hbFGF基因修饰的组织工程化复合物修复牙周组织缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的探讨碱性成纤维细胞生长因子(bFGF)基因修饰的牙龈成纤维细胞(GFs )在牙周组织再生中的作用及其与骨形成蛋白-7(hBMP-7)基因修饰的骨髓基质细胞(BMSCs)联合应用的效果,为基因治疗与组织工程联合应用于牙周组织缺损再生治疗提供依据。
     方法1.利用DNA重组技术,将hbFGF片段克隆到真核表达载体pIRES2-EGFP中,HindⅢ单酶切及序列分析鉴定获得的重组质粒;2.半消化法培养Beagle犬GFs,体外应用脂质体进行基因转染,RT-PCR、免疫细胞化学染色及ELISA检测目的基因的转录和表达;3.体外基因转染后,观察细胞形态变化,MTT法描绘细胞的生长曲线,AO/EB双染色和流式细胞技术检测细胞的凋亡,检测碱性磷酸酶(ALP)活性;4.通过荧光显微镜、激光共聚焦扫描显微镜、透射电镜及组织学进行观察表达目的基因的细胞与脱细胞真皮基质ADM膜复合;5.人工构建6只Beagle犬慢性Ⅱ度根分叉病变模型,随机分为A、B2组。每组3只犬的18颗病变牙又随机分成3组,分别命名为用BMP-7、BMP-7/GFs和BMP-7/hbFGF治疗,测量治疗前后附着丧失程度,角化龈宽度变化,龈沟液中NO含量,6周、12周后取材作病理切片,H.E染色观察牙周组织再生情况,计算新生牙骨质长度百分比和新生牙槽骨面积百分比,结果进行统计学分析。
     结果1.bFGF被定向插入到真核表达载体pIRES2-EGFP中;2.通过脂质体介导成功地对Beagle犬GFs进行了pIRES2-EGFP-hbFGF瞬时转染,24h后即可见到转染的部分细胞发出较强的绿色荧光,转染效率为15%-25%。RT-PCR、免疫组织化学染色和ELISA检测表明,bFGF在GFs中得到了有效表达;3.目的基因转染后细胞形态略有变化,增殖能力明显增强,凋亡率下降,碱性磷酸酶活性无明显改变;4.转染细胞复合ADM膜后生长良好,24h细胞已贴附、伸展。透射电镜可见细胞能够在支架材料中生长,并与支架材料紧密结合;5.各组附着丧失的情况都有所改善,6周时各组之间差异无显著性;12周时BMP-7/GFs组和BMP-7/hbFGF组的改善更明显。治疗后各组角化龈宽度均有恢复,6周时,BMP-7/hbFGF组相比其它两组治疗效果更好;而12周时中BMP-7/GFs组和BMP-7/hbFGF组结果无差异,与BMP-7组相比有明显改善。两个时间点中各组之间治疗后NO含量无明显差异,都比治疗前明显降低。各实验组和对照组均可见不同程度的牙周组织再生,6周时组之间差异无显著性;12周时,BMP-7/hbFGF组的新生牙槽骨面积百分比和新生牙骨质长度百分比与其它两组相比有明显增加(P<0.05)。
     结论1.利用基因工程原理成功构建了真核表达质粒pIRES2-EGFP-hbFGF。
     2.hbFGF基因可在GFs中有效表达。
     3. hbFGF基因转染可以促进GFs的增值,抑制其凋亡,hbFGF基因修饰的GFs有望成为牙周组织工程理想的种子细胞。
     4. hbFGF基因修饰GFs在ADM膜上生长良好,hbFGF基因修饰的GFs与ADM膜复合物有望应用于牙周组织工程。
     5. hbFGF基因修饰的GFs能更好地促进牙周组织再生,特别是牙槽骨及牙骨质的再生。hbFGF基因强化的组织工程技术是修复牙周组织缺损的一种较好的方法,有很好的临床应用前景。
Objective To investigate the effects of bFGF gene modified GFs alone or together with BMSCs modified by hBMP-7 gene on periodontal regeneration and to provide a new approach to repair the periodontal defects.
     Methods①Complete sequence of human bFGF gene was cloned into pIRES2-EGFP with recombination DNA technique, named pIRES2-EGFP-bFGF. The recombinant plasmid was identified by restriction enzymolysis(HindⅢ) and DNA sequencing.②Recombinant plasmid pIRES2-EGFP-bFGF and vector pIRES2-EGFP were transfected into GFs of Beagle dogs respectively. Expression of bFGF in GFs was identified by RT–PCR, ELISA and immunohistochemistry.③Proliferation and apoptosis feature of the transfected cells were evaluated by MTT and AO/EB.The activity of cell alkaline phosphatase(ALP) was assayed to evaluated the ability of bone formation.④GFs expressed hbFGF gene were cultured with ADM in vitro. Histological examination was performed with light microscopy. Adhesion situation was analyzed by fluorescence microscope, confocal laser scanning microscope and transmission electron microscope.⑤A total 36 experimental classⅡfurcation defects were created surgically in six Beagle dogs, and randomly divided into two groups under therapy of six weeks and twelve weeks. Each group was divided into three subgroups, named BMP-7, BMP-7/GFs and BMP-7/hbFGF. 6wk or 12wk later, CAL(clinical attachment level), KG(width of keratinized gingival) and content of NO in gingival crevicular fluid were detected. After animals were sacrificed, periodontal regeneration was evaluated by histological and morphmetric analysis to calculate the percentage of new alveolar area and new cementum length.
     Results①Human bFGF gene was inserted into vector pIRES2-EGFP correctly.②24hr after transfection, green fluorescence can be detected in GFs, the efficiency of transfection was nearly 15-25%. RT-PCR, ELISA and immunohistochemistry showed that bFGF was only expressed in GFs which transfected pIRES2-EGFP-bFGF. Transfected GFs had some morphological changes, and the proliferation was promoted, while apoptosis was impressed (P< 0.05). ALP activity remained unchanged (P>0.05).④The transfected cells adhered to ADM and stretched well after 24h of culture. Investigation under transmission electron microscope found that cells and material grew together, forming semi-desmosome like structure.⑤Improvement of CAL was observed in each group. Although there was no difference between each subgroup on 6wk (P>0.05), CAL were significantly improved in BMP-7/GFs and BMP-7/hbFGF on 12wk, comparing with BMP-7 subgroup (P<0.05). In all groups, there were different extent of KG recoveries. BMP-7/hbFGF subgroup surpassed the other subgroup on 6wk (P<0.05); meanwhile, both of BMP-7/GFs and BMP-7/hbFGF subgroups showed more recoveries than BMP-7 on 12wk (P<0.05). NO level in every subgroup was elevated after therapy. However, no difference was observed among groups on 6wk as well as 12wk (P>0.05). In both the experimental groups and the control group, there were different extents of regeneration. There was no significant difference on percentage of new alveolar area and new cementum length between three subgroups on 6wk(P>0.05),BMP-7/hbFGF subgroup increased apparently compared with others(P<0.05).
     Conclusion①Human bFGF gene recombinant eukaryotic expression plasmid was constructed successfully.②bFGF gene can express in GFs of Beagle dogs by transfeting recombinant plasmid into cells.③The introduction of bFGF gene to GFs promoted the proliferation of cells as well as depressed the apoptosis. GFs expressed bFGF gene may be served as an ideal cell source for periodontal tissue engineering.④The AMD has a good biocompatibility with hbFGF transfected GFs. It shows that the compound caould be used in periodontal tissue engineering.⑤Introduction of bFGF gene to GFs promoted the regeneration of periodontium, especially the regeneration of alveolar bone and cementum. hbFGF gene enhanced tissue engineering could successfully repair the periodontal defects.
引文
1. Wolff LF. Guided tissue regeneration in periodontal therapy. Northwest Dent, 2000;79(6):23-28
    2. Tatakis DN, Trombelli L. Gingival recession treatment: guided tissue regeneration with bioabsorbable membrane versus connective tissue graft. J Periodontol, 2000;71(2):299-307
    3. Nelson SW. Subperiosteal connective tissue grafts for pocket reduction and preservation of gingival esthetics: a case report. J Periodontol, 2001;72(8):1092-1099
    4. Harris RJ. Gingival augmentation with an acellular dermal matrix: human histologic evaluation of a case--placement of the graft on bone. Int J Periodontics Restorative Dent, 2001;21(1):69-75
    5. Simain-Sato F, Lahmouzi J, Heinen E, et al. Graft of autologous fibroblasts in gingival tissue in vivo after culture in vitro. Preliminary study on rats. J Periodontal Res, 1999;34(6):323-328
    6. Ramoshebi LN, Matsaba TN, Teare J, et al. Tissue engineering: TGF-beta superfamily members and delivery systems in bone regeneration. Expert Rev Mol, 2002 ;2(4) 1-11
    7. Bartold PM, McCulloch CA, Narayanan AS, et al. Tissue engineering: a new paradigm for periodontal regeneration based on molecular and cell biology. Periodontol 2000, 2000;24:253-69
    8. Bonadio J, Smiley E, Patil P, et al. Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat Med, 1999;5(7):753-759
    9. Gospodarowicz D.Fibroblasr growth factor chemical structure and biologic function. Clin Orthop Relat Res,1990;257:231
    10 Ionue K, Sakai T, Hattori M. The cell-adhesive effect of basic fibroblast growth factor on piturtary cells in vitro. J Endocr,1991;130:381
    11. Phillops GD, Schilb LA, Fiegel VD, et al. Angiogenic extract from skeletalmuscle stimulates monocyte and endothelial cell chemotaxis in vitro. Proc Sdc Exp BiolMed, 1991;197:458
    12. Ohara N, Koyama H, Miyata T, et al. Adenovirus-mediatie ex vivo gene transfer of basic fibroblast growth factor promotes collateral development in a rabbit model of hind limb ischemia. Gene Ther, 2001;8:837-845
    13. Ishii S, Koyama H, Miyata T, et al. Appropriate control of ex vivo gene therapy delivering basic fibroblast growth factor promotes successful and safe development of collateral vessels in rabbit model of hind limb ischemia. J Vasc Surg, 2004;39(3):629-638
    14.郑启新,郭晓东,段德宇,等.碱性成纤维细胞生长因子基因转染对间充质干细胞生物学行为的调控.生物医学工程学杂志,2003;20(3):443-446
    15.谭震,赵青,宫苹. bFGF对成骨细胞和成纤维细胞生物学特性的影响[J].口腔颌面修复学杂志,2005,6(3):161-164
    16. Miki Y, Shimabukuro Y, Kitamura M, et al. The effect of application of bFGF regeneration of the periodontal tissues[J]. J Dent Res, 1994; 73(2):354
    17.杨丕山,孙钦峰,宋爱梅,等.碱性成纤维细胞生长因子对犬牙周成纤维细胞样细胞增影响的体内研究[J].华西口腔医学杂志,2004,22(1):59-61
    18. Heilmann CA, Attmann T, Thiem A, et al. Gene therapy in cardiac surgery: intramyocardial injection of naked plasmid DNA for chronic myocardial ischemia. Eur J Cardiothorac Surg, 2003;24(5):785-793
    19. Hao X, Mansson-Broberg A, Gustafsson T, et al. Angiogenic effects of dual gene transfer of bFGF and PDGF-BB after myocardial infarction. Biochem Biophys Res Commun, 2004 ;315(4):1058-1063
    20, Sapieha PS, Peltier M, Rendahl KG, et al. Fibroblast growth factor-2 gene delivery stimulates axon growth by adult retinal ganglion cells after acute optic nerve injury. Mol Cell Neurosci, 2003;24(3):656-672
    22.时利,董明敏,时文杰,等.碱性成纤维细胞生长因子真核表达载体的构建及其在内耳基因治疗中的实验研究.中华耳鼻咽喉杂志, 2003;38(1):21-23
    22. Talwar R, Di Silvio L, Hughes FJ, et a1. Effects of carrier release kinetics on bone morphogenetic protein-2-induced periodontal regeneration in vivo[J]. J ClinPeriodontol, 2001, 28(4):340-347.
    23. King GN, Cochran DL. Factors that modulate the effects of bone morphogenetic protein-induced periodontal regeneration: a critical review[J]. J Periodontol, 2002,73(8):925-936.Review
    24. Wikesjo UM, Xiropaidis AV, Thomson RC, et al. Periodontal repair in dogs: space-providing ePTFE devices increase rhBMP-2/ACS-induced bone formation[J]. J Clin Periodontol, 2003, 30(8):715-725.
    25. Giannobile WV, Ryan S, Shih MS, et al. Recombinant human osteogenic protein-1(OP-1) stimulates periodontal wound healing in classⅢfurcation defects[J]. J Periodontol, 1998,69(2):129-137
    26. Ripamonti U,Crooks J,Petit JC,et al. Periodontal tissue regeneration by combined applications of recombinant human osteogenic protein-1 and bone morphogenetic protein-2. A pilot study in Chacma baboons (Papio ursinus)[J]. Eur J Oral Sci, 2001,109(4):241-248.
    27. Jin QM, Anusaksathien O, Webb SA,et al. Gene therapy of bone morphogenetic protein for periodontal tissue engineering[J]. J Periodontol, 2003,74(2):202-213.
    28. Dunn CA, Jin Q, Taba M Jr, t al. BMP gene delivery for alveolar bone engineering at dental implant defects[J]. Mol Ther, 2005,11(2):294-299.
    29.李纾,汪说之,樊明文,等.人牙龈和牙周韧带成纤维细胞体外矿化能力的比较研究[J].临床口腔医学杂志,2002,18(5):340—342.
    30.Carnes DL,Maeder CL,Graves DT.Cells with osteoblastic phenotypes can be explanted from human gingival and periodontal ligament[J].J Periodontol,1997;68(7):701-706.
    31. Katagiri T,Yamaguehi A,Komaki M,et a1.Bone morphogenetic protein-2 convert the differentiation pathway of C2C12 myoblasts into osteoblast lineage[J].J Cell Biol,1994;127(6):l755-l766.
    32. Murphy MG,Mailhot J,Borke J,et a1.The efects of rhBMP-2 on human osteosarcoma cells and human gingival fibroblasts in vitro[J].J OralImplantol,2001,27(1):16—24.
    33. Murphy MG,Mailhot J,Borke J.et a1.The efects of rhBMP-2 on human osteosarcoma cells and human gingival fibroblasts in vitro[J].J OralImplantol,2001,27(1):16—24.
    34.成党校,黄桂君,钱桂生.新型基因转染阳离子脂质体研究进展[J].国外医学药学分册,2000,27(5):257—260.
    35. Hillmann G,Steinkamp—Zueht A,Geu~sen W,et a1.Culture of primary human gingival fibroblasts on biod egradable membranes[J].Biomaterials,2002,23(6):1461—1469
    36. Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet, 1987;20(3):263-272.
    37.詹暶,闫福华,林敏魁.PRP和自体骨髓基质细胞移植修复狗牙Ⅱ度根分叉病变的研究[J].口腔医学研究,2005;21(2):185-187.
    38.刘宏伟,欧龙,庞劲凡,等.自体骨髓基质细胞用于牙周骨缺损移植的动物实验研究[J].牙体牙髓牙周病学杂志,2000; 10(3): 117-119.
    39. Kramer, PR, Nares S, Kramer SF, et al. Mesenchymal stem cells acquire characteristics of cells in the periodontal ligament in vitro. J Dent Res, 2004, 83(1):27-34.
    40. Radomsky ML, Thompson AY, Spiro RC, et al. Potential role of fibroblast growth factor in enhancement of fracture healing. Clin Orthop, 1998;355(Suppl):283-293
    41. Boyan BD, Lohmann CH, Romero J, et al. Bone and cartilage tissue engineering. Clin Plast Surg, 1999;26(4):629-645
    42. Lagorio L,Gibelli D,Giuria R.Biology of periodontal regeneration:A review and a hypothesis for future researches.Minerva Stomatol,2002,51(5):205
    43. Nakahara T,Nakamura T,Kobayashi E,et a1. Novel approach to regeneration of periodontal tissues based on in situtissue engineering:Effects of controlled release of basic fibroblast growth factor from a sandwich membrane.Tissue Eng,2003,9(1):153
    44. Levy RJ, Golestein SA, Bonadio J. Gene therapy for tissue repair andregeneration[J]. Adv Drug Deliv Rev, 1998;33(1-2):53-69.
    45. Oakes DA, Lieberman JR. Osteoinductive applications of regional gene therapy: ex vivo gene transfer[J]. Clin Orthop Relat Res, 2000, 379 Suppl:S101-112.
    46. Evans CH, Robbins PD. Genetically augmented tissue engineering of the musculoskeletal system[J]. Clin Orthop Relat Res, 1999,(367 Suppl):S410-418.
    47. Gospodarowicz D,Ferrara N Schiweigerer L,et al.Structural characterization and Biological function of fiboblast growth factor. Endocrine Rev,1987;8 (2):9 5
    48. Muthulaichman L, Warder E, Mcneil PL. Basic fibroblast frowth factor is efficiently released from a cytolsolic storase site throuth plasma membrane disruption of endothelial cells, Cell Physiol,1991;148:1
    49. He ZM, Li HP, Li BJ. Applications of green fluorescent protein in life science research. Heredity. 1998, 20:43-46.
    50. Plautz JD, Day RN, Dailey GM, Welsh SB, Hall JC, Halpain S, Kay SA. Green fluorescent protein and its derivatives as versatile markers for gene expression in living Drosophila melanogaster, plant and mammalian cells[J]. Gene, 1996, 173(1 Spec No): 83-87.
    51. Heim R, Tsien RY. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer [J]. Curr Biol, 1996, 6(2):178-182.
    52. Hassell TM. Tissue and cells of the periodontium[J]. Periodontol 2000,1993(3):9-28.Review.
    53. Piche JE, Carnes DL, Graves DT. Initial characterization of cells derived from human periodontaium. J Dent Res, 1989,68(5):761-767.
    54.顾健人,曹雪涛主编.基因治疗.科学出版社生命科学编辑部.北京,2002.
    55. Cormack BP, Valdivia RH, Falkow S. FACS-optimized of the green fluorescent protein (GFP) [J]. Gene, 1996,173(1 Spec No):33-38.
    56. Seethala R. Fluorescence polarization competition immunoassay for tyrosine kinases. Methods. 2000, 22(1):61-70.
    57.成党校,黄桂君,钱桂生.新型基因转染阳离子脂质体研究进展.国外医学药学分册.2002,27(5):257-260.
    58. Fujisawa K, Miyamoto Y, Nagayama M. Basic fibroblast growth factor and epidermal growth factor reverse impaired ulcer healing of the rabbit oral mucosa. J Oral Pathol Med, 2003;32(6):358-366.
    59. Niyibizi C, Baltzer A, Lattermann C, et al. Potential role for gene therapy in the enhancement of fracture healing[J].Clin Orthop Relat Res,1998,(355 Suppl):S148-153
    60. Anusaksathien O, Webb SA, Jin QM, Platelet-derived growth factor gene delivery stimulates ex vivo gingival repair[J].Tissue Eng,2003,9(4):745-756.
    61. Guo X, Zheng Q, Kulbatski I,et al.Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds.Biomed Mater. 2006 Sep;1(3):93-9. Epub 2006 Jun 5.
    62.司徒镇强,吴军正,等.细胞培养[M],西安:世界图书出版公司,2007.
    63. Wagle A, Singh JP. Fibroblast growth factor protects nitric oxide-induced apoptosis in neuronal SHSY-5Y cells [J] . Pharmacol Exp Ther, 2000 Dec;295(3):889-95
    64. Murakaml S,Tskayama S,Kitamura M,et al,Recombinant human basic fibroblast growth factor (bFGF) stimulates periodontal regeneration in class II furcation defects created in beagle dogs. J Periodontal Res, 2003,38(1):97-103
    65.吴勇,吴织芬,王勤涛.骨形成蛋白-2和碱性成纤维细胞生长因子对牙周膜细胞碱性磷酸酶活性的联合效应[J].牙体牙髓牙周病学杂志,2001,11(1):14-16
    66.聂瑞,武云霞. PDGF-BB和bFGF对牙周膜细胞碱性磷酸酶活性的影响[J].山西医科大学学报,2008,39(3):230-232
    67.段开文,张明珠,欧炯光,等.bFGF和壳聚糖对人牙周膜成纤维细胞的作用[J].实用口腔医学杂志,2005. 21(4):543-546
    68. Sanz M,Giovannoli JL. Focus on furcation defects: guided tissue regeneration[J].Periodontol 2000. 2000; 22:169-189.
    69. Kalpidis CD, Ruben MP. Treatment of intrabony periodontal defects with enamel matrix derivative: a literature review [J]. J Periodontol. 2002;73(11):1360-1376.
    70. Karring T, Nyman S,Gottlow J, et al. Development of the biological concept of guided tissue regeneration--animal and human studies[J]. Periodontol 2000. 1993;1(1):26-35.
    71. Jin QM, Takita H, Kohgo T, et al. Effects of geometry of hydroxyapatite as a cell substratum in BMP-induced ectopic bone formation[J]. J Biomed Mater Res,2000,51(3):491-499.
    72.邓展生,詹新立,朱峥嵘,等.骨髓基质干细胞接种于纤维蛋白凝胶的体外培养.中国现代医学杂志,2003,13(9):14-16
    73. Freed LE, Vunjak-Novakovic G, Biron RJ. Biodegradable polymer scaffolds for tissue engineering. Biotechnology NY, 1994,12(7): 689-698.
    74. Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol, 1998,16(5): 224-230.
    75. Vacanti CA, Vacani JP. The science of tissue engineering. Orthop Clin North Am, 2003,31(3):351-356
    76. Krejci NC,Cuonon CB,Langdon RC,et a1.In vitro reconstitution of skin:fibroblasts facilitate keratinocyte growth and diferentiation on acelular reticular dermis[J].J Invest Dermatol,1991;97:84
    77.刘旺,郇京宁,陈玉林,等.人表皮细胞与无细胞异种真皮复合移植的试验研究[J].中华创伤杂志,2001;17(5):289—291
    78. Gustafson CJ,Kratz G.Cultured autologous keratinocytes on a cell-free derm is in the treatment of fuIl-thicknesswounds[J].Burns,1999;25(4):331
    79. Mdelie DA,Eming SA,Tompkins RG,et a1.Evaluation ofhuman skin reconstituted from composite grafts of cultured keratinocytes and human acellular derm is transplanted to athymic mice[J].JI nvest Dermatol,1996;107(1):121
    80. Takami Y,Matsuda T,Yoshitake M,et a1.Dispase/detergent treated dermalmatrix as a dermal substitute[J].Burns,1996;22(3):182-190
    81. Winwright D,Madden M,Luterman A,et a1.Clinical evaluation of an acellular dermal matrix in fu11-thickness burns[J].J Burn Care Rehabil,1996;17(2) :124
    82. Rennekampff HO,Niessig V,Griffey S,et a1.Acelular humandermis promotes cultured keratinocyte engraftment[J].J Burn Care Rehabil,1997;18(6):535
    83.耿献辉,余春艳,金岩,等。骨髓间充质干细胞复合组织工程化脱细胞真皮基质构建组织工程皮肤[J]中国美容医学,2007;16(4):443-446
    84. Cummings LC,Kaldahl WB,Allen EP.Histologic evaluation of autogenous connective tissue and acellular dermal matrix grafts in Humans[J].J Periodontol,2005,76(2):178-186.
    85. Hirsch A,Goldstein M,Goultschin J,et a1.A 2-year follow-up of root coverage using sub-pedicle acellular dermal matrix allogTafts and subepithelial connective tissue autografts[J]. J Periodontol,2005,76(8):1323-1328.
    86. de Queiroz CA, Sallum AW, Casati MZ.et a1.A two-year prospective study of coronally po sitioned flap with or without acellular dermal matrix graft[J].2006,33(9):683—689.
    87.李楠.激光扫描共聚焦显微术[M].北京,:人民军医出版社,1997.
    88. Pitaru S, Naraynan SA, Liu HW,et a1. The effect of age on the expression of mineralized tissue progenitors in the periodontium: the effect of theβ- FGF[J]. J Periodont Res. 1997; 32(1 Pt 2): 179-182.
    89.张蕴惠,郭淑娟,萧卓然.胶原膜引导牙周组织再生的研究Ⅰ、动物模型的建立及组织形态学观察.华西口腔医学杂志,1993,11 (4):273-276.
    90.闫福华,郑碧琼,林敏魁.组织工程用于修复慢性牙周组织缺损的动物实验研究.口腔医学研究,2005,21(6):593-597.
    91. Ramoshebi LN, Matsaba TN, Teare J, et al. Tissue engineering: TGF-beta superfamily members and delivery systems in bone regeneration. Expert Rev Mol, 2002 ;2(4) 1-11.
    92. Bartold PM, McCulloch CA, Narayanan AS, et al. Tissue engineering: a new paradigm for periodontal regeneration based on molecular and cell biology. Periodontol 2000. 2000;24:253-69.
    93. Rutherford RB, Wahle J, Tucker M, et al. Induction of reparative dentine formation in monkeys by recombinant human osteogenic protein-1. Arch Oral Biol,1993, 38(7):571-576.
    94. Ripamonti U, Heliotis M, Rueger DC, et al. Induction of cementogenesis by recombinant human osteogenic-1(hop-1/bmp-7) in the baboon(Papio ursinus)[J]. Arch Oral Biol, 1996, 41(1):121-126.
    95.闫福华,刘崇武,周广东.骨髓基质细胞在三种可吸收生物膜上附着及增殖的比较[J].福建医科大学学报, 2002,36(1)10-13.
    96. Krebsbach PH, Renny KG, Franceshi RT, et al. Gene therapy-directed osteogenesis:BMP-7 transduced human fibroblasts form bone in vivo. Hum Gene Ther, 2000, 11:1201-1210.
    97. Rutherford RB, Moalli M, Franceschi RT. Bone morphogenetic protein- transduced human fibroblasts convert to osteoblasts and form bone in vivo. Tissue Eng , 2002,8(3):441-452.
    98. Caton J, Mota L, Gandini L, et a1. Non-human primate models for testing the efficacy and safety of periodontal regeneration procedures[J]. J Periodontol, 1994,65(12): 1143-1150.
    99. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells [J]. Science, 1999, 284(5411): 143-147.
    100. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA, 1999,96:10711-10716.
    101. Stanworth SJ, Newland AC. Stem cells: progress in research and edging towards the clinical settingClin Med.2001,1(5):378-382.
    102.李艳芬. BMP-7基因修饰的组织工程化复合物修复牙周组织缺损的实验研究.福建医科大学2008届博士毕业学位论文.
    103.章丹丹,刘俊.Ferid Murad,等.诱导型一氧化氮合酶与疾病[J].现代生物医学进展,2007,7(10):1571—1577.
    104. Bian K, Murad F. Nitric oxide (NO)-biogeneration, regulation, and relevance to human dieseases [J]. Frount Biosci,2003,8:d264-278
    105.陈桂珍,孙伟莲.牙周炎患者唾液一氧化氮的含量及其与牙周病指标相关性的研究[J].华西口腔医学杂志,1999.17(2):140-142.
    106. Skaleric U,Caspirc B, McCarney-Francis N, et al. Proinflammatory and antimicrobial nitric oxide in gingival fluid of diabetic patients with periodonal disease [J]. Infect Immum, 2006,74(12):7010-7013
    107.葛颂,何权敏,蔡树玉.龈沟液一氧化氮含量与牙周炎症的关系[J].遵义医学院学报,2008,31(2):123-125.
    1. Gospodarowicz D, Rudland P, Lindstrom J, Benirschke K. Fibroblast growth factor: its localization, purification, mode of action, and physiological significance. Adv Metab Disord. 1975;8:301-35
    2. Gospodarowicz D,Ferrara N Schiweigerer L,et al.Structural characterization and Biological function of fiboblast growth factor. Endocrine Rev,1987;8 (2):9 5
    3. Muthulaichman L, Warder E, Mcneil PL. Basic fibroblast frowth factor is efficiently released from a cytolsolic storase site throuth plasma membrane disruption of endothelial cells, Cell Physiol,1991;148:1
    4. Zhan X Hu x, Friends R, et al. Long term growth factor exposure and differential tyrosine phosphorlatyon are required for DNA sythesis in BALB/c3T3 cells, J Biolchem,1993;268:9611
    5.曹采芳主编.临床牙周病学[M].北京:北京大学医学出版社,2006,3
    6. Takayama S, Murakami S,Miki Y,et al. Effects of basic fibroblast growth factor on human periodontal ligament cells. J Periodomal Res, 1997,32(7):667-675
    7. Miki Y, Shimahukuro M. effect of application of bFGF on regeneration of the periodontal tissues. J Dent Res, 1994, 73(2):354-356
    8. Terranova VP.Odziemlec G Tweden KS,et aL Repopulation of dentin surfaces by periodontal ligament cells and endothelial cells. Effect of basic fibroblast growth factor. J Periodontal,1989,60(6):293-301
    9. Tweed KS,Spadone DP,Terranova VP.Neovascularization of surface demineralized dentin. J Periodontol,1989,60(8):460-466
    10. Takayama S,Murakami S,Nozaki T et a1.Expression of receptors for basic fibroblast growth factor on human periodontal ligament cells. J PeriodontalRes.1998,33(6):315-322.
    11. Murakaml S,Tskayama S,Kitamura M,et al,Recombinant human basic fibroblast growth factor (bFGF) stimulates periodontal regeneration in class II furcation defects created in beagle dogs. J Periodontal Res, 2003,38(1):97-103
    12.吴勇,吴织芬,王勤涛.骨形成蛋白一2和碱性成纤维细胞生长因子对牙周膜细胞碱性磷酸酶活性的联合效应[J].牙体牙髓牙周病学杂志,2007,11(4):228—230
    13.聂瑞,武云霞. PDGF-BB和bFGF对牙周膜细胞碱性磷酸酶活性的影响[J].山西医科大学学报,2008,39(3):230-232
    14.赵征,金岩,张广耘,等;bFGF和rhBMP对牙周膜细胞胶原水平的影响[J].临床口腔医学杂志,2005,21(4):203-206
    15. Choi W, Kawanabe H, Sawa Y,et al. Effects of bFGF on suppression of collagen type I accumulation and scar tissue formation during wound healing after mucoperiosteal denudation of rat palate [J]. Acta Odontol Scand. 2008 Feb;66(1):31-7.
    16. Murakami S,Takayama S,Ikezaw et al.a K, Regeneration of periodontal tissues by basic fibroblast gowth factor[J].J Periodont Res, 1999,34(7):425
    17.鲁红,吴织芬,田宇,等.碱性成纤维细胞生长因子对人牙周膜细胞增殖和细胞周期的影响[J].牙体牙髓牙周病学杂志,2002,12(4):191-193
    18. Ge SH, Yang PS. Effects of bFGF on biological characteristics of cells derived from periodontium[J]. Shanghai Kou Qiang Yi Xue. 2001 Mar;10(1):24-6, 48.
    19. Selvig KA,Wikesjo UM ,Bogle GC,et al. Impaired early bone formation in periodontal fenestration defects in dogs following application of insulin-like growth factor (II). Basic fibroblast growth factor and transforming growth factor beta 1. J Clin Periodontal,1994,21(6):380-385.
    20. Hu J,Zou S,Li J,et al. Temporospatial expression of vascular endothelial growth factor and basic fibroblast growth factor during mandibular distraction osteogenesis. J Craniomaxillofac Surg.2003,31(4):238-243
    21. Lagorio L,Gibelli D,Giuria R.Biology of periodontal regeneration:A reviewand a hypothesis for future researches.Minerva Stomatol,2002,51(5):205
    22. Nakahara T,Nakamura T,Kobayashi E,et a1. Novel approach to regeneration of periodontal tissues based on in situtissue engineering:Effects of controlled release of basic fibroblast growth factor from a sandwich membrane.Tissue Eng,2003,9(1):153
    23. Mizuno K,Yamamura K,Yano K.Effect of chitosan film Containing basic fibroblast growth factor on wound healing in genetically diabetic mice.J Biomed Mater Res,2003,64(1):177
    24.段开文,张明珠,张露等. bFGF和壳聚糖对人牙周膜成纤维细胞的作用[J].实用口腔医学杂志,2005,21(4):543-546
    25. Takayama S,Murakami S,Shimabukuro Y,et al. Periodontal Regeneration by FGF-2 (bFGF) in Primate Models. J Dent Res ,2001,80(12):2075-2079
    26. Sato Y, Kikuchi M,Ohata N,et al. Enhanced cementum formation in experimentally induced cementum defects of the root surface with the application of recombinant basic fibroblast growth factor in collagen gel in vivo.J Periodontol,2004,75(2):243-248
    27. Rossa C,Marcantonio E,Cirelli J,et al. Regeneration of Class III furcation defects with basic fibroblast growth factor (b-FGF) associated with GTR. A descriptive and histometric study in dogs. J Periodontol 2000,71(5):775-784
    28. Gualandris A,Rusnati M,Selleri M,et al. Basic fibroblast growth factor overexpression in endothelial cells: an autocrine mechanism for angiogenesis and angioproliferative diseases Cell Growth Differ,1996.72(2):147-160
    29. Ribalti D,Guslandtis A, Belleri M, et al. Alterations of blood vessel development by endothelial cells overexpressing fibroblast growth factor-2. J Perhol,1999,189(4):590-599.
    30. Nakamura K, Kawaguchi H, Acyama I, et al. Stimulation of bone formation by intraosseous application of recombinant basic fibroblast growth factor in normal and ovariectomized rabbits. J Orthop Res,1997,15(2):307-313.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.