枯斑拟盘多毛孢菌毒素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由枯斑拟盘多毛孢菌(Pestalotiopsis funera Desm.)引起的松赤枯病是松树幼龄林上常见的病害,分布广、危害严重。该病在四川自1974年开始发生危害,到1980流行以来,已成为主要针叶林木病害,居林木病害首位。本文首次对枯斑拟盘多毛孢菌致病毒素的离体产生条件、毒素基本特性、专化性特点、毒素对寄主细胞质膜的伤害机制和对不同抗性松属植物细胞超微结构的影响及毒素活性成份分离纯化技术及化学结构进行了较系统的研究,以期了解枯斑拟盘多毛孢菌毒素的致病机理、不同松属植物的抗性反应及毒素活性物质的化学成份,从而为松属植物抗赤枯病育种和科学利用抗赤枯病树种提供可靠的理论基础。
     本研究从四川松属植物分布区8个松属树种上采集松赤枯病样本,经单孢分离获得21个枯斑拟盘多毛孢菌菌株,所产毒素的致病性具明显的多样性。用马尾松、华山松、油松、云南松、湿地松、火炬松、辐射松、黑松一月龄左右的切根苗作生测材料,筛选出较强毒力的松赤枯病菌菌株(PF-1)作毒素产毒条件的研究,结果表明:枯斑拟盘多毛孢菌在七种参试培养基中,以PD培养基产毒最好,在培养基中加入敏感寄主马尾松松针浸出汁不能对毒素的产生和活性起促进作用。枯斑拟盘多毛孢菌在18-22℃、pH6.5-7.0、黑暗、静止状态下产毒最佳(15-27d),这些条件与其菌丝生长、产孢有一定差异,表明枯斑拟盘多毛孢菌的生长与产毒条件不完全一致。
     枯斑拟盘多毛孢菌毒素粗提液的基本特性研究显示:(1)毒素粗提液在80℃以下的温度有较高的稳定性,在高温(90-100℃)条件下,有失活现象发生;酸碱度(pH4-9)对其致病活性没有较为明显的影响。(2)该毒素不溶于乙酸乙酯等非极性溶剂,易溶于乙醇、甲醇等极性较大的溶剂。在氯仿与甲醇按不同比例提取时,随着甲醇比例的提高,提取液的致病活性也不断增强,据此可以推测枯斑盘多毛孢菌毒素可能为一类极性较大的物质(非蛋白类),活性碳能对其吸附,并能用甲醇将其从培养液中较好地提取出来,这些特性的揭示为深入研究毒素提供了可靠的生化依据。
     选用12种不同科属木本植物和15种不同科属杂草对毒素专化性研究表明,松属植物中,马尾松、油松、云南松对毒素最敏感、湿地松、火炬松次之,华山松、辐射松、黑松有较强的抗毒素能力,而不同科属的木本植物柳杉、杉木、南洋杉、兰桉对毒素也有不同程度的反应,说明该毒素为非专化性毒素。同时,不同生测材料试验证
    
    实松幼嫩的针叶对毒素的反应快而敏感,且能产生典型症状,是一种理想的生测材料。
    生测方法研究显示,与浸渍法、涂抹法相比,针刺法不仅反应快,而且用量少,用针
    刺法处理待测针叶,由于粗提液易为植物材料所吸收,在生测过程中不易长出霉菌,
    使生测结果更为直观和准确。本研究还表明枯斑盘多毛抱菌毒素能使十五种杂草中的
    九种产生不同程度的伤害,一方面反应出这种非寄主专化性毒素在除草上有一定选择
    性,另一方面,也表现出广谱的除草能力,这对于开发新型生物除草剂有一定的参考
    价值。
     毒素对不同松属植物细胞膜的伤害通过离子渗漏(电导率换算成膜伤害指数)和丙
    二醛(州DA)含量变化评估:(l)马尾松(29.5/24h)、油松(28.5/2 4h)、云南松(25.7/24h)
    细胞膜伤害指数最大,湿地松(9 .0/2 4h)、火炬松(8 .0/24h)次之,华山松(3.9/2 4h)、
    辐射松(4.6/2 4h)、黑松(4.3/2 4h)最小,这种差异在一定程度上反映了不同松属植物
    在抗病性上的差异,同时研究还发现,随着毒素浓度的降低,寄主膜伤害指数(电导
    率)显著下降,感病树种(马尾松、油松、云南松)在24h时膜伤害指数达最大值,
    而抗病树种(华山松、辐射松、黑松)的膜伤害指数达最大值的时间有所推迟(48h)。
     (2)不同松属植物在毒素处理后,针叶中的MDA含量变化趋势有显著差异,抗病树
    种针叶中MDA含量变化情况不如感病树种(马尾松、油松、云南松)明显,从而说
    明抗病树种(华山松、黑松、辐射松、湿地松、火炬松)细胞膜脂过氧化较低,对毒
    素的忍耐力较强,这实际上是一种抗病性在细胞膜的反应。
     毒素对不同抗病性松属植物愈伤组织破坏的扫描电镜试验表明,正常愈伤组织表
    面结构丰满、圆滑,而毒素可造成松属植物愈伤组织表面结构的破坏,细胞皱缩、空
    瘪,这种破坏作用,随处理时间的延长而增大;并且,马尾松对毒素较华山松更为敏
    感,马尾松愈伤组织表面的毁坏程度比华山松大得多。另一方面,透射电镜显示,感
    病树种马尾松针叶经毒素处理后,细胞壁肿胀,细胞壁多处部分消解,细胞质膜断裂,
    散落在细胞中,细胞发生严重的质壁分离,叶绿体膜破坏、片层无序化,或片层模糊,
    线粒体脊模糊、无序化,脊消解;但抗病树种华山松针叶细胞结构破坏相对较小,常
    在同一视野中有的细胞受害而有的细胞基本正常,说明华山松对枯斑拟盘多毛菌毒素
    有一定的抗性。
     毒素分离纯化及化学结构研究表明:(l)通过对薄层层析展开剂及柱层析填料的
    筛选,得出正丁醇:甲醇:水(60:巧:30)为最佳展开剂,硅胶H60型为最佳填料。
    (2)以生测为评判指标,用硅胶H60型柱反复柱层析,用正丁醇:甲醇:水(60:15:
    
    30)和不
The pine needle blight caused by Pestalotiopsis funerea, a common and serious disease in young pine forest, has been the most important needle-leaf disease in Sichuan forest since the disease occurred in 1974 and became epidemic in 1980. The toxin production condition of P. funerea, the basic nature and host-specific characteristic of the toxin, the pathogenic mechanism of the toxin to host cell membrane, the effect of the toxin on the ultra-structure of cell in various resistant pines, and the purification and chemical structure analysis of the pathogenic composition were systematically studied hi this paper for the first time. These studies may result in understanding the pathogenic mechanism of the toxin, the resistant reaction of various pines to the toxin and the pathogenic composition of the toxin, and further a theory basis for the resistance breeding of pine to needle blight and scientific utilization of the resistant pines are expected to obtain.
    21 strain of P. funerea, toxin of which had obvious diversity in pathogenicity, were isolated by single spore method from 8 pines distributed in Sichuan. Pf-1 , stronger virulence, among 21 strain, was screened out to explore toxin production condition of P. funerea, with the cut-root-seedling of Pinus massoniana f,armandi, P.tabulaeformis, Ryunnanensis, P.elliottii, P.taeda,P.radiata and P.thunbergii as bio-determination materials. The fungus could reach the maximum toxin production in PD medium out of 7 tested culture liquid media, but the addition of pine needle extract to PD could not promote the toxin production and pathogenicity of this fungus. The fittest toxin production conditions of p. funerea were 18-22C , pH 6.5-7.0,dark,stilling culture for 15-27d, and there were a little difference between toxin production and hyphae growth, spore production conditions, that revealed that toxin production conditions of P. funerea were not completely in accord with those of growth of the fungus.
    Studies of the toxin crude extract traits showed: (1) The toxin crude extract was stronger resistant to less than 80C but the pathogenic composition of toxin crude extract was decomposed in high temperature condition(90-100C) , and pH 4-9 did not significantly affect the virulence of the toxin crude extract. (2) The toxin was not dissolved in non-polar solvent, such as ethyl acetate, but was dissolved in the higher-polar solvent, such as alcohol,
    
    
    methanol . With the solvents of various proportions of chloroform to methanol as extract solvents, the higher the proportion of methanol was, the stronger the pathogenicity of toxin extract was, therefore, it should be presumed that the toxin produced by P. funerea could be a higher-polar substance. The toxin, which could be absorbed by activated charcoal and be fully extracted by methanol from its culture liquid, was not a kind of protein material. All the characteristics of toxin provided biochemical basis for thorough study of toxin.
    12 arbor plants and 15 weeds from various families or genus were selected to study specification of toxin from P. funerea to host, the result showed that in pines, P. massoniana , P.tabulaeformis and P.yunnanensis were the most sensible to the toxin, P.elliottii , P.taeda for taking second place, and P.armandi, P.radiata and P.thunbergii were stronger resistant to the toxin, meanwhile, the various sensibilities of Cryptomeria fortunei, Cunningghamia lanceolata, Araucaria cunninghammi and Eucalyptus globules to the toxin were proved, these studies implied that the toxin belonged to a non-host specification toxin(NHST). On the other hand, the different bio-determination materials suggested that the immature pine needle, which was quick and sensitive to toxin and produced obvious infected symptom, was the ideal material for bio-determination. Compared with the methods of soaking and applying, acupuncture was the best method for bio-determination that had the features of quick reaction to toxin and low consumption of toxin. The fact that mold did not grow on the pine needles dealt with acupunctu
引文
1、Steyaert RL. Contribution to the monographic studies of Pestalotia de Not. and Monochaetia Sacc.(Truncatella gen. Nov. et Pestalotiopsis gen.nov.). Bull Jard Bot Brux, 1949, 19(3):285-354
    2、Steyaert RL. New and old species of Pestalotiopsis. Trans Br Mycol Soc, 1953, 36:81-89
    3、Steyaert RL. Pestalotia, Pestalotiopsis et Truncatella. Bull Jard Bot Brux, 1955, 25(2):191-199
    4、Guba EF. Mycological nomenclature. Mycologia 1932,24: 415-416.
    5、Guba EF. Monograph of Monochaetia and Pestalotia. Cambridge, Mass, Harvard Univ.Press, 1961
    6、Sutton BC. Coelomycetes Ⅰ. Mycol Pap, 1969, 80(16):201.
    7、Sutton BC. Coelomycetes Ⅴ. Coryncum. Mycol Pap, 1975, 138:1-224
    8、Sutton BC. The Coelomycetes. Commonwealth Mycological Institute, England (1980). 696 pp
    9、Dube HC, Bilgrami KS, Pestalotia or Pestalotiopsis. Mycopath Mycol Appli, 1966,29(1-2):33-54.
    10、Griffiths DA, Swart HJ, Conidail structure in two species of Pestalotiopsis. Trans Br Mycol Soc, 1973,62(2):295-304.
    11、Rai TRN, Redisposal and rediscriptions in the Monochaetia-Seridium, Pestalotia-Pestalotiopsis complexs Ⅰ:The correct name for the type species of Pestalotiopsis.Mycotaxon 1985,22(1):42-51
    12、Satya HN, Saksena SB. Some aspects of taxonomy of genus Pestalotia Ⅱ: Observation on the structure of conidia. Kavaka 1975,3:119-123
    13、Shen QY. Species of Pestalozzia and Monochaetia in China Ⅰ. Contr Biol Lab Sci Soc China Bot Set, 1932, 7:131-141
    14、戴芳澜,中国真菌总汇,北京:科学出版社。1979,p1018-1024
    15、陈育新,何有乾,盘多毛孢属(Pestalotia)和盘单毛孢属(Monochaetia)调查研究与分类定种初报,广西农学院学报,1982,(1):27-32。
    16、Sun XA, Ge QX, Ten new combinations of the genus Pestalotiopsis from China. Acta Agric Univ Zhej, 1990, 16(Suppl.2):141-150.
    17、罗孟军,朱天辉,枯斑盘多毛孢菌生物学特性的研究,四川林业科技,2001,22 (3) 15-18。
    18、[德]R.海蒂弗斯 [美]P.H.威廉斯 主编 朱有釭 宋佐衡译 植物病理生理学,北京:农业出版社 1991,225-274
    19、Abbas HK, Tanaka T, Duke SO, Porter JK, Wray EM,et al., Fumonisin and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases. Plant Physio. 1994,106:1085-93
    20、Adeishvii T, Simonyan GG, Tarabrin G A, et al. Effect of toxins of the fungus Bipolaris sorokiniana(Saec.) on photochemical activity of wheat chloroplast [J]. Soviet Plant Physiology, 1989, 36 (1): 116-121.
    21、Ahn JH, Cheng YQ, Walton JD. An extended physical map of TOX2 locus of Cochliobolus carbonum required for biosynthesis of HC-toxin. Fungal Genet. Biol. 2002,35:31-38.
    22、Ahn JH, Walton JD. Chromosomal organization of TOX2, a complexlocus controlling host-selective toxin biosynthesis in Cochliobolus carbonum. Plant Cell, 1996,8:887-97
    23、Akamatsu H,Itoh Y, Kodama M,Otani H,Kohmoto K. AAL-toxin-deficient mutants of Alternaria alternata tomato pathotype by restrction enzymemediated integration. Phytopathology,1997,87:967-72
    
    
    24. Arias JA,Dunkle LD, Bracker CE. Ultrastructural and developmental alteration induced by Periconia citrinata toxin in in the root tip of sorghum.Can.J.Bot.1983,16:1491-505.
    25. Bains,PS,Tewari,JP. Purification, chemical characterization and host-specificity of the toxin produced by Alternaria brassicae. Physio. Mol. Plant Pathol. 1987,30:259-271.
    26. Balance GM, Lamari L,Bernier CC. Purification and characterization of host-selective necrosis toxin from Pyrenophora tritici-repentis. Physiol.Mol.Plant Pathol. 1989,35:203-13.
    27. Ballio A. Non-host-selective fungal phytotoxin:Biochemical aspects of their mode of action. Experientia, 1991,47:783-790.
    28. Bexuidenhout SC, Gelderblom WCA, Gorst-Allmann RMM,Marasas WFO, Spiteller G,et al. Structure elucidation of the fumonisins, mycotoxins from Fusarium moniliforme. J.Chem.Soc,Chem. Commun,1988,11:743-45.
    29. Bobylev M, Bobyleva Li, Strobel GA. Synthesis and bioactivity of analogs of maculosin, a host-specific phytotoxin produced by Alternaria alternata on appotted knapweed(Centaurea maculosa).J.Agric. Food Chem. 1996,44:3960-64.
    30. Bottini AT, Bowen JR, Gilchrist DG. Phytotoxins II. Characterization of a phytotoxin fraction from Alternaria alternata f.sp.lycopersici. Tetrahedron Lett.1981,22:2723-26.
    31. Bottini AT, Gilchrist DG. Phytotoxins I. A 1-aminodimethyheptadecapentol from Alternaria alternata f.sp.fycopersici. Tetrahedron Lett.. 1981,22:2719-22.
    32. Brandwagt BF, kneppers TJA, Van der Weerden GM, Nijkamp Hille J. Most AALtoxin-sensitive Nicotiana species are resistant to the tomato fungal pathogen Alternaria alternata f.sp.lycopersici. Mol. Plant-Microbe Interact. 2001,14:460-70.
    33. Bronson CR. Scheffer R P. Heat and aging-induced tolerance of sorghum and oat tissues to host selective toxin. Phytopathology,1997:67:1232-1238.
    34. Brosch G,Ransom R, Lechner T,Walton JD,Loidl P. Inhibition of maize histone deacerylase by HC toxin, the host-selective toxin of Cochliobolus carbonum. Plant Cell, 1995,7:1941-50
    35. Brown DA,Hunger RM. Production of a chlorosis-inducing,host-specific, low-molecular weight toxin by isolates of Pyrenophora tritici-repentis.cause of tan spot of wheat. J.Phytopathol. 1993. 137:221-32.
    36. Buchwaldt L, Jensen JS. HPLC purification of destruxins produced by Alternaria brassicae in culture on leaves of Brassica napus. Phytochemistry. 1991,30:2311-16.
    37. Caldas ED,Jones AD,Ward B,Winter CK,Gilchrist DG. Structural characterization of three new AAL-toxins produced by Alternaria alternata f.sp.lycopersici. J.Agric. Food Chem. 1994,42:327-33.
    38. Chang HR, Bronson CR. A reciprocal tranlocation and possible insertions tightly associated with host-specific virulence in Cochliobolus heterostrophus. Genome, 1996,39:549-57.
    39. Chen JP, Mirocha CJ, Xie WP, Hogge L, Olson D. Production of the mycotoxin fumonisin Bl by Alternaria alternata f.sp.lycopersici. Appl. Environ. Microbiol.l992,58:3928-31.
    40. Cheng YQ, AhnJH, Walton JD. A putative branched-chain-amino-acid transaminase gene required for HC-toxin biosynthesis and pathogenicity in Cochliobolus carbonum. Microbiology,1999,145:3539-46.
    41. Chil YK, Rasmussen JB, Frand L J,Meinhardt SW. A quantitative bioassay for necrosis toxin from Pyrenophora tritici-repentis based on electrolyte leakage. Phytopathol.,1996,86:1360-1363.
    
    
    42. Ciuffetti LM, Francl LJ, Balance GM,Bockus WW, Lamari L,et al. Standardisation of toxin nomenclature in the Pyrenophora tritici-repentis/wheat interaction. Can.J.Plant Pathol. 1998,20:422-25.
    43. Ciuffetti LM, Kim SD,Knoche HW,Dunkle LD. Maize DNAalkylation and genotype-specific alteration in protein synthesis induced by the host selective toxin produced by Cochliobolus carbonum. Physiol.Mol.Plant Pathol. 1995,46:61-70
    44. Ciuffetti LM, Pope MR,Dunkle LD,Daly JM,Knoche HW. Isolation and structure of an inactive product derived from the host-specific toxin produced by Helminthosporium carbonum. Biochemistry .1983,22:3507-10.
    45. Ciuffetti LM,Tuori RP,Gaventa JM. A single gene encodes a selective toxin causal to the development of tan apot of wheat. Pplant Cell. 1997,9:135-44.
    46. Couse SD, Gilchrist DG. Interaction of the asc locus in F8 paired lines of tomato with Alternaria alternata f.sp.lycopersici.and AAL-toxin. Phytopatholgy, 1987,77:80-82.
    47. Comstock JC,Martinson CA,Gengenbach BG. Host specificity of atoxin from Phyllosticta maydis for Texas cytoplasmically male sterile maize. Phytopathology, 1973,63:1357-60.
    48. Comstock JC, Scheffer RP. Role of nost-selective toxin in colonization of corn leaves by Helminthosporium carbonwn. Phytopathology, 1973,63:24-29.
    49. Damann K E.Gardner JR J M and Scheffer R P. An assay for Helminthosporium victorias toxin based on induced leakage of electrolytes from oat tissue. Phytopathol. 1974,64:652-654.
    50. Danko SJ, Kono Y, Daly JM,Suzuki Y,Takeuchi S,et al. Structure and biological activity of a host-specific toxin produced by the fungal corn pathogen Phyllosticta maydis. Biochemistry ,1984,23:759-66.
    51. Daub ME,Hangarter RP. Light-induced production of singlet oxygen and superoxide by the fungal toxin, cercosporin. Plant PhysioL.1983,73:855-57.
    52. Dewey RE, Siedow JN, Timothy DH,Levings CS III. A 13-kilodalton maiz mitochondrial protein in E. coli confers sensitivity to Bipolaris maydis toxin. Scienc ,1988,239:293-95.
    53. Dunkle LD,Cantone FA.Ciuffetti LM. Accumulation of host-specific toxin produced by Cochliobolus carbonwn during pathogenesis of maize. Physiol. Mol. Plant Pathol. 1991,38:265-73.
    54. Effertz RJ, Meinhardt SW, Anderson JA, Jordahl JG, Francl LJ. Identification of a chlorosis-inducing toxin from Pyrenophora tritici-repentis and the chromosomal location of an insensitivity locus in wheat. Phytopathology ,2002,92:527-33.
    55. Feng BN, Nakatsuka S,Goto T,Tsuge T,Nishimura S. Biosynthesis of host-selective toxins produced by Alternaria alternata pathogens.I.(8R-9S)-9,10-epoxy-8-hydroxy-9-memyl-deca(2E,4Z,6E)-trienoic acid as a biological precursor of AK-toxins. Agric.Biol.Chem. 1990,54:845-48.
    56. Gardner JM, Kono Y,Tatum JM,Suzuki Y,Takeucui S. Plant pathotoxins from Alternaria citri:the major toxin specific for rough lemon plants. Phytochemistry, 1985,24:2861-68.
    57. Gardner JM, Scheffer RP, Higinbotham N. Effects of host-apecific toxins on electropotentials of plant cells. Plant Physiol. 1974,54:246-49.
    58. Gardner J M, Scheffer R P. Effects of cycloheximide and sulfhydry-binding compounds on sensitivity of oat tissues to Helminthosporium victoriae toxin. Plant Pathbl.l973,3:147-157.
    59. Gilchrist DG. Grogan RG. Production and nature of a host-specific toxin from Alternaria alternata f.sp.lycopersici.Phytopathology ,1976,66:165-71.
    
    
    60. Gross ML,McCrery D, Crow F, Tomer KB,Pipe MR,et al. The strucrure of the toxin from Helminthosporium carbonum. Tetrahedron Lett.1982,23:5381-84.
    61. Holden J H, Helminthosporium maydis T toxin increased membrance permeability to Ca2+ in susceptible corn mito chondria .Plant Physiol., 1984,75:225.
    62. Johnson RD,JohnsonL,Itoh Y,Kodama M,Otani H,et al, Cloning and characterization of a cyclic peptide synthetase gene from Alternaria alternate apple pathotype whose product is involved in AM-toxin synthesis and pathogenicity. Mol. Plant-Microbe Interact. 200013:742-53.
    63. Kim SD, KnocheHW, Dunkle LD. Essentiality of the ketone function for toxicity of the host-specific toxin produced by Helminthosporium carboman. Physiol.Mol. Plant Pathol.l987,30:433-40
    64. Kimber A, Sze H . Helminthosporium maydis T toxin decreased calcium transport into mitochondria of susceptible corn.Plant Physiol.,1984,74:804.
    65. Knoche HW, Duvik JP. The role of fungal toxins in plant disease. 1987,Page 158-192:Fungal Infection of Plants.G.F.Pegg and P.G.Ayres,eds.Cambridge University Press.Cambridge.
    66. Kodama M., Suzuki,T, Otani,H,Kohmoto,K, and Nishimura,S Purification and bioassay of host-selective AT-toxin from Alternaria alternata causing brown spot of tobacco .Ann. Phytopathol. Soc. Jpn, 1990,56:628-636.
    67. Kohmoto K, Hosotani K, Otani H, Nishimura S. Partial purification of host-specific toxin(AT)produced by tobacco pathotype of Alternaria alternata , Ann.Phytopathol.Soc. Jpn,1981,47:384.
    68. Kono Y, Daly LM. Characterization of the host-specific pathotoxin produced by Helminthosporium maydis,race T, affecting corn with Texas male sterile cytoplasm. Bioorg. Chem.l979. 8:391-97.
    69. Kono Y, Danko SJ,Suzuki Y.Takeuchi S, Daly JM. Structure of the host-specific pathotoxins produced by Phyllosticta maydis. Tetrahedron Lett.l983,24:3803-06.
    70. Kono Y, Gardner JM, Takeuchi S. Structure of the host-selective toxins produced by a pathotype of Alternaria citri causing brown spot disease of mandrins. Agric. Bipl.Chem. 1986,50:801-4.
    71. Kono Y, Kinsoshita T, Takeuchi S, Daly JM. Structure of HV-toxin M, a host-specific toxin-related compound produced by Helminthosporium victoriae. Agric. Biol.Chem. 1986,50:2689-91.
    72. Kwon CY, Rasmussen JB,Francl LJ, Meinhart SW. Aquantitative bioassay for necrosis toxin from Pyrenophora tritici-repentis based on electrolyte leakade. Phytopathology,1996,86:1360-63.
    73. Lamprecht SC,Marasas WFO,AIterts JF.Cawood ME,GeIderblom WCA.et al. Phytotoxicity of fumonisins and TA-toxin to com and tomato. Phytopathology, 1994,84:383-91.
    74. Leach J,Tegtmeier KJ, Daly JM, Yoder OC, Dominance at the Toxl locus controlling T-toxin production by Cochliobolus heterostrostrophus. Physiol.Plant Pathol. 1982,21:327-33.
    75. Levings CS,Rhoads DM,Siedow JN. Molecular interactions of Bipolaris maydis T-toxin and maize.Can.J.Bot. 1995,73:8483-89.
    76. L iakopoulou-Kyriakides M, Lagopodi AL,Thanassoulopoulos CC, Stavropoulos GS,Magafa V. Isolation and synthesis of a host-selective toxin produced by Alternaria alternata . Phytochemistry, 1997,45:37-40
    77. Livingston RS, Scheffer RP. Conversion of Helminthosporium sacchari toxin to toxoids by β-galactofuranosidase from Helminthosporium . Plant Phsiol.1983,72:530-34.
    78. Mathur B,Chand L. Effect of Alternaria brassicae toxin on photosynthesis and photorespiration in
    
    brassica cultivars. Crop Res.,1991,4(1) :146-151.
    79. Nutsugah SK,Kohmoto,K,Otani,H,Kodama,M,and Sunkeswari,RR Production of a host-specific toxin by germinating spores of Alternaria tenuissima causing leaf spot of pigeon pea. J. Phytopathol. 1994,140:19-30
    80. Otani H, Kodama M,and Kohmoto,K1996. Physiological and molecular aspects of Alternaria host-specific toxin and interactions.Pages 258-267 in: Molecular Aspects of Pathogenicity and Resistance: Requirement for Signal Transduction. D.Mills,H. Kunoh, N,T.keen,and S.Mayama, eds. The American Phytopathological Society, St.Paul.MN.
    81. Otani H, Kohmoto K,and Kodama M. Alternaria toxins and their effects on host plants .Can.J.Bot. 1995,73(Suppl.):S453-S458
    82. Otani H, Kohnobe A, Kodama M,and Kohmoto K, Production of a host-specific toxin by germinating apores of Alternaria brassicicola. Physiol. Mol. Plant Pathol. 1998. 52:285-295.
    83. Otani H, Kohnobe A, Kodama M,and Kohmoto K,1998. Involvement of host factors in the production of host-specific toxin produced by Alternaria brassicicola. Page 63-69in: Molecular Genetics of Host-Specific Toxin in Plant Disease. K.Kohmoto and O. C. Yoder.eds.Kluwer Academic Publishers,Dordrecht,The Netherlands.
    84. Peever TL ,Hinggins V J. Electrolyte leakage,lipoxygenase and lipid petroxidation induced in tomato leaf tissue by specific and non-specific elicitors from Cladosporium fulvum. Plant Physiol.,1989,90:867.
    85. Putut PM, Lineberger R D, Domir SC , et al, Ultra-structure of cells of Ulmus Americana cultured in vitro and exposed to the culture filtrate of Ceratocystis ulmi[J]. Phtopathology, 1990, 80(8) :764-767.
    86. Robert P, Scheffer; Robert S, Livingston. 寄主选择性毒素及其在植病中的作用。 Science, 1984,223:17-21
    87. Robeson DJ, Strobel GA. Deoxyradicinin, a novel phytotoxin from Alternaria helianthi[J]. Phtochemimistry, 1982, 21 (7) : 1821-1823.
    88. Rudolph K,1976. Non-specific toxins,Pages 270-315 in:Physiological Plant Pathology. R.Heitefuss and P H Williams,eds. Springer-Verlag, New York.
    89. Stierle AC.Cardellina JH,II, and Strobel,G.A. Maculosin,a host-specific phytotoxin for spotted knapweed from Alternaria alternata. Proc. Natl. Acad.Sci. USA 1988,85:8008-8011.
    90. Tal B, Robeson D J, Burke B A. Phytotoxins from Alternaria heliathi radicinin,and the structures of deoxyradicinol and radianthin[J]. Phtochemimistry, 1985, 24(4) :729-731.
    91. Tietjen KG, Schaller E,and Matern U. Phytotoxins from Alternaria carthami Chowdhury: Structural identification and physiological significance. Physiol. Plant Pathol. 1983,23:387-400.
    92. Tonuja V. In vitro production of phytotoxin by Alternaria triticina influence of nutritional and hormonal factors. Indian Journal of Plant Pathology,1987,5(l):49-52.
    93. Waiton JD, Panaccione DG. Host-selective toxins: Perspectives and progress.Annu. Rev.Phytopathol. 1993,31:275-303.
    94. Yong AB, Davis ND.温度和水分对交链孢菌酮酸产生的影响。 Phytopathology,1980,70(7) :607-609
    95、 王金生,分子植物病理学,北京:中国农业出版社,1998,p29-33.
    96. Deacon JW. Introduction to Modern Mycology (Second edition) Blackwell Scientific
    
    Publications 1984
    97、Yoder OC. Toxins In Pathogenesis Ann. Rev. Phytopathol. 1980 (18): 103~129
    98、Tsuge T, Kobayashi H. Metabolic regulation of host-specific toxin production in Afternaria afternata pathogens (4) Molecular cloning of mRNA in AK-toxin producing isolate Ann phytopath Soc. Japan 1986 (52): 690~699
    99、马振国 董金皋 芸苔链格孢毒素致病机理及钝化初步研究 河北农业大学学报 2000,23(1):63~66
    100、Pyoyun Park and Kazutoshi UNNO Temporary Acceleration of Exocytosis of Polysaccharides in Susceptible Strawberry Leaves by AF-toxin I from Alternaria afternata Strawberry Pathotype Ann. Phytopathol. Soc. Jpn. 1999 (65): 515~520
    101、Vidhyasekaran P, Borromeo E S, and Mew T W, Host-Specific Toxin Production by Helminthosporium oryzae Phytopathology 1989, 76 (3): 261~266
    102、Tegtmeier K J, Daly J M and Yoder OC. T-Toxin Production By Near-Isogenic Isolates of Cochliobolus heterostrophus Race T and O Phytopathology 1982, 72 (11): 1492~1495
    103、Mark S, Lesney, Robert S, Livingston, et al. Effects of Toxin from Helminthosporium sacchari on Nongreen Tissues and a Reexamination of Toxin Binding Phytopathology 1982, 72 (7): 844~8489
    104、段双料 应用玉米小斑病 T 小种毒素粗提液快速测定 T 形细胞质玉米技术方法的研究 植物病理学报 1981,11(4):58~59
    105、Scheffer RP, Nelson R R. Inheritance of toxin production and pathogenicty in Cochliobolus carbenum and Cochliobolus victoriae Phytopathology 1967(57): 1288~1291
    106、Scheffer R P, Pringle Pringle RB. A selective toxin produced by Periconic circinata. Nature, 1961(191); 912~913
    107、Yoder O C. A selective toxin produced by Phyllosticta maydis Phytopathology 1973 (63): 1361~1366
    108、叶建仁 祁高富 松针褐斑病毒毒素的专化性研究 南京林业大学学报 1999,23(6):1~4
    109、叶建仁 松针褐斑病致病机制的研究 林业科学研究 1998,11(3):243~248
    110、Miller J D, Greenhalgh R, Wang YZ et al Mycologia 1991, 83(2)-121~130
    111、王裕中 米勒 JD. 中国小麦赤霉病菌优势种—禾谷镰刀菌产毒能力的研究 真菌学报 1994,13(3):229~234
    112、史晓榕 白建法 白丽 串珠镰刀菌毒素对玉米胚根抑制作用的研究 植物保护学报 1994,21(3):243~274
    113、辛德颐 马霉玉米中毒的病分析 畜牧兽医学报 1987,18(2):125~128
    114、章红 串珠镰刀菌及其毒理 微生物学报 1989,29(2):93~100
    115、崔洋 马春红 纯化玉米小斑病菌 C 小种毒素生物活性的研究 植物病理学报 1992,
    
    22(2):175~178
    116、章元寿 王建新 棉花黄萎病菌毒素对棉花作用机制的初步探讨 植物病理学报 1991,21(1):49~52
    117、陈绍江 王金陵 大豆紫斑病菌毒素研究 植物病理学报 1996,26 (1):45~48
    118、陈绍江 王金陵 大豆灰斑病菌毒素生物活性分析 植物病理学报 1998,28(3):233~236
    119、刘亚光 杨庆凯 大豆灰斑病菌毒素产生条件的研究 菌物系统 2000,19(1):137—138
    120、欧阳丰 谢丙炎 辣椒炭疽病菌毒素 真菌学报 1993,12(4):289~296
    121、康霄文 龙晓波 水稻纹枯病菌毒素的初步研究 沈阳农业大学学报 1992,23(1):19~22
    122、翟国英 黄梧芳 玉米大斑病菌致病毒素及其应用的初步研究 河北农业大学学报 1991,14(4):65~71
    123、马振国,董金皋 芸苔链格孢毒素致病机理及钝化初步研究 河北农业大学学报 2000,23(1):63~66
    124、孙顺娣 豌豆不同品种对茄病镰刀菌感病性及对其毒素敏感性之间的相关性,植物病理学报 1995,25(2):155~160
    125、王疏 白元俊 稻曲病菌的病原学 植物病理学报 1998,28(1):19~24
    126、王广金 抗感小麦品种对赤霉病菌毒素的反应 植物病理学报 1999,29(4):320~325
    127、樊慕贞,董金皋 白菜黑斑病菌(Alternaria brassicae)菌丝生长和毒素产生条件的研究 河北农业大学学报 1995,18(4):21~26
    128、吕金殿,甘莉 棉花黄萎病菌毒素的纯化与特性研究 植物病理学报 1991,21(2):129~133
    129、魏大为,王建新 大丽轮枝菌继代菌株和复壮菌株的毒素致萎活性比较 南京农业大学学报 1992,15(4):114~116
    130、祁高富,叶建仁 松针褐斑病菌毒素的确定及基本性质研究 南京林业大学学报 1999,23(4):17~24
    131、郑晓莲,董金皋 灰葡萄孢毒素组分分析和生物测定 植物病理学报 1998,28(3):269~271
    132、左豫虎,康振生 雪腐格氏霉粗毒素导致小麦叶组织膜渗透透性和超微结构的变化初报 植物病理学报 1998,28(2):172~173
    133、陈捷,高洪敏 玉米茎腐病菌毒素对寄主幼苗胚根超微结构的影响 植物病理学报 1997,27:242
    134、朱宝成 草莓灰霉病菌的培养、毒素的提取及生物测定 植物病理学报 1994,24(3):239~243
    135、董金皋,樊慕贞 芸苔链格孢菌毒素对白菜细胞膜透性、SOD酶和POD酶活性的影响 植物病理学报 1999,29(2):138~141
    136、叶建仁,祁高富 松针褐斑病菌毒素对寄主细胞质膜伤害机理的研究 林业科学
    
    2000,36(2):82~86
    137、李秀琴,陈捷 玉米全蚀病菌毒素的初步研究 沈阳农业大学学报 1992,23(3):221~223
    138、康绍兰,董金皋 诱发小麦抗根腐病突变体研究Ⅱ影响小麦根腐病菌致病毒素作用的因素与生物测定初探 河北农业大学学报 1991,14(2):54~59
    139、董金皋,李正平 玉米大斑病菌毒素结构的确定及几种类似物的毒性比较 植物病理学报 1997,27(3):257~261
    140、谢丙炎,朱国仁 辣椒疫霉致病毒素 菌物系统 1997,16(4):274~280
    141、吴畏,杨家书 小麦长蠕孢菌毒素 真菌学报 1989,8(1):70~79
    142、董金皋,周宗山 玉米大斑病菌HT-毒素组分Ⅱ的化学结构 植物病理学报 2000,30(2):166~167
    143、崔洋 玉米小斑病菌T小种毒素的分离、纯化及其病理反应 植物病理学报 1992,22(4):187~191
    144、夏德术,余毓君 不同培养条件对赤霉病菌毒素产生的影响 植物病理学报 1991,21:262
    145、董金皋,黄梧芳 玉米大斑病菌致病毒素的分离和硅胶TL层析 植物病理学报 1992,22:356
    146、李正平,董金皋 玉米大斑病菌Ht-毒素的硅胶 G 柱层析分析 河北农业大学学报 1995,18(4):1~4
    147、李汉卿,谢胜学 玉米赤霉烯酮的研究 植物病理学报 1992,22:4
    148、崔洋,刘克明 玉米小斑病菌 C 小种毒素的分离纯化及其植物反应 植物病理学报 1991,21(3):187~191
    149、徐雍皋,姚成林 麦类赤霉病病麦毒素对小麦毒性作用的研究 南京农业大学学报 1990,13(2):58~63
    151、王江柱,董金皋 寄主选择性植物病原真菌毒素致病机制研究现状 河北农业大学学报 1995,18(3):101~106
    150、吴畏:杨家书 小麦对根腐病菌毒素的抗性与电阻变化关系研究 植物病理学报 1988,18(2):65~70
    151、王江柱,董金皋 寄主选择性植物病原真菌毒素致病机制研究现状 河北农业大学学报 1995,18(3):101~106
    152、高必达,吴友三 麦根腐长蠕孢毒素的研究概况 沈阳农业大学学报 1991,22(2):158~163
    153、于莉 黑斑毒素的提取及对向日葵超微结构和防御酶系的影响 植物病理学报 2000,23(1)
    154、董金皋,闫淑娟 玉米大斑病菌HT-毒素对玉米细胞 CAT 酶活性的影响 植物病理学报 1999,29(4):372~373
    155、李颖章,韩碧文 黄萎病菌毒素诱导棉花愈伤组织中 POD、SOD 活性和 PR 蛋白的变化 中国农业大学学报 2000,5(3):73~79
    156、Kaur G, Singh U S, Gang G R Mode of action of toxin isolated from Fusarium oxysporum f. sp. ciceri Ird Phytopathol 1987, 40 (1): 76~84
    
    
    157、Cristinzio G, Capasso R. Isolation of a Phytotoxin from an isolate of Phytophthora nicotianae pathogenic to tomato Difesa-delle-Piante 1992, 15; 3, 3~13
    158、孙光祖,王广金 小麦抗根腐病突变体抗病机理的探讨 核农学报 1992,6(4):193~198
    159、陈利锋 镰孢菌单端孢霉烯族毒素的生物合成 农业生物技术学报 1998,6(1):85—89
    160、张金林,董金皋 葱紫斑病菌毒素的纯化及除草活性 植物保护学报 2000,27(3):285~286
    161、Abbas Hk, Boyette CD, Bioherbicidal potential of Fusarium monoliforme and its phytotoxin, furnonisin Weed Science, 1991, 39; 4, 673~677
    162、Jones RW, Hancock JG. Soilborne fungi for biological control of weeds acs-symposium-series 1990(439); 276~286
    163、Kim KW, ChoKy, Identification of phytotoxins produced by Drechslera porturlacae, a pathogen of purslane (Portulaca oleracea), I. Isolation of methyldihydroxy-zearalenone and its herbicidal activity Korean-Jouranal-of-Weed-Science 1994, 14; 3, 184~191
    164、Howell CK, Stipanovic RD, Effect of sterol biosynthesis inhibitors on phytotoxin (viridiol) production by Gliocladium virens in culture Phytopathology 1994, 84(9): 969~972
    165、冯红,邱德勋 气温降水对马尾松赤枯病影响的通径分析 森林病虫通讯 1995,3:6~9
    166、邱德勋,谭松波 马尾松赤枯病的初步研究 林业科学 1980,16(3):203~207
    167、肖育贵 马尾松赤枯病地理分布研究 森林病虫通讯 1993,3:1~3
    168、肖育贵,陈守常 马尾松赤枯病流行性规律的研究 四川林业科技 1998,19(3):4~8
    169、张文勤,王殷传 马尾松赤枯病空间分布型及抽样技术 林业科技开发 1995,3:27~28
    170、谭松波,林坤华 几种烟剂防治马尾松赤枯病试验 林业科技通讯 1986,1:27~29
    171、袁嗣令 主编 中国乔、灌木病害 科学出版社 1997,p22-23
    172、方中达 植病研究方法(第三版) 北京:中国农业出版社 1998,p137-140
    173、周同惠 纸色谱和薄层色谱 北京:科学出版社 1989,p38-156
    174、姚新生 天然药物化学(第三版) 北京:人民卫生出版社 1997,p63-116
    175、于世林主编 波谱分析法(第二版) 重庆:重庆大学出版社 1996,p34-203
    176、孙毓庆 分析化学(下册,第四版) 北京:人民卫生出版社 2000,p81-216
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.