中浓纸浆泵的设计与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中浓技术是一种环保节能高效的造纸制浆技术,是目前国内外造纸制浆技术发展的趋势。在中浓带压漂白工艺中,高扬程的中浓纸浆泵是中浓技术的核心设备之一。通常,中浓设备的设计和研究离不开大量的试验和累积的经验。国外已有数十年的研究基础,形成了系列化的优秀产品。但是国内由于起步较晚,目前在中浓纸浆泵的设计制造上还存在大量的空白。在中浓带压漂白工艺中使用的大量高扬程中浓纸浆泵多为国外进口产品,价格昂贵。因此,高扬程中浓纸浆泵的设计和性能研究具有很大的工程意义。
     本文首先分析了中浓纸浆泵的输送介质——中浓纤维悬浮液的流变特性,对中浓纤维悬浮液在转子剪切室内剪切流动的流动机理进行了数值研究。其次,针对中浓悬浮液的特殊性质,对中浓纸浆泵的整体结构进行了分析,重点对水力部件的重要参数进行了分析和设计,并对中浓纸浆泵和清水泵的一些重要的不同之处进行了对比。最后,设计和搭建试验台,对中浓纸浆泵在不同运行条件下的运行特点和性能进行了试验研究和结果分析。本文的主要工作包括:
     1)基于纤维悬浮液非牛顿流变特性,对转子剪切室内中浓纤维悬浮液的流动机理进行数值模拟。为了重点研究浆料受到剪切力后的流动特点,将气体和纤维对浆料流动的影响考虑到纤维悬浮液的流变特性中,将纤维悬浮液视为一种具有屈服应力和剪切稀化特性的非牛顿流体。建立非牛顿流体的数值模拟方法并验证。用数值方法研究转子剪切室内的流动特点。分别分析了纤维悬浮液在受到不同剪切力的作用下不断屈服的过程,以及各种物性参数、剪切叶片参数、剪切室尺寸等不同条件下剪切室内的流动状态。本节工作为湍流发生器的工作机理研究和设计提供参考依据。
     2)设计中浓纸浆泵的结构和水力部件。由于输送浆料的特殊性,中浓纸浆泵的结构不同于普通的清水泵。质量分数超过7%浓度的纤维悬浮液丧失流动性,当浆料受到足够强烈的剪切作用后,浆料湍流化,具有流动性。针对中浓浆料剪切流动的特点,设计了与叶轮同轴安装的湍流发生器,在浆料进入叶轮前使其流动起来。由于纤维和纤维网络对气体的吸附作用,中浓浆料中还含有大量的气体,为了顺利输送浆料,必须将气体分离出去,因此在叶轮后侧设置气体分离系统。考虑到中浓浆料的特殊性,对叶轮、蜗壳等水力部件进行分析设计,讨论一些重要结构参数在设计中的注意事项。分析中浓纸浆泵与清水泵的一些不同之处。
     3)试验研究中浓纸浆泵的性能。设计和搭建中浓纸浆泵性能测试试验台,改变试验条件,研究中浓纸浆泵的运行特性。采用不同浓度的纸浆,对比输送中浓纸浆与输送清水时中浓纸浆泵的性能变化规律。研究转速对输送不同浓度浆料时泵性能的影响。为了防止中浓纸浆泵出口流道堵塞,设计三种具有相同轴面流线不同宽度的叶轮,分别更换三组宽度的叶轮测试,研究叶轮宽度对泵性能的影响。具有半开式叶轮的中浓纸浆泵在运行中,叶顶间隙是一个重要参数。调节不同的叶顶间隙,研究不同浓度下叶顶间隙以及间隙比对泵性能的影响。中浓浆料中包含大量的气体,一般而言气体含量随着纸浆浓度的增高而增高。气体在除气系统中所受压差对气体分离起重要作用。气体分离所受压差可通过真空泵调节,研究不同纸浆浓度下,真空度大小对中浓纸浆泵性能的影响。此外,还给出了中浓纸浆泵运行过程中浆料在不同流速下的流动状态,以及中浓纸浆泵在运行中的一些注意事项等。
     根据本文对纤维悬浮液的模型简化与数值模拟,中浓纸浆泵的设计工作,以及系列的试验研究结果,为国内中浓纸浆泵的设计和现场运行提供一些参考依据。
Medium consistency technology (MC technology) is an environment friendly, energy saving and high efficiency pulping technology. It is the tendency of the development of the pulping process in the world. In the MC pressured bleaching unit operation, MC pump with high head and efficiency is one of the most important devices. Usually, the development of devices in MC technology is dependent on repeated experiment and accumulated experience. There are several decades of research experiences abroad and series of products with effective performance have been developed. But in China, because the development of MC technology is late, an enormous gap exists in MC pump design and manufacturing. Nowadays, most of the MC pumps used in MC bleaching unit process are imported which are very expensive. So, the design and experimental study on the MC pump is of great importance in engineering application.
     In this these, the rheology of the medium concentration pulp suspension, which is the transported medium of the MC pump, is firstly analyzed. The flow mechanism of the suspension in a rotating tester is numerically studied. Then, considering the specificity of MC pulp suspension, the structure of the MC pump is designed. Some of the important geometry parameters of the hydraulic components are carefully analyzed and determined. Differences between MC pump and water pump are compared. A test rig is designed and built. Series of experiments are conducted to get the pump performance curve in different operating conditions. The following main contents are included in this thesis.
     1) Internal flow field in a rotating shear tester is numerically simulated based on the non-Newtonian characteristic of fiber suspension. In order to study the pulp flowing characteristic in the shear forces, the influence of the air and fiber networks are taken into account to the rheology of the fiber suspension. The suspension is considered as a non-Newtonian fluid with yield stress and shear thinning characteristic. The numerical method to simulate the non-Newtonian fluid is developed and validated. Simulate the flow field in a rotating shear tester. The yield process in gradually increased shear force is shown. The influence of the material physical parameters, the blade height and the size of the rotating tester are analyzed. These studies can provide some reference to the mechanism study and design of the turbulence generator.
     2) Design the structure and hydraulic components of the MC pump. Because of the specificity of the transported medium, the structure of the MC pump is different from that of water pump. Once the pulp mass concentration exceeds7%, it stopped flowing and acts like a solid. When sufficient shear stress is exerted, the suspension started to flow again. According to the shear-flowing characteristic of MC suspension, a turbulence generator is designed and installed coaxially with impeller to make the suspension flow before it gets into the impeller. The fiber and networks has an adsorption effect to the air. Plenty of air exists in the suspension which makes it impossible to be transported by a centrifugal pump. So a gas separation system is designed in the back case of the impeller. Considering the specificity of the MC pulp suspension, some important parameters of the hydraulic component, such as impeller, volute and so on, are analyzed. Some differences between MC pump and water pump are also analyzed.
     3) Experimentally study the MC pump performance. A test rig is designed and built to study the MC pump performance in different operating conditions. Suspensions in several different concentrations are adopted. Compare the pump performance when transporting water and suspension. Study the influence of the speed to the MC pump performance when transporting different concentration pulp suspensions. In order to avoid the blockage of the flow channel, three impellers with the same axial structure and different blade outlet width are designed. Study the pump performance change with the change of blade width. In the operation of a semi-open impeller, the tip clearance is a very important parameter. Regulate the tip clearance and study the pump performance changes with different tip clearance and different tip clearance ratio when transporting different pulp concentrations. Abundant air is included in the pulp suspension. Usually, the air content increases with the increase of the fiber mass concentration. The pressure difference in the degas system is important to the separation of the air. The pressure difference is regulated by the vacuum pump. Study the influence of the vacuum degree to the pump performance in different pulp concentrations. In addition, the flow conditions in different flow rate and other specificity during the operation of the MC pump are shown.
     The simplicity and simulation of the fiber suspension, design and series of experiment of MC pump in this thesis can provide some reference to the design and operation of the MC pump.
引文
[1]陈克复.中高浓制浆技术与装置[M].广州:华南理工大学出版社,1994.
    [2]Mason,S.G., The flocculation of pulp suspensions and the formation of paper[J], Tappi J.1990,33:440-444.
    [3]Kerekes,R.J.,C.J.Schell, Characterization of fiber flocculation regimes by a crowding factor[J], J.Pulp Pap.Sci.1992,18(1):32-38.
    [4]Duffy,G.G., The significance of mechanistic-based models in fiber suspension flow[J], Nordic Pulp and Paper Research J.,2003,18:74-80.
    [5]Kerekes,R.J.,Soszynski,R.M.,Doo. et al, The flocculation of pulp fibers[J]. In Proceedings of the 8th Fundamental Research Symposium,Mechanical Engineering Publications,Oxford,England,1985,265-310.
    [6]R.J.Kerekes,C.J.Schell.Effects of fiber length and coarseness on pulp flocculation[J]. Tappi J.1995,78(2):133-139.
    [7]CTJ Dodson, Fiber crowding, fiber contacts and fiber flocculation [J]. Pacific Section Tappi 48th Annual Seminar,1995.
    [8]Robert Pelton, and Richard Piette. Air bubble holdup in quiescent wood pulp suspensions [J]. The Canadian Journal of Chemical Engineering.1992, (70):660-663.
    [9]Chengzhi Tang, Theodore J.Heindel. Effect of fiber type on gas holdup in a concurrent air-water-fiber bubble column [J]. Chemical Engineering Journal.2005,111(1):21-30.
    [10]钟传友.中浓和高浓纸浆的空气含量[J].四川造纸.1993,(1),45-46.
    [11]宣征南,陈克复,陈奇峰.纸浆多孔介质特性的实验研究[J].湖北造纸.2006.(4):8-10.
    [12]陈克复.中浓纤维悬浮液的流动特性研究[J].自然科学进展.1998,2(8):237-242
    [13]Derakhshandeh,B.,Hatzikiriakos,S.G.,Bennington,C.P.J.,The apparent yield stress of pulp fiber suspensions [J]. Journal of Rheology 2010a,54(5):1137-1154.
    [14]B.Derakhshandeh,R.J.Kerekes,S.G.Hatzikiriakos,C.P.J. Bennington..Rheology of pulp fiber suspensions:A critical review[J]. Chemical Engineering Science.2011,66:3460-3470.
    [15]Howard Anthony Barnes, Quoc Dzuy Nguyen.Rotating vane rheometry.a review[J]. J.Non-Newtonian Fluid Mech.2001, (98):1-14.
    [16]Bennington, Kerekes, Grace. The yield stress of fibre suspensions[J],The Canadian Journal of Chemical Engineering,1990, (68):748-757.
    [17]Bennington, Azevedo. The yield stress of medium and high consistency mechanical pulp fibre suspension at high gas contents [J]. JPPS,1995,21(4):111-118.
    [18]G.Duffy and A. Thitchener. Svesk paperstid.78(13):474.
    [19]KeFu Chen,Shumei Chen. Fluidization properties of high-consistency fiber suspensions[J].Experimental Thermal and Fluid Science.1997,14:149-159.
    [20]Johan Gullichsen, Esko Harkonen. Medium consistency technology 1:Fundamental data[J]. Tappi,1981,64(6):69-72.
    [21]Kerekes R.J.M. Soszynski, and P.A. Tam Doo, The flocculation of pulp fibres, Fundamental Research Symposium, Oxford, UK,1985,1:265-310.
    [22]Duffy G G.Flow of medium consistency wood pulp fibre suspensions [J]. Appita, 1995,4(1):51.
    [23]UIF Jansson, Sven-Erik Thunberg. Two generations of MC pumps and a third to improve the first two [J]. Fiberlines.2003:22-25.
    [24]Andritz AG.Hydraulic Machines Division[DB/OL]. Inernet:http://www.andritz.com.
    [25]Andritz Medium-Consistency Pump, MC Series.Hydro Power [DB/OL]. Inernet: http//:www.andritz.com/pumps.
    [26]Irish & Associates.Flow directing device for a medium consistency pump [P].United States Patent. Patent No.US 6210105B1.
    [27]Sulzer pumps.MC Technology for process upgrades MCE pumping systems[DB/OL].Internet:http//:www.sulzerpumps.com.
    [28]Goulds Pumps.Goulds 3500XD Medium Consitency Pumping Technology[DB/OL].Internet:http//:www.gouldspumps.com.
    [29]中浓浆泵课题组.ZBJ31湍流离心式中浓浆泵的研制[J].中国造纸.1989,8(6):3.
    [30]刘炜巍.纸浆泵内部纸浆悬浮液固液两相湍流数值模拟[D].2004,江苏大学.
    [31]胡庆喜,朱小林,梁孝斌等,MCP型中浓纸浆泵的研究与设计.广东造纸[J].1998, 5:1-4.
    [32]陈克复.中高浓制浆造纸技术的理论与实践[M],北京:中国轻工业出版社,2007.
    [33]胡庆喜,陈中豪.相似理论在中浓纸浆泵设计中的应用[J].造纸科学与技术,2004,23(6):85-88.
    [34]Carla Ventira, Fernando Garcia, Paulo Ferreira, et al. Flow dynamics of pulp fiber suspensions [J]. TAPPI Journal.2008,8:20-26.
    [35]沈阳水泵研究所.叶片泵设计手册[M].北京:机械工业出版社.1983
    [36]关醒凡.泵的理论与设计[M].北京:机械工业出版社.1987
    [37]吴仁荣,王智磊.离心泵设计的相似换算和面积比法[J].船舶工程.2009,31(4):41-44.
    [38]袁寿其.低比速离心泵理论与设计[M].北京:机械工业出版社,1997.
    [39]Anderson H H. Mine pumps[J]. Journal of Mining Society,1938
    [40]朱祖超,麻明祥.小流量高扬程高速离心泵的加大流量设计[J].浙江大学学报(工学版),2001,35(1):9-13.
    [41]朱祖超.低比转速高速离心泵的理论及设计应用[M].北京:机械工业出版社.2008.
    [42]袁寿其,张玉臻.离心泵分流叶片偏置设计的试验研究[J].农业机械学报。1995,26(4):79-83.
    [43]齐学义,倪永燕。复合式离心泵叶轮短叶片偏置设计分析[J].甘肃工业大学学报.2003,29(4):60-63.
    [44]付跃登,袁寿其,等。带分流叶片离心泵研究现状与发展趋势[J].中国农村水利水电,2007(5):123-125.
    [45]张惠民.叶轮机械中的三元流理论及其应用[M].北京:国防工业出版社.1984.
    [46]刘殿魁.机泵节能新思维·射流:尾迹三元流动理论及其应用[M].西安:西安交通大学出版社.2010.
    [47]陈乃祥,吴玉林.离心泵[M].北京:机械工业出版社.2003.
    [48]Johan Gullichsen, Esko Harkonen, Tolvo Niskanen. Medium consistency technology 2: Storage dischargers and centrifugal pumps [J]. TAPPI,1981,64(9):113-116.
    [49]曹树良,大场利三郎.稠纤维浆液离心泵进口流动与纤维的流动化[J].工程热物理 学报.1996,17(4):437-441.
    [50]曹树良,大场利三郎.稠纤维浆液离心泵性能研究[J].清华大学学报(自然科学版)[J].1998,38(1):5-9.
    [51]胡庆喜,黄运贤,陈中豪,等,余国藩.MCP型中浓浆泵的应用实践与MCPA型中浓浆泵系统装置的研究与设计[J].造纸科学与技术.2003,22(4):16-20.
    [52]李红,耿伟浩,范建国,等.离心式中浓浆泵的试验[J].中国造纸.2008,27(2):71-72.
    [53]Bakker, A., Fasano, J.B., A computational study of the flow pattern in an industrial paper pulp stock chest with a side-entering impeller[J], A.I.Ch.E.Symoposium Series 89, 1993,293:118-124.
    [54]Ford, C., Ein-Mozaffari, F.,Bennington, et al., Simulation of mixing dynamics in agitated pulp stock chests using CFD[J]. A.I.Ch.E.J.2006,52(10):3562-3569.
    [55]Ford, C., Bennington, C.P.J., Taghipour, F., Modeling a pilot-scale mixing pulp mixing chest using CFD[J]. J.Pulp Pap.Sci.2007,33:115-120.
    [56]Bhattacharya, S., Gomez, C., Soltanzadeh, A., et al., Computational modeling of industrial pulp stock chests [J]. Canadian Journal of Chemical Engineering,2010, 88(2):295-305.
    [57]Bhole, M., Ford, C., Bennington, C.P.J., Characterization of axial flow impellers in pulp fibre suspensions [J]. Chemical Engineering Research and Design,2009, 87(4):648-653.
    [58]李红,袁寿其,袁建平,刘炜巍.基于泵内纸浆悬浮液数值计算的纸浆泵设计[J].江苏大学学报(自然科学版).2007,28(1):51-55.
    [59]陈奇峰,陈克复,杨仁党.基于CFD方法优化离心式中浓浆泵湍流发生器结构的研究[J].中国造纸.2006,25(10):25-27.
    [60]Ramesh Damani, and Robert L.Powell. Viscoelastic characterization of medium consistency pulp suspensions[J]. The Canadian Journal of Chemical Engineering.1993, 71(5):676-684.
    [61]L.W.Adams, and M.Barigou. CFD analysis of caverns and pseudo-caverns developed during mixing of non-Newtonian fluids[J]. Ind.Eng.Chem.,2007,85(A5):598-604.
    [62]Salwan Saeed, Farhad Ein-Mozaffari, and Simant R. Upreti. Using computational fluid dynamics modeling and ultrasonic doppler velocimetry to study pulp suspension mixing [J]. Ind.Eng.Chem.,2007,46(7):2172-2179.
    [63]Babak Derakhshandeh, Sawas G.Hatzikiriakos, and Chad P.J.Bennington. Rheology of pulp suspensions using ultrasonic doppler velocimetry [J]. Rheol Acta.2010, 49:1127-1140.
    [64]Papanastasiou,T.C., Flow of material with yield[J]. J.Rheol.1987,31:385-404.
    [65]E.Mitsoulis, Th.Zisis. Flow of Bingham plastics in a lid-driven square cavity [J]. Journal of Non-Newtonian Fluid Mechanics.2001,101:173-180.
    [66]Evan Mitsoulis. Flows of viscoplastic materials models and computations [Z]. The British Society of Rheology. Rheology Reviews,2007:135-178.
    [67]王福军.计算流体动力学分析:CFD软件原理与应用[M].北京:清华大学出版社.2004.
    [68]Maria Chatzimina, Georgios Georgiou, and Andreas Alexandrou. Wall shear rates in circular couette flow of a Herschel-Bulkley fluid [J]. Applied Rheology.2009,19:34288.
    [69]J.Peixinho, C.Nouar, C.Desaubry, et al. Laminar transitional and turbulent flow of yield stress fluid in a pipe [J]. Journal of Non-Newtonian Fluid Mechanics.2005, 128:172-184.
    [70]M.R.Malin. Turbulent pipe flow of Herschel-Buckley fluids [J]. Int.Comm.Heat Transfer.1998,25(3):321-330.
    [71]Richard W. Hanks, and Brad L. Ricks. Laminar-turbulent transition in flow of pseudoplastic fluids with yield stresses [J]. J. Hydronautics.1974,8(4):163-166.
    [72]C.P.J.Bennington, R.J.Kerekes, and J.R.Grace., Motion of pulp fibre suspensions in rotary devices [J]. The Canadian Journal of Chemical Engineering.1991,69(2):251-258.
    [73]Frazier,W.C., Applying hydrodynamic lubrication theory to predict refiner behavior [J]. J. Pulp Pap. Sci.1988,14:J1-J5.
    [74]陈奇峰.中浓纸浆悬浮液流动的实验研究及CFD技术的应用[D].华南理工大学.2005.
    [75]Leonard H. Switzer and Daniel J. Klingenberg., Rheology of sheared flexible fiber suspensions via fiber-level simulations [J]. J.Rheol.2003,47(3):759-778.
    [76]朱祖超.开式高速离心泵的实验研究[J].浙江大学学报,1999,33(2):142-146.
    [77]Zhu zuchao, Chen Ying. Experimental study on high-speed centrifugal pumps with different impellers[J].Chinese Jounal of Mechanical Engineering,2002,15(4):372-375.
    [78]朱祖超.小流量切线泵设计与应用[J].水泵技术,1996,(1):9-12.
    [79]杨建.轴向间隙对微型高速离心泵性能的影响[J].水泵技术,2001,5:22-23.
    [80]Masahiro Inoue, and Masato Furukawa., Physics of tip clearance flow in turbomachinery[J], ASME 2002Fluids Engineering Division Summer Meeting,2002,Paper No.31184.
    [81]Shyam N. Shukla, and Jagadish Kshirsagar., Numerical simulation of tip clearance flow in semi-open impeller pump,"[J] 5th Joint ASME/JSME Fluids Engineering Conference,2007,Paper No.37355.
    [82]贺琪华,汪嘉敏,梁树真.用背叶片平衡多级离心泵轴向力的试验研究[J].水泵技术.1996,3:22-25.
    [83]A.J.斯捷潘诺夫.离心泵与轴流泵理论、设计和应用[M].北京:机械工业出版社.1980.
    [84]Richard J.Kerekes, and Carolyn J.Schell. Effects of fiber length and coarseness on pulp flocculation[J]. TAPPI Journal.1995,78(2):133-139.
    [85]X Su, TJ Heindel. Gas holdup in a fiber suspension[J]. The Canadian Journal of Chemical Engineering.2003,81(6):412-418.
    [86]R.C.Vaseleski, and A.B.Metzner. Drag reduction in the turbulent Flow of fiber suspensions [J]. AIChE Journal.1974,20(2):301-306.
    [87]R.A.Gore, and C.T.Crowe. Effect of particle size on modulating turbulent intensity [J]. J. Multiphase Flow.1989,15(2):279-285.
    [88]J.Z. Lin, Z.Y. Gao, K. Zhou, et al. Mathematical modeling of turbulent fiber suspension and successive iteration solution in the channel flow [J]. Applied Mathematical Modeling.2006,30(9):1010-1020.
    [89]J.J.J.Gillissen, and J.P.Hoving. Self-similar drag reduction in plug-flow of suspensions of macroscopic fibers [J]. Physics of fluids.2012,24:111702.
    [90]D.D.Kale, and A.B.Metzner. Turbulent drag reduction in dilute fiber suspensions:mechanistic considerations [J]. AIChE Journal.1976,22(4):669-674.
    [91]I.Radin, J.L.Zakin, and G.K.Patterson. Drag reduction in solid-fluid systems [J]. AIChE Journal.1975,21(2):358-371.
    [92]Hiroshi Kato, and Hiroshi Mizunuma. Frictional resistance in fiber suspensions (1st report, pipe flow)[J]. Bulletin of the JSME,1983,26(212):212-8.
    [93]Ogata Satoshi, Numakawa Tetsuya, Kubo Takuya. Drag reduction of bacterial cellulose suspensions[J]. Advances in Mechanical Engineering.2011, Paper No.528373.
    [94]G.G.Duffy, and K.S.McShane. Heat-transfer fouling mitigation with model synthetic fiber suspensions[J]. Asia Particle Journal of Chemical Engineering.2007,2:407-412.
    [95]Md.Salim Newaz Kazi, Geoffrey G.Duffy, and Xiao Dong Chen. Heat transfer in the drag reducing regime of wood pulp fiber suspensions [J]. Chemical Engineering Journal. 1999,73(3):247-253.
    [96]Dennis M.Bushnell, and Jerry N.Hefher. Viscous drag reduction in boundary layers [J]. Progress in Astronautics.123:A91-12689-699.
    [97]G.G.Duffy. A study of the flow properties of New Zealand wood pulp suspensions [D]. The University of Auckland, New Zealand.1972.
    [98]J.F.Gulich. Pumping highly viscous fluids with centrifugal pumps-part 1[J]. World pumps.1999,8:30-34.
    [99]J.F.Gulich. Pumping highly viscous fluids with centrifugal pumps-part 2[J]. World pumps.1999,9:9-12.
    [100]M.H.Shojaeefard,M.Tahani,M.B.Ehghaghi,et al., Numerical study of the effects of some geometric characteristics of a centrifugal pump impeller that pumps a viscous fluid[J]. Computers & Fluids.2012,60:61-70.
    [101]Wen Guang Li. Effects of viscosity of fluids on centrifugal pump performance and flow pattern in the impeller [J]. International Journal of heat and fluid flow.2000, 21(2):207-212.
    [102]Kiyoshi Minemura, Mitsukiyo Murakami. A theoretical study on air bubble motion in a centrifugal pump impeller[J]. Transactions of the ASME.1980,102(12):446-453.
    [103]Mitsukiyo Murakami, and Kiyoshi Minemura. Effects of entrained air on the performance of a centrifugal pump (1st report, Performance and flow conditions)[J]. The Japan Society of Mechanical Engineers.1974,17(110):1047-1055.
    [104]Kurokawa, J., Matsumoto, K., Matsui, J., and Kitahora, T., Performances of centrifugal pumps of very low specific speed, Proceedings of the 19th IAHR Symposium on Hydraulic Machinery and Cavitation, Singapore,1998,2:833-842.
    [105]Tahsin Engin, and Mesut Gur., Performance characteristics of a centrifugal pump impeller with running tip clearance pumping solid-liquid mixtures[J], Transactions of the ASME,2001,123(9):532-538.
    [106]T. engine, M. Gur and I. Calli., Slurry and tip clearance effects on the performance of an open impeller centrifugal pump[J], Handbook of Power Technology,2001,10:499-504.
    [107]David G.Thomas. Turbulent disruption of floes in small particle size suspensions[J]. AIChE Journal.2004,10(4):517-523.
    [108]Darren F.Arola, Robert L.Powell, Michael J.McCarthy, et al NMR Imaging of pulp suspension flowing through an abrupt pipe expansion[J]. AIChE Journal.1998, 44(12):2597-2606.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.