia, Opt. Express,18,8735-8742 (2010)
    [27]D. Turlajs, V. Grivvovs, S. Yaundalders,5th WSEAS Int. Conf. on Heat and Mass transfer (HMT'08),80-82 (2008)
    [28]S. Duhr and D. Braun, Phys. Rev. Lett.,97,038103 (2006).
    [29]M. J. Weber, Handbook of Optical materials, CRC Press, Boca Raton (2003).
    [1]B. A. Jorge, A. Rodriguez, et al., Opt. Express,15(24),16161-16176 (2007).
    [2]Raether H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Tracts in Modern Physics), Berlin, Springer-Verlag (1988).
    [3]Vahala K J., Nature,424,839 (2003).
    [4]D. K. Armani, T. J. Kippenberg,S. M. Spillane,K. J. Vahala, Nature,421,925-928 (2003).
    [5]Song B. S, Noda S, Asano T, et al., Nature Mat.,4,207-210 (2003).
    [6]M. Notomi, A. Shinya, S. Mitsugi, Opt. Express,13,2678-2687 (2005).
    [7]E. Kuramochi, M. Notomi, S. Mitsugi and T. Watanable, Appl. Phys. Lett,88, 041112(2006).
    [8]M. Hossein-Zadeh and A. F. J. Levi., Solid-State Electronics,49(8),1428-1434 (2005).
    [9]Noda S, Fujita M, Asano T., Nature Phot.,1,449-458 (2007).
    [10]Jae Tae Seo, Qiguang Yang, Wan-Joong Kim, et al, OPTICS LETTERS,34 (3), 307-309 (2009).
    [11]Wang Pei, Lu Yonghua, et al., Opt. Comm.,229,425-429 (2004).
    [12]Yih Hong Lee, et al., APPL. PHYS. LETT.,95,0231051-3 (2009).
    [13]Yan Deng, Youyi Sun, Pei Wang, et al., Physica E, (40),911 (2008).
    [14]Chen Xin, Zou Gang, Deng Yan, et al., Nanotechnology, (19),195703 (2008)
    [15]Deng Y, CHIN.PHYS.LETT,24 (4),3 (2007).
    [16]Yang Yong, Mamiko Hori, Tomokatsu Hayakawa, et al., Surface Science,579, 215-224(2005).
    [17]Porto J. A., Martin-Moreno L. et al., Phys. Rev. B,70,081402 (2004).
    [18]Min C. J, Wang P., Jiao X. J, et al., Optics Express,15 (19),12368-12373 (2007).
    [19]Chen J. X., Wang P, Wang X. L., Appl. Phys. Lett.,94,081117 (2009).
    [20]H. L. Lerzec, A. Degiron, E. Devaux, et al., Science,297,820-822 (2002).
    [21]Min C. J., Wang P, Jiao X. J., et al., Optics Express,15 (15),9541-9546 (2007).
    [22]Lin X. S, Yan J. H., Zheng Y B., Optics Express,19,9594-9599 (2011).
    [23]Liu Jin, Liu Zheng-Qi, Feng Tian-Hua, CHINESE PHYSICS B,19,124209 (2010).
    [24]Dai Qiao-Feng, Deng Hai-Dong, Zhao Wei-Ren, OPTICS LETTERS,35,97-99 (2010).
    [25]Hu X. Y., Jiang P., Ding C. Y, et al., Nature Photonics, (2),185-189 (2008).
    [26]Meng Zi Ming; Liu Hai Ying; Zhao Wei Ren, JOURNAL OF APPLIED PHYSICS,106,044905 (2009).
    [27]Liu Jin; Dai Qiao-Feng; Feng Tian-Hua, JOURNAL OF APPLIED PHYSICS, 104,114308(2008).
    [28]Hu Xiaoyong, Jiang Ping, Xin Cheng, et al., Appl. Phys. Lett.,94,031103 (2009).
    [29]Deng Hai Dong, Liu Jin, Zhao Wei Ren, APPLIED PHYSICS LETTERS,92, 233103(2008).
    [30]R. W P. Drever, The Detection of Gravitational Waves, Cambridge University Press,306-328(1991).
    [31]M. D. Rosa, L. C., Cerdonio, M. Pinard, and F. Marin, Phys. Rev. Lett.89, 237402 (2002).
    [32]S. P. Tarabrin, S. P. Vyatchanin, Phys. Lett. A,372,46,6801-6812 (2008).
    [33]C. Metzger, I. Favero, A. Ortlieb, and K. Karrai, Phys. Rev. B 78,035309 (2008).
    [34]I. Favero and K. Karrai, Nature Photonics 3,201-205 (2009).
    [35]T. H. Zhang; S. T. Talla; Z. C. Gong, OPTICS EXPRESS,18,18394-18400 (2010).
    [36]H. Ding; J. Q. Liang; J. H. Cui, SENSORS AND ACTUATORS B-CHEMICAL 138154-159(2009).
    [37]V. Weldon; J. O. Gorman; J. J. PerezCamacho, IEEE PHOTONICS TECHNOLOGY LETTERS,9,357-359 (1997).
    [38]M. Schell; W. Utz; D. Huhse, APPLIED PHYSICS LETTERS,65,3045-3047 (1994).
    [39]D. H. Zhao, K. T. Chan, Y. Liu, IEEE PHOTONICS TECHNOLOGY LETTERS, 13,191-193(2001).
    [40]S. M. Lee, K. M. Choi, S. G. Mun, IEEE PHOTONICS TECHNOLOGY LETTERS,17,1579-1581 (2005).
    [41]R. J. Simes, R. H. Yan, R. S. Geels, L. A. Coldren, J. H. English, A. C. Gossard, and D. G. Lishan, Appl. Phys. Lett.53,637 (1988).
    [42]J. S. Patel and Sin-Doo Lee, Appl. Phys. Lett.58,2491 (1991).
    [43]J. S. Patel, Optics Letters,17,456-458 (1992).
    [44]D. Y. Jeong, Y. H. Ye, and Q. M. Zhang, Appl. Phys. Lett.85,4857 (2004).
    [45]Alboon, A. Shadi, Robert G, Optics Express,16,231-236 (2008).
    [46]Z. R. Zheng, G. W. Yang, H. F. Li, X. Liu, Optics Express,19 2158-2164 (2011)
    [47]K. S. Sathaye, L. Dupont, and J. L. de Bougrenet de la Tocnaye, Opt. Eng.51, 034001 (2012).
    [48]R. Srivastava, U. G. Shenoy, S. R. Forrest, S. Chinnayelka, J. S. Mohammed, R. S. Besser, M. J. McShane and J. Microlithogr. Microfabrication, Microsyst.3,579 (2004).
    [49]M. A. Shah, V. Shanmugan, G. K. Chowdhury and R. Akkipeddi, J. Microlith., Microfab., Microsyst.4,041303 (2005).
    [50]T. H. Stievater, D. Park, M. W. Pruessner, W. S. Rabinovich, S. Kanakaraju, C. J. K. Richardson, Optics Express,16,16766-16773 (2008).
    [51]S. S. Tan and D. R. Zander, Proc. SPIE 8032,803205 (2011); [52] T. Morioka, M. Saruwatari, OPTICAL ENGINEERING,29,200-209 (1990).
    [53]B. Gianluca, M. Gianluca, B. Antonella, IEEE PHOTONICS TECHNOLOGY LETTERS,18,2439-2441 (2006).
    [54]F. Qin, Y. Liu, Z. M. Meng, JOURNAL OF APPLIED PHYSICS,108,053108 (2010).
    [55]Y. K. Gong, Z. Y. Li, J. X. Fu, OPTICS EXPRESS,19,10193-10198 (2011).
    [56]T. Chattopadhyaya and T. Sarkarb, Optics & Laser Technology,44,1722-1728 (2012).
    [57]V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrie, G. Lehoucq and A. De Rossi, OPTICS EXPRESS 20,8524-8534 (2012).
    [58]T. Morioka and M. Saruwatari, IEEE J. Sel. Areas Commun.6,1186-1198 (1988).
    [59]I. H. White, R. V. Penty, and R. E. Epworth, Electron. Lett.24,340-341 (1988).
    [60]S. R. Friberg, A. M. Weinner, Y. Silberberg, B. G. Sfez, and P. S. Smith, Opt. Lett.,13,904-906(1988).
    [61]P. Li Kam Wa, J. E. Sitch, N. J. Mason, J. S. Roberts, and P. N. Robson, Electron. Lett.21,26-27(1985).
    [62]S. Trillo, S. Wabnitz, W. C. Banyai, N. Finlayson, C. T. Seaton, G. L Stegeman, and R. H. Stolen, IEEE J. Quantum Electron.25,104-111 (1989).
    [63]D. Braun and A. Libchaber, Phys. Rev. Lett.89,188103 (2002).
    [64]S. Duhr and D. Braun, Phys. Rev. Lett.97,038103 (2006).
    [65]F. M. Weinert and D. Braun, Phys. Rev. Lett.101,168301 (2008).
    [66]Y. Lamhot, A. Barak, O. Peleg and M. Segev, Phys. Rev. Lett.105,163906 (2010).
    [67]C. B. Mast and D. Braun, Phys. Rev. Lett.104,188102 (2010).
    [68]H. Liu, J. Ng, S. B. Wang, Z. F. Lin, Z. H. Hang, C. T. Chan, S. N. Zhu, Phys. Rev. Lett.106,087401 (2011).
    [69]Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang,, APPLIED PHYSICS LETTERS 98,083117 (2011).
    [70]Y. J. Zheng, H. Liu, Y. Wang, C. Zhu, S. M. Wang, J. X. Cao and S. N. Zhu,, Lab Chip,11,3816(2011).
    [71]A. Ashkin, Phys. Rev. Lett.24,156 (1970).
    [72]D. G. Grier, Nature (London) 424,810 (2003).
    [73]M. Dienerowitz, M. Mazilu, and K. Dholakia, J. Nanophotonics 2,021875 (2008).
    [74]V. M. Shalaev, Nat. Photonics 1,41 (2007).
    [75]S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, Phys. Rev. Lett.95,137404 (2005).
    [75]G. Dolling, M. Wegener, A. Schaedle, S. Burger, and S. Linden, Appl. Phys. Lett.,89,231118(2006).
    [77]U. K. Chettiar, A. V. Kildishev, H.-K. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, Opt. Lett.32,1671 (2007).
    [78]T. Li, J.-Q. Li, F.-M. Wang, Q.-J. Wang, H. Liu, S.-N. Zhu, and Y.-Y. Zhu, Appl. Phys. Lett.90,251112 (2007).
    [79]J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Nature London 455,376 (2008).
    [80]A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, H. T. Hattori, H. H. Tan, C. Jagadish, and Y. S. Kivshar, Phys. Rev. B 81,115109 (2010).
    [81]M. Lapine, D. Powell, M. Gorkunov, I. V. Shadrivov, R. Marques, and Y. S. Kivshar, Appl. Phys. Lett.95,084105 (2009).
    [82]S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, Appl. Phys. Lett.95,033115 (2009).
    [83]M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, Opt. Express 17,18330 (2009).
    [84]Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, Appl. Phys. Lett.90,011112 (2007).
    [85]Z. L. Samson, K. F. MacDonald, F. De Angelis, B. GholipourK. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, Appl. Phys.Lett.96, 143105(2010).
    [86]F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, Appl. Phys. Lett.92,193104 (2008).
    [87]D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, and M. V. Gorkunov, Appl. Phys. Lett.91,144107(2007).
    [88]I. V. Shadrivov, A. B. Kozyrev, D. W. van der Weide, and Y. S. Kivshar, Appl. Phys. Lett.93,161903(2008).
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.