超重刺激损伤雄性成年小鼠生殖系统的SWP机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超重(hypergravity)现象一直是航空航天人员面临的主要问题之一。超重其物理定义就是物体对支持物的压力或对悬绳的拉力大于物体所承受重力的现象。宇宙飞船在起飞和再入大气层阶段时航天员都处于超重状态。现有的文献的表明在进行宇宙空间飞行时,机体发生了一系列生理和病理的改变。然而,有限的飞行机会和宇宙空间飞行过程中出现的其他非重力影响因素要求我们建立一个在地面使用人工重力模拟超重的模型来研究超重对机体生理的影响。本课题我们采用了国际比较认可的“离心机模型”来模拟超重现象。
     有文献报道,宇宙空间飞行对雄性生殖生理存在许多不利影响。相应的“离心机模型”实验中也发现一定程度的超重刺激会持续抑制睾酮分泌和精子的正常生成。然而,其中的发生机制尚为被阐明,随着宇宙空间开发力度的增加,中国载人航空的发展,新的登月计划的开始以及在可预见的将来人类的月球定居,关于超重对人类生殖系统的损伤作用,及其发病机制,寻找用于治疗和预防这种损伤的药物靶点都是亟待解决的问题。
     本课题主要研究内容包括:
     1.利用“离心机模型”研究超重刺激对雄性小鼠生殖系统生理功能的危害。本实验表明在一定强度的超重(3.3G)刺激下,小鼠的精子数目和活力都随着刺激次数的增加而减少,5天后变化达到显著程度,而在这个过程中睾丸和体重的变化不明显;在超重刺激5天后,用western blot实验检测凋亡相关蛋白caspase-3,促凋亡因子bax和抑制凋亡因子bcl-2的表达,发现睾丸细胞发生了明显的凋亡,Tunel实验表明凋亡主要发生在睾丸间质细胞和精原细胞;同时检测到血清中睾酮含量明显下降,但小鼠的性行为能力指标“捕捉次数”变化不明显。
     2.找到超重刺激后小鼠睾丸中所出现的一个重要的差异蛋白“swiprosin-1”(SWP);并验证和明确该蛋白和超重的关系。在超重刺激下,睾丸中SWP蛋白的表达随着刺激时间的延长而增加,并且随着刺激强度的增加而增加;免疫组化实验显示这种蛋白在小鼠睾丸中主要分布在睾丸间质细胞(Leydig cell)。
     3.明确该蛋白超重刺激后表达变化并非因为应激引起的。
     考虑到接受超重刺激后的动物其本身也处于应激状态,为了确定SWP在睾丸中的表达变化并不是由于动物处于应激状态下所出现的非特异性改变,我们给予动物各种常见的应激刺激(冷,热和缺氧)后发现,SWP在睾丸中的表达并没有发生明显改变;在细胞水平,应用长效、强效的糖皮质激素类药物“地塞米松”和小鼠特有的“应激激素”皮质酮来作用于原代培养的小鼠睾丸间质细胞,SWP蛋白的表达并没有发生明显改变。这些结果提示我们SWP蛋白在睾丸的表达上调对于超重刺激具有特异性。
     4.研究该蛋白的表达变化对小鼠生殖系统的影响。
     通过使用由慢病毒包装的质粒转染小鼠睾丸间质细胞的方法在睾丸局部注射该病毒,并以空白病毒作为阴性对照;当SWP表达被干扰后,局部SWP表达下调,发现精子数目和精子活力明显下降;同样方法,使睾丸局部SWP蛋白的表达上调后,发现精子数目和精子活力也明显下降了。首先告诉我们超重刺激后SWP蛋白的表达上调造成了对生殖系统的损伤,其次也提示了SWP蛋白的作用并非简单地单向地影响小鼠生殖系统的功能,其表达水平在睾丸中有适宜量,超过或低于这个表达量都会对生殖系统造成不利影响。
     5.研究该蛋白与Leydig细胞凋亡之间的关系。
     培养原代的Leydig细胞,通过将质粒转染入细胞,干扰和过表达SWP蛋白的表达,通过检测caspase-3剪切体和前体,bax和bcl-2蛋白的表达,结果显示SWP蛋白低表达时睾丸间质细胞的凋亡减少,而SWP蛋白高表达时,凋亡的发生减少。
     6.研究该蛋白与一氧化氮之间的关系。
     培养原代的Leydig细胞,通过将质粒转染入细胞,干扰和过表达SWP蛋白的表达,结果显示SWP蛋白低表达时睾丸间质细胞的iNOS表达增加,相应的NO的产生增加而SWP蛋白高表达时,iNOS表达下降,NO的产生减少,而eNOS表达在两种情况下变化都不明显。
     7.研究该蛋白与睾酮合成之间的关系。
     培养原代的Leydig细胞,通过质粒转染细胞,干扰和过表达SWP蛋白的表达,结果显示SWP蛋白低表达时睾丸间质细胞分泌的睾酮增加,而SWP蛋白高表达时,睾酮的浓度明显下降,同时检测了细胞内cAMP的含量,未检测到明显变化,提示SWP对睾酮的分泌有影响但并非通过影响cAMP。
     综上所述,在超重刺激作用下,雄性小鼠睾丸中SWP蛋白的表达增加,通过排除了这是超重刺激时所伴随的应激引起这种蛋白表达发生变化的可能性,认为这种蛋白的表达上调对于超重刺激具有特异性。同时也发现SWP的表达增加可以损伤雄性成年小鼠的生殖系统功能。其中睾丸间质细胞凋亡的增加以及其分泌睾酮的减少可能是SWP蛋白的作用机制,而睾丸中SWP蛋白表达下调时精子受到损伤的主要原因是iNOS的表达增加后睾丸中NO含量的增加所导致。本课题为预防和治疗因为超重引起的生殖系统损伤找到了一个重要靶标蛋白。
Background and objectives
     A major goal of space life sciences research is to broaden scientific knowledge of the influence of gravity on living systems. Investigators have known for decades that the spaceflight environment can have dramatic effects on reproductive system. However, there are only limited reports on the mechanisms behind these changes.
     The spaceflight environment includes at least three factors that likely influence reproduction. These include mission-related psychological stress, low-dose-to-low-dose rate radiation, and changes in inertial condition (i.e., microgravity and hypergravity).
     Mammalian reproduction evolved within Earth’s 1-g gravitational field. Therefore, deviations from Earth’s normal gravity, i.e., hypogravity (forces<1 g) or hypergravity (forces>1 g), may compromise reproduction. Lift-off and re-entry of the spacecraft are associated with exposure to increased gravity (hypergravity). However, limited spaceflight opportunities and confounding effects of various nongravitational factors associated with spaceflight (i.e., radiation, stress) have led to the development of ground-based models for studying the effects of altered gravity on biological systems. Centrifugation is used to study hypergravity.
     The present study was designed to investigate effects of hypergravity on reproduction of male mouse and the mechanisms behind it.
     Methods and results
     1. In the mice subjected to hypergravity (3.3G) in the centrifuge, the number or motility of sperm, testosterone concentration of serum and NO-production of testis was decreased and the apoptosis of testicular cells was increased significantly. But the body weight, testis weight and capture rate did not change significantly.
     2. A novel protein, swiprosin-1(SWP) was found highly expressed in testis after mice suffered hypergravity and the expression increased with the times and intensity of hypergravity. The SWP was found distributed in the leydig cells in testis with Immunohistochemistry analysis.
     3. The expression of SWP in mice testis has no significant decreased after three different kinds of stress, hypoxia, hot, and hypothermia. In the primary cultured leydig cells, neither dexamethasone nor corticosterone did change the expression of SWP.
     4. The number or motility of sperm decreased after swiprosin-1 RNAi and also decreased after SWP overproduction through direct injection of recombinant lentivirus into mouse testis.
     5. The apoptosis in cultured leydig cells was decreased in after SWP RNAi and increased after SWP over-expression according to the expression of caspase-3, bax and bcl-2.
     6. The concentration of NO of the supernatant of cultured leydig cells and expression of iNOS increased after SWP RNAi, decreased after SWP overproduction.
     7. The concentration of testosterone of the supernatant of cultured leddig cells decreased after SWP over-expression, increased after SWP RNAi.
     Conclusion
     Augmentation of SWP expression attributes to hypergravity-induced reproductive injury in mouse. The protein-SWP may be an important target for prevention or treatment for hypergravity-induced reproductive injury.
引文
[1] Strollo F. Hormonal changes in humans during spaceflight. Adv Space Biol Med, 1999, 7: 99–129.
    [2] Plakhuta-Plakutina G, Serova L, Dreval A, Tarabrin S. Effect of 22-day spaceflight factors on the state of the sex glands and reproductive capacity of rats. Kosm Biol Aviakosm Med, 1976, 10:40–47.
    [3] Philpott D, Sapp W, Williams C, Stevenson J, Black S, Corbett R. Reduction of the spermatogonial population in rat testes flown on Space Lab-3. Physiologist, 1985, 28:S211–S212.
    [4] Amann R, Deaver D, Zirkin B, Grills G, Sapp W, Veeramachaneni D, Clemens J, Banerjee S, Folmer J, Gruppi C. Effects of microgravity or simulated launch on testicular function in rats. J Appl Physiol, 1992, 73:S174–S185.
    [5] Little BB, Duke PJ. The effects of gravitational forces on reproduction and development. Compr Ther, 1988, 14:3-52.
    [6] Serova LV. Effect of weightlessness on the reproductive system of mammals. Kosm Biol Aviakosm Med, 1989, 23:11-16.
    [7] Gray G, Smith E, Damassa D, Davidson J. Effects of centrifugation stress on pituitary-gonadal function in male rats. J Appl Physiol, 1980, 48:1–5.
    [8] Veeramachaneni D, Deaver D, Amann R. Hypergravity does not affect testicular function. Aviat Space Environ Med, 1998, 69: S49–S50.
    [9] Gatenbeck L, Emeroth P, Johansson B, Stromberg L. Plasma testosterone concentrations in male rats during short and long term stress stimulation. Scad J Urol Nephrol, 1987, 21:139–142.
    [10] Identification of swiprosin 1 in human lymphocytes. Vuadens F, Rufer N, Kress A, Corthésy P, Schneider P, Tissot JD.Proteomics, 2004, 4(8):2216-20.
    [11] Vuadens F, Gasparini D, Deon C, Sanchez JC, Hochstrasser DF, Schneider P et al. Identification of specific proteins in different lymphocyte populations by proteomic tools. Proteomics, 2002, 2: 105–111.
    [12] A Avramidou, C Kroczek, C Lang, W Schuh, H-M Ja¨ck1, D Mielenz. The novel adaptor protein Swiprosin-1 enhances BCR signals and contributes to BCR-induced apoptosis. Cell Death Differ, 2007, 14, 1936–1947.
    [13] Jennings RT, Baker ES. Gynecological and reproductive issues for women in space: a review. Obstet Gynecol Surv, 2000, 55:109–116.
    [14] Monga M, Gorwill R. Effects of altitude, flight, and space travel on reproduction. Semin Reprod Endocrinol, 1990, 8:89–93.
    [15] Morey E. Spaceflight and bone turnover: correlation with a new rat model of weightlessness. Bioscience, 1979, 29:168–172.
    [16] Morey-Holton E, Wronski TJ. Animal models for simulating weightlessness. Physiologist, 1981, 24:S45–S48.
    [17] Popovic V, Popovic P, Honeycutt C. Hormonal changes in antiorthostatic rats. Physiologist, 1982, 25:S77–S78.
    [18] Ortiz R, Wang T, Wade C. Influence of centrifugation and hindlimb suspension on testosterone and corticosterone excretion in rats. Aviat Space Environ Med, 1999, 5:499–504.
    [19] Ortiz R, Wade C, Morey-Holton E. Urinary excretion of LH and testosterone from male rats during exposure to increased gravity: postspaceflight and centrifugation. Proc Soc Exp Biol Med, 2000, 225:98–102.
    [20] Strollo F, Riondino G, Harris B, Strollo G, Casarosa E, Mangrossa N, Ferretti C, Luisi M. The effect of microgravity on testicular androgen secretion. Aviat Space Environ Med, 1998, 69:133–136.
    [21] Lin H, Sui SJ, Jiao HC, Jiang KJ, Zhao JP, Dong H. Effects of diet and stress mimicked by corticosterone administration on early postmortem muscle metabolism of broiler chickens. Poult Sci, 2007, 86(3):545-54.
    [22] Virden WS, Thaxton JP, Corzo A, Dozier WA 3rd, Kidd MT. Evaluation of models using corticosterone and adrenocorticotropin to induce conditions mimicking physiological stress in commercial broilers. Poult Sci, 2007, 86(12):2485-91.
    [23] Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB, 1992, 6: 3051–3064.
    [24] Garthwaite J, Charles SL, Chess-Williams R. Endothelium-derived relaxing factor release an activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature, 1988, 336:385–388.
    [25] Peunova N, Enikopolov G. Amplification of calcium induced gene transcription by nitric oxide in neuronal cells. Nature, 1993, 364:450–453.
    [26] Ignarro LI, Byrns RE, Buga GM, Wood KS. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci, 1987, 84:9265–9269.
    [27] Calver A, Collier J, Vallance P. Nitric oxide and cardiovascular control. Exp Physiol, 1993, 78:303–326.
    [28] Hibbs JB Jr. Synthesis of nitric oxide from L-arginine: a recently discovered pathway induced by cytokines with anti-tumour and antimicrobial activities. Res Immunol, 1991, 142:565–569.
    [29] Karupiah G, Xie QW, Buller RM, Nathan C, Duarte C, MacMicking JD. Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science, 1993, 261:1445–1448.
    [30] Burnett AL, Lowenstein CJ, Bredt DS, Chang TS, Snyder SH. Nitric oxide: a physiologic mediator of penile erection. Science, 1992, 257:401–403.
    [31] Rajfer J, Aronson WJ, Bush P, Dorey FJ, Ignarro LJ. Nitric oxide as a mediator of relaxation of the corpus cavernosum in response to nonadrenergic, noncholinergic neurotransmission. N Engl J Med, 1992, 326:90–94.
    [32] Zini A, O’Bryan MK, Magid M, Schlegel PN. The immunohistochemical localization of endothelial nitric oxide synthase in testis, epididymis and vas suggests a possible role for nitric oxide in spermatogenesis, sperm maturation and programmed cell death. Biol Reprod, 1996, 52:631–637.
    [33] Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen HS, Sucher NJ, Loscalzo J, Singel DJ, and Stamler JS. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitrosocompounds. Nature, 1993, 364: 626–632.
    [34] Hellstrom, W.J.G., Bell, M., Wang, R. and Sikka, S.C. Effects of sodium nitroprusside on sperm motility, viability, and lipid peroxidation. Fertil. Steril, 1994,61, 1117–1122.
    [35] Rosselli, M., Dubey, R., Imthurn, B. et al. Effect of nitric oxide on human spermatozoa: evidence that nitric oxide decreases sperm motility and induces sperm toxicity. Hum. Reprod, 1995, 10, 1786–1790.
    [36] Balercia G, Moretti S, Vignini A, Magagnini M, Mantero F, Boscaro M, Ricciardo-Lamonica G, Mazzanti L. Role of nitric oxide concentrations on human sperm motility. J Androl, 2004, 25(2):245-9.
    [37] Del Punta K, Charreau EH, and Pignataro OP. Nitric oxide inhibits Leydig cell steroidogenesis. Endocrinology, 1996, 137: 5337–5343.
    [38] Valenti S, Cuttica CM, Giusti M, and Giordano G. Nitric oxide modulates Leydig cell function in vitro: is this a way of communication between the immune and endocrine system in the testis? Ann NY Acad Sci, 1999, 876: 298–300.
    [39] Vega IE, Traverso EE, Ferrer-Acosta Y, Matos E, Colon M, Gonzalez J, Dickson D, Hutton M, Lewis J, Yen SH. A novel calcium-binding protein is associated with tau proteins in tauopathy. J Neurochem, 2008, 106(1):96-106.
    [40] Kroczek C, Lang C, Brachs S, Grohmann M, Dütting S, Schweizer A, Nitschke L, Feller SM,J?ck HM, Mielenz D. Swiprosin-1/EFhd2 Controls B Cell Receptor Signaling through the Assembly of the B Cell Receptor, Syk, and Phospholipase C {gamma}2 in Membrane Rafts. J Immunol, 2010 [Epub ahead of print].
    [41] Tfelt-Hansen J, Ferreira A, Yano S, Kanuparthi D, Romero JR, Brown EM, Chattopadhyay N. Calcium-sensing receptor activation induces nitric oxide production in H-500 Leydig cancer cells. Am J Physiol Endocrinol Metab, 2005, 288(6):E1206-13.
    [1] Monga M, Gorwill R. Effects of altitude, flight, and space travel on reproduction. Semin Reprod Endocrinol, 1990, 8:89–93.
    [2] Megory E, Konikoff F, Ishay J, Barr-Nea L. Hypergravity: its effect on the estrous cycle of rats. Experientia, 1977, 33:634–635.
    [3] Megory E, Konikoff F, Ishay JS, Lelyveld J. Hypergravity—its effect on the estrous cycle and hormonal levels in femal rats. In: Holmquest R (ed.), COSPAR Life Sciences and Space Research, vol. 17. Oxford: Pergamon Press, 1979: 213–218.
    [4] Moore J, Duke J. Effects of chronic centrifugation on mouse breeding pairs and their offspring. Physiologist, 1988, 31:S120–S121.
    [5] Ishay J, Barr-Nea L. Effects of hypergravity on rat fertility, pregnancy, parturition and survival. Experientia, 1977, 33:242–246.
    [6] Laura M. Lintault, Elzbieta I. Zakrzewska, et al. In a hypergravity environment neonatal survival is adversely affected by alterations in dam tissue metabolism rather than reduced food intake. J Appl Physiol, 2007, 102: 2186–2193.
    [7] Serova L. Simulation models of weightlessness in mammalian developmental program. J Gravit Physiol, 1998, 5:127–128.
    [8] Oyama J, Platt W. Reproduction and growth of mice and rats under conditions of simulated increased gravity. Am J Physiol, 1967, 212: 164–166.
    [9] Oyama J, Solgaard J, Orrales J, Monson C. Growth of mice and rats conceived and reared at different G intensities during chronic centrifugation. Physiologist, 1985, 28(suppl):S83–S84.
    [10] Megory E, Oyama J. Hypergravity effects on litter size, nursing activity, prolactin, TSH, T3 and T4 in the rat. Aviat Space Environ Med, 1984, 55:1129–1135.
    [11] Ronca A. Altered gravity effects on mothers and offspring: the importance of maternal behavior. J Gravit Physiol, 2001, 8:P133–P136.
    [12] Ronca A, Baer LA, Daunton NG, Wade C. Maternal reproductive experience enhances early postnatal outcome following gestation and birth of rats in hypergravity. Biol Reprod, 2001, 65:805–813.
    [13] Bridges RS, Ronsheim PM. Prolactin (PRL) regulation of maternal behavior in rats: bromocriptine treatment delays and PRL promotes rapid onset of behavior. Endocrinology, 1990, 126:837–848.
    [14] K. Plaut, R. L. Maple, C. E. Wade, L. A. Baer, and A. E. Ronca. Effects of hypergravity on mammary metabolic function: gravity acts as a continuum. J Appl Physiol, December 1, 2003,95(6): 2350 - 2354.
    [15] Zakrzewska EI, Maple R, Lintault L, Wade C, Baer L, Ronca A, Plaut K. Association between gravitational force and tissue metabolism in periparturient rats. J Gravit Physiol, 2004, 11(2):P157-60.
    [16] Gray G, Smith E, Damassa D, Davidson J. Effects of centrifugation stress on pituitary-gonadal function in male rats. J Appl Physiol, 1980, 48:1–5.
    [17] Veeramachaneni D, Deaver D, Amann R. Hypergravity does not affect testicular function. Aviat Space Environ Med, 1998, 69(suppl): S49–S50.
    [18] Ortiz R, Wade C, Morey-Holton E. Urinary excretion of LH and testosterone from male rats during exposure to increased gravity: postspaceflight and centrifugation. Proc Soc Exp Biol Med, 2000, 225:98–102.
    [19] Strollo F, Riondino G, Harris B, Strollo G, Casarosa E, Mangrossa N, Ferretti C, Luisi M. The effect of microgravity on testicular androgen secretion. Aviat Space Environ Med, 1998, 69:133–136.
    [20] Burton, R.R., Smith, A.H. Adaptation to acceleration environments. In: Handbook of Physiology Environmental Physiology. American Physiological Society, Bethesda, MD, 1996. pp. 943-976.
    [21] Smith, A.H., Burton, R.R. Influence of the ambient accelerative force upon mature body size. Growth, 1967, 31: 317-329.
    [22] Wade, C.E., Harper, J.S., Daunton, N.G., Corcoran, M.L., Morey-Holton, E. Body mass change during altered gravity: spaceflight, centrifugation, and return to 1 G. J Gravit Physiol, 1997, 4: 43-48.
    [23] Wade, C.E., Ortiz, R.M., Baer, L.A. Increases in body mass of rats during spaceflight: models and measurements. Aviat Space Environ Med, 2000, 71:1126-1130.
    [24] Oyama, J., Platt, W.T. Reproduction and growth of mice and rats under conditions of simulated increased gravity. Am J Physiol, 1967, 212: 164-166.
    [25] Oyama, J., Solgaard, L., Corrales, J., Monson, C.B. Growth and development of mice and rats conceived and reared at different Gintensities during chronic centrifugation. Physiologist, 1985, 28: S83-84.
    [26] Pitts, G.C., Bull, L.S., Oyama, J. Effect of chronic centrifugation on body composition in the rat. Am J Physiol, 1972, 223: 1044-1048.
    [27] Pitts, G.C. Body size and chronic acceleration. Life Sci Space Res, 1977, 15:251-255.
    [28] Pitts, G.C. Effects of chronic acceleration on body composition. Physiologist, 1982, 25:S13-16.
    [29] Yuwaki, K., Okuno, M. Changes in food intake and growth rate in mice under hypergravity. Biol Sci Space, 2003, 17: 219-220.
    [30] Ronca, A.E., Baer, L.A., Daunton, N.G., Wade, C.E. Maternal reproductive experience enhances early postnatal outcome following gestation and birth of rats in hypergravity. Biol Reprod, 2001, 65: 805-813.
    [31] Moran, M.M., Stein, T.P., Wade, C.E. Hormonal modulation of food intake in response to low leptin levels induced by hypergravity. Exp Biol Med, 2001, 226:740-745.
    [32] Fuller, P.M., Warden, C.H., Barry, S.J., Fuller, C.A. Effects of 2-G exposure on temperature regulation, circadian rhythms, and adiposity in UCP2/3 transgenic mice. J Appl Physiol, 2000, 89: 1491-1498.
    [33] Harrison, B.C., Allen, D.L., Girten, B., Stodieck, L.S., Kostenuik, P.J., Bateman, T.A., Morony, S., Lacey, D., Leinwand, L.A. Skeletal muscle adaptations to microgravity exposure in the mouse. J Appl Physiol, 2003, 95: 2462-2470.
    [34] Keil, L.C. Changes in growth and body composition of mice exposed to chronic centrifugation. Growth, 1969, 33: 83-88.
    [35] Warren, L.E., Horwitz, B.A., Hamilton, J.S., Fuller, C.A. Effects of 2 G on adiposity, leptin, lipoprotein lipase, and uncoupling protein-1 in lean and obese Zucker rats. J Appl Physiol, 2001, 90: 606-614.
    [36] Ortiz, R.M., Wade, C.E. Water balance in rats exposed to chronic centrifugation. J Appl Physiol, 2000, 89: 56-60.
    [37] Bozzo, C., Stevens, L., Bouet, V., Montel, V., Picquet, F., Falempin, M., Lacour, M., Mounier, Y. Hypergravity from conception to adult stage: effects on contractile properties and skeletal muscle phenotype. J Exp Biol, 2004, 207: 2793-2802.
    [38] Burton, R.R., Besch, E.L., Sluka, S.J., Smith, A.H. Differential effects of chronic acceleration on skeletal muscles. J Appl Physiol, 1967, 23:80-84.
    [39] Frey, M., von Kanel-Christen, R., Stalder-Navarro, V., Duke, P.J., Weibel, E.R., Hoppeler, H. Effects of long-term hypergravity on muscle, heart and lung structure of mice. J Comp Physiol [B], 1997, 167: 494-501.
    [40] Martin, W.D., Romond, E.H. Effects of chronic rotation and hypergravity on muscle fibers of soleus and plantaris muscles of the rat. Exp Neurol, 1975, 49: 758-771.
    [41] Martin, W.D. Time course of change in soleus muscle fibers of rats subjected to chronic centrifugation. Aviat Space Environ Med, 1978, 49: 792-797.
    [42] Martin, W.D. Effects of chronic centrifugation on skeletal muscle fibers in young developing rats. Aviat Space Environ Med, 1980, 51: 473-484.
    [43] Picquet, F., Stevens, L., Butler-Browne, G.S., Mounier, Y. Contractile properties and myosin heavy chain composition of newborn rat soleus muscles at different stages of postnatal development. J Muscle Res Cell Motil, 1997, 18: 71-79.
    [44] Picquet, F., Bouet, V., Canu, M.H., Stevens, L., Mounier, Y., Lacour, M., Falempin, M. Contractile properties and myosin expression in rats born and reared in hypergravity. Am J Physiol Regul Integr Comp Physiol, 2002, 282: R1687-1695.
    [45] Roy, R.R., Roy, M.E., Talmadge, R.J., Mendoza, R., Grindeland, R.E., Vasques, M. Size and myosin heavy chain profiles of rat hindlimb extensor muscle fibers after 2 weeks at 2G. Aviat Space Environ Med, 1996, 67: 854-858.
    [46] Stevens, L., Bozzo, C., Nemirovskaya, T., Montel, V., Falempin, M., Mounier, Y. Contractile properties of rat single muscle fibers and myosin and troponin isoform expression after hypergravity. J Appl Physiol, 2003, 94: 2398-2405.
    [47] Vasques, M., Lang, C., Grindeland, R.E., Roy, R.R., Daunton, N., Bigbee, A.J., Wade, C.E. Comparison of hyper- and microgravity on rat muscle, organ weights and selected plasma constituents. Aviat Space Environ Med, 1998, 69:A2-8.
    [48] Holley, D.C., DeRoshia, C.W., Moran, M.M., Wade, C.E. Chronic centrifugation (hypergravity) disrupts the circadian system of the rat. J Appl Physiol, 2003, 95:1266-1278.
    [49] Adams, G.R., Caiozzo, V.J., Baldwin, K.M. Skeletal muscle unweighting: spaceflight and ground-based models. J Appl Physiol, 2003, 95: 2185-2201.
    [50] Fejtek, M.B., Wassersug, R.J. Survey of studies on how spaceflight affects rodent skeletal muscle. Adv Space Biol Med, 1999, 7: 1-30.
    [51] Nikawa, T., Ishidoh, K., Hirasaka, K., Ishihara, I., Ikemoto, M., Kano, M., Kominami, E., Nonaka, I., Ogawa, T., Adams, G.R., Baldwin, K.M., Yasui, N., Kishi, K., Takeda, S. Skeletal muscle gene expression in space-flown rats. Faseb J, 2004, 18: 522-524.
    [52] Stevens, L., Mounier, Y., Holy, X. Functional adaptation of different rat skeletal muscles to weightlessness. Am J Physiol, 1993, 264: R770-776.
    [53] Oyama J, Platt WT, and Holland VB. Deep-body temperature changes in rats exposed to chronic centrifugation. Am J Physiol, 1971, 221: 1271–1277.
    [54] Oyama J. Response and adaptation of beagle dogs to hypergravity. In: Life Sciences and Space Research XIII, edited by Sneath PHA. Berlin: Akademie-Verlag, 1975, p. 11–17.
    [55] Fuller CA. Acute physiological responses of squirrel monkeys exposed to hyperdynamicenvironments. Aviat Space Environ Med, 1984, 55: 226–230.
    [56] Fuller CA. Influence of exposure to a prolonged hyperdynamic field on body temperature in the squirrel monkey. Physiologist, 1985, 28: 157–158.
    [57] Fuller CA, Griffin DW, and Horowitz JM. Circadian responses of mammals to the hyperdynamic environment (Abstract). Physiologist, 1983, 26: 32.
    [58] Murakami DM and Fuller CA. The effect of chronic 2G exposure on mouse circadian rhythms. Grav Space Biol Bull, 1997, 11: 52.
    [59] Murakami DM and Fuller CA. The effect of 2G on mouse circadian rhythms. J Gravit Physiol, 2000, 7: 79–85.
    [60] DeCoursey PJ, Krulas JR, Mele G, and Holley DC. Circadian performance of suprachiasmatic nuclei (SCN)-lesioned antelope ground squirrels in a desert enclosure. Physiol Behav, 1997, 62: 1099–1108.
    [61] Moore-Ede MC, Sulzman FM, and Fuller CA. The Clocks That Time Us: The Circadian Timing System in Mammals. Boston: Harvard University Press, 1982, p. 448.
    [62] Fuller CA, Ishihama LM, and Murakami DM. The regulation of rat activity following exposure to hyperdynamic fields. Physiologist, 1993, 36: 121–22.
    [63] Fuller CA, Murakami DM, and Demaria-Pesce V. Entrainment of circadian rhythms in the rat by one hour G pulses. Physiologist, 1991, 34: 223.
    [64] Fuller CA, Murakami DM, and Sulzman FM. Gravitational biology and the mammalian circadian timing system. Adv Space Res, 1989, 9: 283–292.
    [65] Ishihama LM, Murakami DM, and Fuller CA. Temperature regulation in rats exposed to a 2G field. Physiologist, 1989, 22: 61–62.
    [66] Fuller CA. The primate circadian timekeeping system in a hyperdynamic environment. Physiologist, 1984, 27: 93–94.
    [67] Lafferty JF. Effect of hypergravity on the circadian rhythms of white rats. In: American Society of Mechanical Engineers Winter Annual Meeting, 1972, Nov. 26–30.
    [68] Gridley DS, Nelson GA, Peters LL, Kostenuik PJ, Bateman TA, Morony S, Stodieck LS, Lacey DL, Simske SJ, and Pecaut MJ. Genetic Models in Applied Physiology: Selected Contribution: Effects of spaceflight on immunity in the C57BL/6 mouse. II. Activation, cytokines, erythrocytes, and platelets. J Appl Physiol, 2003, 94: 2095–2103.
    [69] Pecaut MJ, Simske SJ, and Fleshner M. Spaceflight induces changes in splenocyte subpopulations: effectiveness of ground-based models. Am J Physiol Regul Integr Comp Physiol, 2000, 279: R2072–R2078.
    [70] Chapes SK, Simske SJ, Sonnenfeld G, Miller ES, and Zimmerman RJ. Effects of space flight and PEG-IL-2 on rat physiological and immunological responses. J Appl Physiol, 1999, 86: 2065–2076.
    [71] Lesnyak A, Sonnenfeld G, Avery L, Konstantinova I, Rykova M, Meshkov D, and Orlova T. Effect of SLS-2 spaceflight on immunologic parameters of rats. J Appl Physiol, 1996, 81: 178–182.
    [72] Sonnenfeld G, Foster M, Morton D, Bailliard F, Fowler NA, Hakenewerth AM, Bates R, and Miller ES, Jr. Spaceflight and development of immune responses. J Appl Physiol, 1998, 85: 1429–1433.
    [73] Miller ES, Koebel DA, and Sonnenfeld G. Influence of spaceflight on the production of interleukin-3 and interleukin-6 by rat spleen and thymus cells. J Appl Physiol, 1995, 78: 810–813.
    [74] Allebban Z, Ichiki AT, Gibson LA, Jones JB, Congdon CC, and Lange RD. Effects of spaceflight on the number of rat peripheral blood leukocytes and lymphocyte subsets. J Leukoc Biol, 1994, 55: 209–213.
    [75] Ichiki AT, Gibson LA, Jago TL, Strickland KM, Johnson DL, Lange RD, and Allebban Z. Effects of spaceflight on rat peripheral blood leukocytes and bone marrow progenitor cells. J Leukoc Biol, 1996, 60: 37–43.
    [76] Pecaut MJ, Nelson GA, Peters LL, Kostenuik PJ, Bateman TA, Morony S, Stodieck LS, Lacey DL, Simske SJ, and Gridley DS. Genetic Models in Applied Physiology: Selected Contribution: Effects of spaceflight on immunity in the C57BL/6 mouse. I. Immune population distributions. J Appl Physiol, 2003, 94: 2085–2094.
    [77] Sonnenfeld G. Immune responses in space flight. Int J Sports Med, 1998, 19: S195–S202.
    [78] Goldstein, M.A., Cheng, J., Schroeter, J.P. The effects of increased gravity and microgravity on cardiac morphology. Aviat Space Environ Med, 1998, 69: A12-16.
    [79] Gridley, D.S., Pecaut, M.J., Green, L.M., Miller, G.M., Nelson, G.A. Hypergravity-induced immunomodulation in a rodent model: lymphocytes and lymphoid organs. J Gravit Physiol, 2002, 9: 15-27.
    [80] Oyama, J., Platt, W.T. Effects of prolonged centrifugation on growth and organ development of rats. Am J Physiol, 1965, 209: 611-615.
    [81] Turner, R.T. Invited review: what do we know about the effects of spaceflight on bone? J Appl Physiol, 2000, 89: 840-847.
    [82] Jaekel, E., Amtmann, E., Oyama, J. Effect of chronic centrifugation on bone density of the rat.Anat Embryol (Berl), 1977, 151: 223-232.
    [83] Pace, N., Smith, A.H., Rahlmann, D.F. Skeletal mass change as a function of gravitational loading. Physiologist, 1985, 28: S17-20.
    [84] Smith, S.D. Effects of long-term rotation and hypergravity on developing rat femurs. Aviat Space Environ Med, 1975, 46: 248-253.
    [85] Wunder, C.C., Welch, R.C., Cook, K.M. Femur strength as influenced by growth, bone-length and gravity with the male rat. J Biomech, 1979, 12: 501-507.
    [86] Wunder, C.C., Cook, K.M., Watkins, S.R., Moressi, W.J. Femur-bending properties as influenced by gravity: V. Strength vs. calcium and gravity in rats exposed for 2 weeks. Aviat Space Environ Med, 1987, 58: 977-982.
    [87] Fosse, G., Gat, H., Holmbakken, N., Kvinnsland, S. Bone atrophy and hypergravity in mice. Growth, 1974, 38: 329-342.
    [88] Keil, L.C., Evans, J.W. Bone growth and composition in weanling and mature rats exposed to chronic centrifugation. Physiologist, 1979.
    [89] Wunder, C.C. Survival of mice during chronic centrifugation. I. Studies of male mice at different ages at onset of exposure to one field and those at different intensities of gravity for animals of the same age. Aeromed Acta, 1962, 33: 866-870.
    [90] Fuller, P.M., Jones, T.A., Jones, S.M., Fuller, C.A. Neurovestibular modulation of circadian and homeostatic regulation: vestibulohypothalamic connection? Proc Natl Acad Sci U S A, 2002, 99: 15723-15728.
    [91] Sudon, M., Ikawa, S. Response of rats to 3-week centrifugal accelerations. Jpn J Aerospace Environ Med, 1988, 25: 36-74.
    [92] Abe C, Tanaka K, Awazu C, Chen H, Morita H. Plastic alteration of vestibulo-cardiovascular reflex induced by 2 weeks of 3-G load in conscious rats. Exp Brain Res, 2007, 181: 639–646.
    [93] Morita H, Abe C, Awazu C, Tanaka K. Long-term hypergravity induces plastic alterations in vestibulo-cardiovascular reflex in conscious rats. Neurosci Lett, 2007, 412: 201–205.
    [94] Chikara Abe, Kunihiko Tanaka, Chihiro Awazu, and Hironobu Morita. Impairment of vestibular-mediated cardiovascular response and motor coordination in rats born and reared under hypergravity. Am J Physiol Regul Integr Comp Physiol, 2008, 295: R173–R180.
    [95] Dalton, N.G., Ross, M.D., Fox, R.A., Corcoran, M.L., Cutler, L.D., Wu, L.C. Effects of chronic hyper-gravity on the righting reflex and vestibular endorgan in the rat. Neurosc Abs, 1991, 17: 316.
    [96] Fox, R.A., Daunton, N.G., Corcoran, M.L. Study of adaptation to altered gravity throughsystems analysis of motor control. Adv Space Res, 1998. 22: 245-253.
    [97] Sondag, H.N., de Jong, H.A., van Marle, J., Oosterveld, W.J. Effects of sustained acceleration on the morphological properties of otoconia in hamsters. Acta Otolaryngol, 1995. 115: 227-230.
    [98] Sondag, H.N., De Jong, H.A., Van Marle, J., Willekens, B., Oosterveld, W.J. Otoconial alterations after embryonic development in hypergravity. Brain Res Bull, 1996, 40: 353-356.
    [99] Wubbels, R.J., Sondag, H.N., van Marle, J., de Jong, H.A. Effects of hypergravity on the morphological properties of the vestibular sensory epithelium. I. Long-term exposure of rats after full maturation of the labyrinths. Brain Res Bull, 2002, 57: 677-682.
    [100] Wubbels, R.J., van Marle, J., Sondag, H.N., de Jong, H.A. Effects of hypergravity on the morphological properties of the vestibular sensory epithelium. II. Life-long exposure of rats including embryogenesis. Brain Res Bull, 2002, 58: 575-580.
    [101] Karhunen E. Postnatal development of the lateral vestibular nucleus (Deiters’nucleus) of the rat. A light and electron microscopic study. Acta Otolaryngol Suppl (Stockh), 1973, 313: 1–87.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.