蛋白质与金属配阴离子和生物大分子相互作用的共振瑞利散射光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究蛋白质与[Hg(SCN)4]2-、[Zn(SCN)4]2-等金属配阴离子、蛋白质与蛋白质、蛋白质与肝素钠之间发生相互作用时对吸收光谱、荧光光谱和共振瑞利散射光谱的影响。研究探讨了它们之间相互作用的机理、结合模式、结合位点以及结合作用力等,并发展和建立了测定蛋白质和肝素钠的新方法。主要研究内容如下:
     1. [Hg(SCN)4]2-与蛋白质相互作用的共振瑞利散射光谱及其分析应用
     在pH 1.0-4.5的稀硫酸介质中,[Hg(SCN)4]2-配阴离子与人血清白蛋白(HSA)、α-糜蛋白酶(α-Chy)、牛血清白蛋白(BSA)、溶菌酶(Lyso)和Y-球蛋白(γ-G)等蛋白质反应形成复合物,此时将导致共振瑞利散射(RRS)的显著增强,也能引起吸收光谱的变化和荧光猝灭,同时还观察到圆二色(CD)光谱特征的改变。本文主要研究[Hg(SCN)4]2--蛋白质复合物的RRS光谱特征,适宜的反应条件和影响因素以及某些分析化学性质,并以[Hg(SCN)4]2--Lyso体系为例,结合吸收、荧光和圆二色光谱的变化,对复合物的结合位点、结合模式以及散射增强的原因进行了讨论。RRS法具有较高的灵敏度,它对不同蛋白质的检出限在4.6-10.8ng/mL之间,据此建立了以[Hg(SCN)4]2-配阴离子作探针测定人血液和尿液中蛋白质的新方法。
     2. [Hg(SCN)4]2-与血红蛋白相互作用的荧光和共振瑞利散射光谱研究
     在pH7.4的生理条件下,[Hg(SCN)4]2-配阴离子能与血红蛋白(Hb)发生相互作用并形成10:1的复合物,此时将导致溶液的共振瑞利散射(RRS)的显著增强并出现相应的散射光谱,其最大散射波长位于313 nm附近。本文根据反应产物对共振光散射光谱的影响,结合[Hg(SCN)4]2-对Hb的荧光猝灭作用和圆二色光谱的变化,讨论了[Hg(SCN)4]2-与Hb的相互作用、结合位点和结合模式。
     3. [Hg(SCN)4]2-对蛋白质的荧光猝灭反应及其分析应用
     在pH 1.4-3.4的酸性介质中,[Hg(SCN)4]2-配阴离子可与牛血清白蛋白(BSA)、γ-球蛋白(γ-G)和血红蛋白(Hb)等蛋白质反应形成复合物,此时将引起蛋白质荧光的猝灭。荧光猝灭程度在一定范围内与Hg(Ⅱ)的浓度成线性关系,对Hg(Ⅱ)测定的线性范围为0.015-1.25μg/mL,检出限(3σ)分别为4.4 ng/mL (BSA)、6.5 ng/mL (y-G)和12.9 ng/mL (Hb)。文中研究了适宜的反应条件和影响因素,考察了共存物质的影响,表明方法有良好的选择性,可用于红药水和乙肝疫苗中汞的测定。此外,通过研究[Hg(SCN)4]2--BSA体系吸收光谱的变化、温度的影响以及Stern-Volmer作图,判断该反应为静态猝灭反应。
     4. [Zn(SCN)4]2-与蛋白质相互作用的共振瑞利散射光谱及其分析应用
     在pH 1.75-1.90的酸性介质中,[Zn(SCN)4]2-与某些非酶蛋白质[如人血清白蛋白(HSA)、牛血清白蛋白(BSA)、血红蛋白(Hb)、γ-球蛋白(γ-G)]和某些蛋白质酶[如α-糜蛋白酶(α-Chy)、溶菌酶(Lyso)]相互作用时,不能使吸收光谱和荧光光谱发生改变,但是却能引起共振瑞利散射(RRS)和二级散射(SOS)、倍频散射(FDS)等共振非线性散射(RNLS)的显著增强。不同蛋白质体系具有相似的散射光谱特征,其最大RRS、SOS和FDS波长分别位于290 nm、552 nm和392 nm附近,但相对强度有一定差异,其中以HSA、y-G和Hb体系灵敏度更高。当用RRS法时,对于HSA、y-G和Hb的检出限在4.9-7.8ng/mL之间,本文研究了反应体系的RRS光谱特征,适宜的反应条件和影响因素,考察了方法的选择性,并建立了以[Zn(SCN)4]2-作探针RRS法测定人血清和人尿液中总蛋白质的方法。文中还以[Zn(SCN)4]2--HSA体系为例讨论了复合物的结合比、它们之间的主要作用力和可能的结合模式。表明RRS法是研究蛋白质中非芳香族残基与其它分子相互作用的有效手段,这也是吸收光谱法和荧光法所不具备的优点。同时还可以从研究的体系中发展出用RRS技术高灵敏度测定蛋白质的新方法。
     5.胃蛋白酶与溶菌酶相互作用的共振瑞利散射和共振非线性散射光谱及其分析应用研究
     在pH 4.8-5.6的酸性介质中,带多个负电荷的胃蛋白酶(Pep)与带大量正电荷的溶菌酶(Lyso)可借静电引力、氢键作用力和疏水作用力而形成1:2的结合产物,这将引起共振瑞利散射(RRS)和二级散射(SOS)、倍频散射(FDS)等共振非线性散射(RNLS)的显著增强,其最大RRS波长位于290 nm附近。散射增强(ΔI)在一定范围内与Lyso的浓度成线性关系,可用于痕量Lyso的测定。三种方法对Lyso的检出限分别为4.3 ng/mL(RRS)、4.5 ng/mL(SOS)和23.6ng/mL(FDS),灵敏度均较高,据此建立了以Pep作探针测定人唾液和鸡蛋清中Lyso的新方法。本文研究了反应体系的RRS、SOS和FDS光谱特征,适宜的反应条件和影响因素。干扰实验表明其他常见蛋白质基本不干扰Lyso的测定,因此本法对Lyso的测定具有较好的选择性。文中还对复合物的结合模式和散射增强的原因进行了讨论。
     6.肝素钠与蛋白质相互作用的共振瑞利散射和共振非线性散射光谱及其分析应用研究
     在适当酸度的NaAc-HCl缓冲溶液介质中,肝素钠(Hep)因其硫酸酯基离解而以带多个负电荷的大阴离子存在,而人血清白蛋白(HSA)、牛血清白蛋白(BSA)、Hb血红蛋白(Hb)、木瓜蛋白酶(Pap)和鸡卵白蛋白(Alb-egg)等蛋白质因处于其等电点(pI)之下,则以带多个正电荷的大阳离子存在,两者可借静电引力、氢键作用、疏水作用而结合形成复合物,此时将引起RRS和SOS、FDS等RNLS的显著增强并出现新的散射光谱。3种散射的增强程度(ΔI)均在一定范围内与Hep的浓度成正比,均可用于对Hep的测定,其中Hep-HSA体系的RRS法灵敏度最高,对Hep的检出限为3.1ng/mL。本文研究了适宜的反应条件,考察了共存物质的影响,表明方法有较好的选择性。基于此建立了一种灵敏度高、简便、快速测定Hep的新方法。
     7.肝素钠与溶菌酶相互作用的吸收、荧光和共振瑞利散射光谱研究
     在pH 7.4的生理条件下,带多个正电荷的碱性蛋白Lyso可通过静电引力和疏水作用力与带多个负电荷的Hep结合形成1:1的复合物,此时不仅会引起吸收光谱的变化和Lyso的荧光猝灭,而且将导致RRS显著增强,我们研究了Hep-Lyso复合物的RRS光谱特征,适宜的反应条件和影响因素以及某些分析化学性质,并结合吸收、荧光和圆二色光谱的变化,讨论了Hep与Lyso之间的反应机理和结合模式,认为静电引力和疏水作用是二者间的主要作用力,而分子体积增大、疏水界面的形成及荧光-散射共振能量转移作用是共振光散射增强的重要因素。
The interaction of proteins with [Hg(SCN)4]2- and [Zn(SCN)4]2-, interaction between protein and protein, interaction between protein and sodium heparin were investigated by absorption spectra, fluorescence spectra and resonance Rayleigh scattering (RRS) spectra. The reaction mechanism, binding mode, binding sites and the main interaction forces were studied through the changes in spectra. Additional, some new methods for the determination of protein or sodium heparin were established from the investigated systems. The main work of this thesis is as follows:
     1. Study of the interaction between [Hg(SCN)4]2- and proteins by resonance Rayleigh scattering spectra and their analytical applications
     [Hg(SCN)4]2- in H2SO4 at pH 1.0-4.5 was reacted with proteins, including human serum albumin (HSA), a-chymotrypsin (a-Chy), bovine serum albumin (BSA), lysozyme (Lyso) and y-globin (y-G), to form complexes. As a result, the intensities of resonance Rayleigh scattering (RRS) were significantly enhanced. Changes in absorption, circular dichroism (CD) spectra and the fluorescence quenching of proteins were also observed. Attention was paid mainly to the RRS spectral characteristics of these complexes, suitable reaction conditions, influencing factors and a number of analytical properties. The changes in absorption, fluorescence and CD spectra for the [Hg(SCN)4]2--Lyso system were used as an example to explore the binding sites, binding model and reasons for enhanced scattering. The RRS method had a high sensitivity and the detection limits (3σ) were 4.6-10.8 ng/mL for the proteins studied. A new method is thus established herein, using [Hg(SCN)4]2- as a probe for the determination of proteins in human serum and urine samples.
     2. Resonance Rayleigh scattering spectral investigation of the interaction between [Hg(SCN)4]2- and hemoglobin
     In a slightly acidic medium of pH 1.0-4.5, anionic complex [Hg(SCN)4]2- reacted with hemoglobin to form a 10:1 complex. As a result, the intensity of resonance Rayleigh scattering and resonance nonlinear scattering such as second-order scattering and frequency doubling scattering were greatly enhanced. The discussion on the interaction, binding sites and binding model, which was based on the effect of the complexation on the resonance light scattering spectra, on the fluorescence quenching of hemoglobin by [Hg(SCN)4]2- and on the changes of absorption and circular dichroism spectroscopy, indicated that four [Hg(SCN)4]2- entered respectively the four subunits of hemoglobin to form complex with appropriate amino acid residues via hydrogen bonding, hydrophobic interaction and electrostatic forces. The enhancement of scattering was mainly due to the increase of hydrophobicity and volume of the scattering molecule, the energy transfer between fluorescence and resonance scattering, even due to the favorable conformation alteration of hemoglobin induced by [Hg(SCN)4]2-. Therefore, resonance Rayleigh scattering and resonance nonlinear scattering spectra not only can be used as a helpful tool for studying the interaction between metal complex and protein such as hemoglobin, but also can create new conditions for highly sensitive determination of trace hemoglobin.
     3. [Hg(SCN)4]2- quenching behavior of proteins fluorescence and its analytical application
     [Hg(SCN)4]2- in acidic medium of pH 1.4-3.4 was reacted with proteins, including bovine serum albumin (BSA),γ-globin (γ-G) and Hemoglobin (Hb), to form complexes. As a result, the fluorescence intensities of proteins were significantly quenched. The quenched fluorescence intensities (△F) in a certain range were linearly related to the concentration of Hg(Ⅱ), and the detection limit (3σ) were 4.4 ng/mL (BSA as a probe),6.5 ng/mL (γ-G as a probe) and 12.9 ng/mL (Hb as a probe), respectively. The effect of the interaction on the fluorescence spectral characteristics of these complexes, suitable reaction conditions and influencing factors were investigated. The quenching mechanism was studied by absorption spectroscopy, binding constant and corresponding thermodynamic parameters at different temperatures. Some potential interferents on the assay by BSA were investigated. The method displayed good selectivity and was satisfactorily applied to the determination of asceptichrome in mercurochrome solution and thiomersalatum in HB-vaccine.
     4. Study on the interaction between [Zn(SCN)4]2- and proteins by resonance Rayleigh scattering spectra and their analytical applications
     In pH 1.75-1.90 acid medium, the interactions of [Zn(SCN)4]2- with proteins, such as human serum albumin (HSA), bovine serum albumin (BSA), hemoglobin (Hb), a-chymotrypsin (a-Chy), lysozyme (Lyso) and y-globin (y-G), could not induce the change in absorption spectra and fluorescence spectra, but these interaction could result in the great enhancement of resonance Rayleigh scattering (RRS), second-order scattering (SOS) and frequency doubling scattering (FDS). The maximum scattering wavelength was located at 290 nm (RRS),552 (SOS) nm and 392 nm (FDS), respectively. These six systems have different sensitivity, the detection limit (3σ) of HSA、y-G and Hb by RRS method is 4.9-7.8 ng/mL which is the highest sensitivity. The RRS spectral characteristics of these systems, suitable reaction conditions, influencing factors and effect of coexisting substances were investigated. Thus a new method for the determination of total proteins in human serum and urine was established. Additional, the binding stoichiometric ratio, the main interaction forces and possible binding mode were studied when [Zn(SCN)4]2- reacted with HSA.
     5. Study on the interaction between pepsin and lysozyme by resonance Rayleigh scattering and resonance non-linear scattering and its analytical application
     In pH 4.8-5.6 acid medium, multiple negatively charged pepsin (Pep) could bind to multiple positively charged lysozyme (Lyso) to form 1:2 complex via electrostatic attraction, hydrophobic interaction and hydrogen bonding. As a result, the intensities of resonance Rayleigh scattering (RRS) and resonance non-linear scattering (RNLS), including second order scattering (SOS) and frequency doubling scattering (FDS), could be greatly enhanced. The maximum RRS wavelength was at about 290 nm where the enhanced intensity (△I) was linear to the concentration of Lyso in a certain range. The detection limit (3σ) of Lyso was 4.3 ng/mL (RRS),4.5 ng/mL (SOS) and 23.6 ng/mL(FDS). The RRS method was utilized to determine the level of Lyso in human saliva and hen egg white.
     6. Study on the interaction between sodium heparin and proteins by resonance Rayleigh scattering and resonance non-linear scattering and its analytical application
     In NaAc-HCl buffer medium with proper pH, some positively charged proteins such as human serum albumin (HSA), bovine serum albumin (BSA), hemoglobin (Hb), Papain (Pap) and albumin egg (Alb-egg) could react with negatively charged sodium heparin (Hep) to form complexes by electrostatic attraction, hydrophobic interaction and hydrogen bonding. As a result, the intensities of resonance Rayleigh scattering (RRS), second order scattering (SOS) and frequency doubling scattering (FDS), could be significantly enhanced. The enhanced intensity (△I) was linear to the concentration of Hep in a certain range. The detection limit (3σ) of Hep by RRS was 3.1 ng/mL. The effects of coexisting substances showed good selectivity of the established method.
     7. Study on the interaction between sodium heparin and lysozyme by absorption, fluorescence and resonance Rayleigh scattering spectra
     Under pH 7.4 physical condition, multiple positively charged lysozyme (Lyso) could bind to multiple negatively charged sodium heparin (Hep) to form 1:1 complex via electrostatic attraction and hydrophobic interaction. As a result, the change in absorption spectra, the fluorescence quenching of Lyso and the great enhancement of resonance Rayleigh scattering (RRS) intensity were observed. The RRS spectral characteristics, suitable reaction conditions, influencing factors and some analytical properties were investigated. The reaction mechanism and binding mode were studied through the changes in absorption, fluorescence, RRS and circular dichroism spectra.
引文
[1]庞尔国,赵亚琴,杨斌盛apoCopC与铜(Ⅱ)结合性质的荧光光谱.科学通报,2005,50:1700-1702
    [2]Victor S. X-ray absorption and diffraction studies of the metal binding sites in amyloid β-peptide. Eur. Biophys. J.,2008,37:257-263
    [3]Cobine P. A., George G. N., Jones C E, et al. Copper transfer from the Cu(Ⅰ)chaperone, CopZ, to the repressor, Zn(II)CopY:Metal coordination environments and proteins interacrions. Biochemistry,2002,41(18):5822-5829
    [4]Arnesano F.,Banci L., Bertini I., et al. A redox switch in CopC:An intriguing copper trafficking protein that binds copper(I) and copper(II) at different sites. Proc. Natl. Acad. Sci. USA,2003,100(7):3814-3819
    [5]Rivillas-Acevedo L., Grande-Aztatzi R., Lomeli I., et al. Spectroscopic and electronic structure studies of copper(II) binding to Hislll in the human prion protein fragment 106-115:evaluating the role of protons and methionine residues. Inorg. Chem.,2011,50(5):1956-1972
    [6]Nadal R. C., Davies P., Brown D. R., et al. Evaluation of copper2+ affinities for the prion protein. Biochemistry,2009,48(38):8929-8931
    [7]Atwood C. S., Scarpa R. C., Huang X., et al. Characterization of copper interactions with Alzheimer amyloid (3-Peptides. Identification of an attomolar-affnity copper binding site on amyloid-β1-42. J. Neurochem.,2000, 75:1219-1233
    [8]Caine J., Volitakis I., Cherny R., et al. Aβ produced as a fusion to maltose binding protein can be readily purified and stably associates with copper and zinc. Protein Pept. Lett.,2007,14:83-86
    [9]Hou L., Zagorski M. G. NMR reveals anomalous copper(II) binding to the amyloid Aβ peptide of Alzheimer's disease. J. Am. Chem. Soc.,2006,128:9260-9261
    [10]Jiang D., Men L., Wang J., et al. Redox reactions of copper complexes formed with different β-amyloid peptides and their neuropathalogical relevance. Biochemistry,2007,46:9270-9282
    [11]Karr J. W., Kaupp L. J., Szalai V. A. Amyloid-β binds Cu2+ in amononuclear metal ion binding site. J. Am. Chem. Soc.,2004,126:13534-13538
    [12]Rozga M., Bal W. The Cu(II)/Aβ/human serum albumin model of control mechanism for copper-related amyloid neurotoxicity. Chem. Res. Toxicol.,2010, 23(2):298-308
    [13]Streltsov V. A., Titmuss S. J., Epa V. C., et al. The structure of the amyloid-(3 peptide high-affinity copper II binding site in Alzheimer disease. Biophys. J.,2008, 95(7):3447-3456
    [14]Kirberger M., Yang J. J. Structural differences between Pb2+- and Ca2+- binding sites in proteins:Implications with respect to toxicity. J. Inorg. Biochem.,2008, 102(10):1901-1909
    [15]Huang Y., Zhou Y., Yang W., et al. Identification and dissection of Ca2+-binding sites in the extracellular domain of Ca2+-sensing receptor. J. Biol. Chem.,2007, 282(26):19000-19010
    [16]Ye Y., Lee, H., Yang W., et al. Calcium and lanthanide affinity of the EF-loops from the C-terminal domain of calmodulin. J. Inorg. Biochem.,2005, 99(6):1376-1383
    [17]Lepsik M., Field M. J. Binding of calcium and other metal ions to the EF-hand loops of calmodulin studied by quantum chemical calculations and molecular dynamics simulations. J. Phys. Chem. B,2007,111(33):10012-10022
    [18]Barondeau D.P., Kassmann C.J., Tainer J.A., et al. Structural chemistry of a green fluorescent protein Zn biosensor. J. Am. Chem. Soc.,2002,124:3522-3524
    [19]Andre Y. C., Guillaume Y. C. Zinc-human serum albumin association:testimony of two binding sites. Talanta,2004,63:503-508
    [20]Deng B., Wang Y., Zhu P., et al. Study of the binding equilibrium between Zn(II) and HSA by capillary electrophoresis-inductively coupled plasma optical emission spectrometry. Anal. Chim. Acta.2010,683(1):58-62
    [21]Sooriyaarachchi M., Gailer J. Removal of Fe3+ and Zn2+ from plasma metalloproteins by iron chelating therapeutics depicted with SEC-ICP-AES. Dalton Trans.,2010,39(32):7466-7473
    [22]Shi Y, Liu X., Shi P., et al. Characterization of zinc-binding properties of a novel imidase from Pseudomonas putida YZ-26. Arch. Biochem. Biophys.,2010, 494(1):1-6
    [23]Sousa S. F., Lopes A. B., Fernandes P. A., et al. The Zinc proteome:a tale of stability and functionality. Dalton Trans.,2009,38:7946-7956
    [24]Stewart A. J., Blindauer, C. A., Berezenko S., et al. Interdomain zinc site on human albumin. Proc. Natl. Acad. Sci. USA,2003,100(7):3701-3706
    [25]Maret W., Li, Y. Coordination dynamics of zinc in proteins. Chem. Rev.,2009, 109(10):4682-4707
    [26]Blindauer C. A., Harvey I., Bunyan K. E., et al. Structure, properties, and engineering of the major zinc binding site on human albumin. J. Biol. Chem.,2009, 284(34):23116-23124
    [27]Wu L., Ma B., Zou D., et al. Influence of metal ions on folding pathway and conformational stability of bovine serum albumin. J. Mol. Struct.,2008, 877(1-3):44-49
    [28]Unuma T., Ikeda K., Yamano K., et al. Zinc-binding property of the major yolk protein in the sea urchin-implications of its role as a zinc transporter for gametogenesis. FEBS J.,2007,274(19):4985-4998
    [29]Carlton D. J., Schug K. A. A review on the interrogation of peptide-metal interactions using electrospray ionization-mass spectrometry. Anal. Chim. Acta, 2011,686:19-39
    [30]Seneque O., Latour J. Coordination properties of zinc finger peptides revisited: ligand competition studies reveal higher affinities for zinc and cobalt. J. Am. Chem. Soc.,2010,132(50),17760-17774
    [31]Duff M. J., Kumar C. V. The metallomics approach:use of Fe(Ⅱ) and Cu(Ⅱ) footprinting to examine metal binding sites on serum albumins. Metallomics,2009, 1(6):518-523
    [32]Weaver K. D., Gabricevic M., Anderson D. S., et al. Role of citrate and phosphate anions in the mechanism of iron(Ⅲ) sequestration by ferric binding protein: Kinetic studies of the formation of the holoprotein of wild-type fbpA and its engineered mutants. Biochemistry,2010,49(29):6021-6032
    [33]Badarau A., Firbank S. J., Waldron K. J., et al. FutA2 is a ferric binding protein from synechocystis PCC 6803. J. Biol. Chem.,2008,283:12520-12527
    [34]Xu X., Zhang L., Shen D., et al. Oxygen-dependent oxidation of Fe(Ⅱ) to Fe(Ⅲ) and interaction of Fe(Ⅲ) with bovine serum albumin, leading to a hysteretic effect on the fluorescence of bovine serum albumin. J. Fluoresc.,2008,18(1):193-201
    [35]Zhao G., Arosio P., Chasteen N. D. Iron(Ⅱ) and hydrogen peroxide detoxification by human H-chain ferritin. An EPR spin-trapping study. Biochemistry,2006, 45(10):3429-3436
    [36]Bou-Abdallah F., Zhao G., Mayne H. R., et al. Origin of the unusual kinetics of iron deposition in human H-chain ferritin. J. Am. Chem. Soc.,2005, 127(11):3885-3893
    [37]White B. R., Liljestrand H. M., Holcombe J. A. A 'turn-on' FRET peptide sensor based on the mercury binding protein MerP. Analyst,2008,133(1):65-70
    [38]Li Y. Yin X. Yan X. Recent advances in on-line coupling of capillary electrophoresis to atomic absorption and fluorescence spectrometry for speciation analysis and studies of metal-biomolecule interactions. Anal. Chim. Acta.2008, 615(2),105-114
    [39]Sharma S. K., Goloubinoff P., Christen P. Heavy metal ions are potent inhibitors of protein folding. Biochem. Biophys. Res. Commun.,2008,372(2):341-345
    [40]Picaud T., Desbois A. Interaction of glutathione reductase with heavy metal:the binding of Hg(II) or Cd(II) to the reduced enzyme affects both the redox dithiol pair and the flavin. Biochemistry,2006,45(51),15829-15837
    [41]Stillman M. J., Thomas D., Trevithick C., et al. Circular dichroism, kinetic and mass spectrometric studies of copper(I) and mercury(II) binding to metallothionein. J. Inorg. Biochem.,2000,79:11-19
    [42]Leiva-Presa A., Capdevila M., Gonzalez-Duarte P. Mercury(II) binding to metallothioneins. Variables governing the formation and structural features of the mammalian Hg-MT species. Eur. J. Biochem.,2004,271:4872-4880
    [43]Samanta T., Laskar S., Nayak D., et al. Studies on metal-protein interactions: Inter-comparison among various approaches. J. Radioanal. Nucl. Chem.,2007, 273(2):323-325
    [44]Dutta S., Bhattacharyya A., De P., et al. Removal of mercury from its aqueous solution using charcoal-immobilized papain (CIP). J. Hazard. Mater.,2009, 172:888-896
    [45]Ledwidge R., Patel B., Dong A., et al. NmerA, the metal binding domain of mercuric ion reductase, removes Hg2+ from proteins, delivers it to the catalytic core, and protects cells under glutathione-depleted conditions. Biochemistry,2005, 44(34):11402-11416
    [46]Rossy E., Seneque O., Lascoux D., et al. Is the cytoplasmic loop of MerT, the mercuric ion transport protein, involved in mercury transfer to the mercuric reductase? FEBS Lett.,2004,575:86-90
    [47]Veglia G., Porcelli F., DeSilva T., et al. The Structure of the metal-binding motif GMTCAAC is similar in an 18-residue linear peptide and the mercury binding protein MerP. J. Am. Chem. Soc.,2000,122(10):2389-2390
    [48]Wilson J. R., Leang C., Morby A. P., et al. MerF is a mercury transport protein: different structures but a common mechanism for mercuric ion transporters? FEBS Lett.,2000,472(1):78-82
    [49]Qu S., Liu Y., Wang T., et al. Thermodynamics of binding of cadmium to bovine serum albumin. Chemosphere,2002,46(8):1211-1214
    [50]Sadler P. J., Viles J. H.'H and 113Cd NMR investigations of Cd2+ and Zn2+ binding sites on serum albumin:Competition with Ca2+, Ni2+, Cu2+, and Zn2+. Inorg. Chem.,1996,35 (15):4490-4496
    [51]Lee J., Wu S., Lu L., et al. Cadmium concentration and metallothionein expression in prostate cancer and benign prostatic hyperplasia of humans. J. Formos. Med. Assoc.,2009,108(7):554-559
    [52]Klaassen C. D., Liu J., Diwan B. A. Metallothionein protection of cadmium toxicity. Toxicol. Appl. Pharmacol.,2009,238(3):215-220
    [53]Kopera E., Schwerdtle T., Hartwig A., et al. Co(II) and Cd(II) Substitute for Zn(II) in the zinc finger derived from the DNA repair protein XPA, demonstrating a variety of potential mechanisms of toxicity. Chem. Res. Toxicol.,2004, 17(11):1452-1458
    [54]Mizuno C., Bao S., Hinoue T., et al. Adsorption behavior of metal ions onto a bovine serum albumin (BSA) membrane monitored by means of an electrode-separated piezoelectric quartz crystal. Anal. Sci.,2005,21(3):281-286
    [55]Shcharbin D., Mazur J., Szwedzka M., et al. Interaction between PAMAM 4.5 dendrimer, cadmium and bovine serum albumin:A study using equilibrium dialysis, isothermal titration calorimetry, zeta-potential and fluorescence. Colloids Surf. B Biointerfaces,2007,58(2):286-289
    [56]Bond A. M., Colton R., D'Agostino A., et al. An electrospray mass spectrometric and voltammetric study of horse heart cytochrome c in the presence of metal ions. Inorgan. Chim. Acta.1998,267(2):281-291
    [57]Magyar J. S., Weng, T., Stern C. M., et al. Reexamination of lead(II) coordination preferences in sulfur-rich sites:Implications for a critical mechanism of lead poisoning. J. Am. Chem. Soc.,2005,127(26):9495-9505
    [58]Liu P., Xiao H., Xi L., et al. Calorimetric study of nonspecific interaction between lead ions and bovine serum albumin. Biol. Trace Elem. Res.,2007,118(2):97-103
    [59]Palacios O., Leiva-Presa A., Atrian S., et al. A study of the Pb(II) binding to recombinant mouse Zn7-metallothionein 1 and its domains by ESI TOF MS. Talanta,2007,72(2):480-488
    [60]Ayranci E., Duman O. Binding of lead ion to bovine serum albumin studied by ion selective electrode. Protein Pept. Lett.,2004,11(4):331-337
    [61]Sokolowska M., Wszelaka-Rylik M., Poznanski J., et al. Spectroscopic and thermodynamic determination of three distinct binding sites for Co(II) ions in human serum albumin. J. Inorg. Biochem.,2009,103(7):1005-1013
    [62]Zhu H., Shipp E., Sanchez R. J., et al. Cobalt(2+) binding to human and tomato copper chaperone for superoxide dismutase:implications for the metal ion transfer mechanism. Biochemistry,2000,39(18):5413-5421
    [63]Mothes, E., Faller P. Evidence that the principal CoⅡ-binding Site in human serum albumin is not at the N-terminus:implication on the albumin Cobalt binding test for detecting myocardial ischemia. Biochemistry,2007,46(8):2267-2274
    [64]Liang H., Huang J., Tu C., et al. The subsequent effect of interaction between Co2+ and human serum albumin or bovine serum albumin. J. Inorg. Biochem.,2001, 85:167-171
    [65]Zhang Y., Wilcox D. E. Thermodynamic and spectroscopic study of Cu(II) and Ni(II) binding to bovine serum albumin. J. Biol. Inorg. Chem.,2002,7(3):327-337
    [66]Zoroddu M. A., Kowalik-Jankowska T., Kozlowski H., et al. Ni(II) and Cu(II) binding with a 14-amino acid sequence of Cap43 protein, TRSRSHTSEGTRSR. J. Inorg. Biochem.,2001,84:47-54
    [67]Tkaczyk C., Huk O. L., Mwale F.,et al. Investigation of the binding of Cr(III) complexes to bovine and human serum proteins:a proteomic approach. J. Biomed. Mater. Res. Part A,2010,94A:214-222
    [68]Duan L., Zhao Y., Wang Z., et al. Lutetium(Ⅲ)-dependent self-assembly study of ciliate Euplotes octocarinatus centrin. J. Inorg. Biochem.,2008,102:268-277
    [69]Duan L., Liu W., Wang Z., et al. Critical role of tyrosine 79 in the fluorescence resonance energy transfer and terbium(Ⅲ)-dependent self-assembly of ciliate Euplotes octocarinatus centrin. J. Biol. Inorg. Chem.,2010,15(7):995-1007
    [70]Ye Y., Lee H., Yang W., et al. Probing site-specific calmodulin Calcium and lanthanide affinity by grafting. J. Am. Chem. Soc.,2005,127(11):3743-3750
    [71]Fahmy K., Merroun M., Pollmann K., et al. Secondary structure and Pd(Ⅱ) coordination in S-layer proteins from Bacillus sphaericus studied by infrared and X-ray absorption spectroscopy. Biophys. J.,2006,91 (3):996-1007
    [72]Marcon G., Messori L., Orioli P., et al. Reactions of gold(III) complexes with serum albumin. Eur. J. Biochem.,2003,270(23):4655-4661
    [73]Ohyoshi E., Hamada Y., Nakata K., et al. The interaction between human and bovine serum albumin and zinc studied by a competitive spectrophotometry. J. Inorg. Biochem.,1999,75(3):213-218
    [74]Mehta J. P., Bhatt P. N., Misra S. N. Pr(III) and Nd(III) absorption spectroscopic probe to investigate interaction with lysozyme (HEW). J. Rare Earth.,2006, 24:648-652
    [75]Noyelle K., Van Dael H. Kinetics of conformational changes induced by the binding of various metal ions to bovine a-lactalbumin. J. Inorg. Biochem.,2002, 88(1):69-76
    [76]薛永来,王帅,冯喜增.光谱法研究金属离子与肿瘤抑制蛋白p53的DNA结合结构域的相互作用.分析化学,2009,37:1131-1136
    [77]Michon J., Frelon S., Gamier C., et al. Determinations of Uranium(VI) binding properties with some metalloproteins (Transferrin, Albumin, Metallothionein and Ferritin) by fluorescence quenching. J. Fluoresc.,2010,20(2):581-590
    [78]Long X., Zhang C., Cheng J., et al. A novel method for study of the aggregation of protein induced by metal ion aluminum(III) using resonance Rayleigh scattering technique. Spectrochim. Acta Part A,2008,69A(1):71-77
    [79]Mohanakrishnan P., Chignell C. F. Copper and nickel binding to canine serum albumin. A circular dichroism study. Comp. Biochem. Physiol. C,1984, 79C(2):321-323
    [80]Nahar S., Tajmir-Riahi H. A. Complexation of heavy metal cations Hg, Cd, and Pb with proteins of PSII:evidence for metal-sulfur binding and protein conformational transition by FTIR spectroscopy. J. Colloid Interface Sci.,1996, 178:648-656
    [81]Vlasova I. M., Mikrin V. E., Saletsky A. M. Investigation of CsCl-induced aggregation of serum albumin depending on pH by Raman spectroscopy method. Laser Phys. Lett.,2005,2(4):204-207
    [82]Ogoma Y., Kobayashi H., Fujii T., et al. Binding study of metal ions to S100 protein:43Ca,25Mg,67Zn and 39K n..m..r. Int. J. Biol. Macromol.,1992, 14(5):279-286
    [83]Pesek J. J., Schneider J. F. The detection of mercury, lead, and methylmercury binding sites on lysozyme by carbon-13NMR chemical shifts of the carboxylate groups. J. Inorg. Biochem.,1988,32:233-238
    [84]Kershaw C.J., Brown N. L., Hobman J. L. Zinc dependence of zinT (yodA) mutants and binding of zinc, cadmium and mercury by ZinT. Biochem. Biophys. Res. Commun.,2007,364:66-71
    [85]Schmidt A. C, Koppelt J., Neustadt M., et al. Mass spectrometric evidence for different complexes of peptides and proteins with arsenic(III), arsenic(V), copper(II), and zinc(II) species. Rapid Commun. Mass Spectrom.,2007, 21(2):153-163
    [86]Trisaka S. T., Doumgdeea P., Rode B. M. Binding of zinc and cadmium to human serum albumin. Int. J. Biochem.,1990,22(9):977-981
    [87]Pires de Castro C. S., SouzaDe J. R., Bloch J. C. Investigations on the binding of mercury ions to albumins employing differential pulse voltammetry. Protein Pept. Lett.,2003,10(2):155-164
    [88]Hu X., Song Z., Su X., et al. Equilibrium dialysis of metal-serum albumin (II). Allosteric effect in Ni(II)-serum albumin systems. Sci. China Ser. B,1997, 40(2):122-127
    [89]Wilcox D. E. Isothermal titration calorimetry of metal ions binding to proteins:An overview of recent studies. Inorg. Chim. Acta,2008,361:857-867
    [90]Stillman M. J., Thomas D., Trevithick C, et al. Circular dichroism, kinetic and mass spectrometric studies of copper(I) and mercury(II) binding to metallothionein. J. Inorg. Biochem.,2000,79:11-19
    [91]Zhang H., Liu R., Chi Z., et al. Toxic effects of different charged metal ions on the target-Bovine serum albumin. Spectrochim. Acta Part A,2011,78A(1):523-527
    [92]罗家刚,刘忠芳,刘绍璞,等.[HgI4]2--蛋白质离子缔合物体系共振瑞利散射和共振非线性散射光谱其分析应用.化学学报,2008,66:2604-2612
    [93]Luo J., Liu Z., Hu X., et al Study on the resonance Rayleigh scattering and resonance non-linear scattering spectra of ion-association complexes of [PdI4]2--protein systems and their analytical applications. Luminescence,2009, 24:429-437
    [94]彭贞,王新运Cu(Ⅱ)-SCN二元配合物与蛋白质的相互作用的电化学研究.化学世界,2008,49(9):517-519
    [95]Phan T., Nguyen H. D., Goeksel H., et al. Phage display selection of miniprotein binders of the Estrogen Receptor. Chem. Commun.,2010,46(43):8207-8209
    [96]Sui J., Li W., Murakami A., et al. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc. Natl. Acad. Sci. USA,2004,101(8):2536-2541
    [97]McMahon S. B., Van Buskirk H. A., Dugan K. A., et al. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell, 1998,94(3):363-374
    [98]Walker C., Bottger S., Low B. Mortalin-based cytoplasmic sequestration of p53 in a nonmammalian cancer model. Am. J. Pathol.,2006,168(5):1526-1530
    [99]Dey D., Bochkariov D. E., Jokhadze G.G., et al. Cross-linking of selected residues in the N-and C-terminal domains of Escherichia coli protein L7/L12 to other ribosomal proteins and the effect of elongation factor Tu. J. Boil. Chem.,1998, 273(3):1670-1676
    [100]Liu S. H., Cheng H.H., Huang S. Y., et al. Studying the protein organization of the postsynaptic density by a novel solid phase-and chemical cross-linking-based technology. Mol. Cell Proteomics.2006,5(6):1019-1032
    [101]Naz R. K., Dhandapani L. Identification of human sperm proteins that interact with human zona pellucida3 (ZP3) using yeast two-hybrid system. J. Reprod. Immunol.,2010,84(1):24-31
    [102]Turbpaiboon C., Limjindaporn T., Wongwiwat W., et al. Impaired interaction of a-haemoglobin-stabilising protein with a-globin termination mutant in a yeast two-hybrid system. Br. J. Haematol.,2006,132(3):370-373
    [103]Kishimoto A., Ogura T., Esumi H. A pull-down assay for 5'AMP-activated protein kinase activity using the GST-fused protein. Mol. Biotechnol.,2006, 32(1):17-21
    [104]Markov D. A., Savkina M., Anikin M., et al. Identification of proteins associated with the yeast mitochondrial RNA polymerase by tandem affinity purification. Yeast,2009,26(8):423-440
    [105]Akashi S. Investigation of molecular interaction within biological macromolecular complexes by mass spectrometry. Med. Res. Rev.,2006, 26(3):339-368
    [106]Erba E. B., Ruotolo B. T., Barsky D., et al. Ion mobility-mass spectrometry reveals the influence of subunit packing and charge on the dissociation of multiprotein complexes. Anal. Chem.,2010,82(23):9702-9710
    [107]Lee S., Kim S. Y., Park K., et al. Fluorescence lifetime study of ECFP/EYFP labeled MBP in Foerster resonance energy transfer. J. Luminesc.,2010, 131(2):275-279
    [108]Coulon V., Audet M., Homburger V., et al. Subcellular imaging of dynamic protein interactions by bioluminescence resonance energy transfer. Biophys. J., 2008,94(3):1001-1009
    [109]Hu C., Chinenov Y., Kerppola T. K. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell,2002,9(4):789-798
    [110]Walter M., Chaban C., Schu K., et al. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J.,2004, 40(3):428-438
    [111]蒋治良,李纪顺,温桂清,等.纳米催化共振散射光谱分析.中国科学,2010,40(5):441-447
    [112]Jiang Z. L., Huang W. X., Liang A. H., et al. A rapid and sensitive immunonanogold resonance scattering spectral probe for complement 3. Talanta, 2007,73(5):926-931
    [113]Jiang Z. L., Huang W. X., Li J.P., et al. Nanogold catalysis-based immunoresonance-scattering spectral assay for trace complement component 3. Clin. Chem.,2008,54(1):116-123
    [114]Jiang Z. L., Li Y, Sun S. J., et al. A new nanogold-labeled immunoresonance scattering spectral probe for determination of trace IgG. Chinese J. Chem.,2007, 25(9):1282-1287
    [115]Jiang Z. L., Wang S. M., Liang A.H., et al. A highly sensitive resonance scattering spectral assay for IgG using Fehling reagent-glucose-immunonanogold reaction. Talanta,2009,77(3):1191-1196
    [116]Jiang Z. L., Huang Y.J., Liang A. H. An immunonanogold resonance scattering-quenching probe for rapid and sensitive assay of microalbumin. J. Fluoresc.,2008,18(2):563-571
    [117]Jiang Z. L., Huang Y. J., Liang A. H., et al. Resonance scattering detection of trace microalbumin using immunonanogold probe as the catalyst of Fehling reagent-glucose reaction. Biosen. Bioelectron.,2009,24(6):1674-1678
    [118]Jiang Z. L., Liao X. J., Deng A. P., et al. Catalytic effect of nanogold on Cu (Ⅱ)-N2H4 reaction and its application to resonance scattering immunoassay. Anal. Chem.,2008,80(22):8681-8687
    [119]Daghestani H. N., Day B. W. Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors. Sensors,2010,10:9630-9646
    [120]Chen H., Lee J., Jo W., et al. Development of surface plasmon resonance immunosensor for the novel protein immunostimulating factor. Microchim. Acta, 2011,172:171-176
    [121]Joos T. O., Bachmann J., Jacobson J. W. Protein microarray technologies:an array of applications. Optical Biosensors (2nd Edition),2008:453-468
    [122]Asbach B., Kolb M., Liss M., et al. Protein microarray assay for the screening of SH3 domain interactions. Anal. Bioanal. Chem.,2010,398(5):1937-1946
    [123]Bizzarri A. R., Cannistraro S. The application of atomic force spectroscopy to the study of biological complexes undergoing a biorecognition process. Chem. Soc. Rev.,2010,39(2):734-749
    [124]Taranta M., Bizzarri A. R., Cannistraro S. Probing the interaction between p53 and the bacterial protein azurin by single molecule force spectroscopy. J. Mol. Recognit.,2008,21(1):63-70
    [125]Falconer R. J., Penkova A., Jelesarov I., et al. Survey of the year 2008: applications of isothermal titration calorimetry. J. Mol. Recognit.,2010, 23(5):395-413
    [126]Roufik S., Gauthier S. F., Leng X. J., et al. Thermodynamics of binding interactions between bovine β-lactoglobulin A and the antihypertensive peptide β-Lg f142-148. Biomacromolecules,2006,2:419-426
    [127]Costabel M., Vallejo D.F., Grigera J. R. Electrostatic recognition between enzyme and inhibitor:Interaction between papain and leupeptin. Arch. Biochem. Biophys.,2001,394(2):161-166
    [128]Xia J., Wang S., Lei Y. Computational methods for the prediction of protein-protein interactions. Protein Pept. Lett.,2010,17(9):1069-1078
    [129]Kathiravan A., Chandramohan M., Renganathan R., et al. Spectroscopic studies on the interaction between phycocyanin and bovine serum albumin. J. Mol. Struct.,2009,919:210-214
    [130]Chen Y. M., Yu C. J., Cheng T. L., et al. Colorimetric detection of lysozyme based on electrostatic interaction with human serum albumin-modified gold nanoparticles. Langmuir,2008,24(7):3654-3660
    [131]Rozga M., Kloniecki M., Jablonowska A., et al. The binding constant for amyloid Aβ40 peptide interaction with human serum albumin. Biochem. Biophys. Res. Commun.,2007,364(3):714-718
    [132]Nery F.C., Bressan G. C., Alborghetti M. R., et al. A spectroscopic analysis of the interaction between the human regulatory proteins RACK1 and Ki-1/57. Biol. Chem.,2006,387(5):577-582
    [133]Liu W., Bratko D., Prausnitz J. M., et al. Effect of alcohols on aqueous lysozyme-lysozyme interactions from static light-scattering measurements. Biophys. Chem.,2004,107(3):289-298
    [134]Attri A. K., Minton A. P. New methods for measuring macromolecular interactions in solution via static light scattering:basic methodology and application to nonassociating and self-associating proteins. Anal. Biochem.,2005, 337(1):103-110
    [135]Milojevic J., Melacini G. Stoichiometry and affinity of the human serum albumin-Alzheimer's A(3 peptide interactions. Biophys. J.,2011,100(1):183-192
    [136]Takeuchi K., Wagner G. NMR studies of protein interactions. Curr. Opin. Struct. Biol.,2006,16(1):109-117
    [137]Feng W., Pan L. F., Zhang M. J. Combination of NMR spectroscopy and X-ray crystallography offers unique advantages for elucidation of the structural basis of protein complex assembly. Sci. China Ser. C,2011,54(2):101-111
    [138]Ritschel T., Atmanene C., Reuter K., et al. An integrative approach combining noncovalent mass spectrometry, enzyme kinetics and X-ray crystallography to decipher Tgt protein-protein and protein-RNA interaction. J. Mol. Biol.,2009, 393(4):833-847
    [139]Tharamani C. N., Mahmoud K. A., Vasanthakumar G. R., et al. Studies into the interaction of a ferrocene-conjugates of Gly-Gly-Arg-Tyr with papain:AC voltammetry, impedance spectroscopy and surface plasmon resonance studies. Sensor. Actuat. B Chem.,2009, B137(1):253-258
    [140]Covelli L., Klein E., Gilmer D. The first 17 amino acids of the beet necrotic yellow vein virus RNA-5-encoded p26 protein are sufficient to activate transcription in a yeast one-hybrid system. Arch. Virol.,2009,154(2):347-351
    [141]Chernov I. P., Timchenko K. A., Akopov S. B., et al. Identification of tissue-specific DNA-protein binding sites by means of two-dimensional electrophoretic mobility shift assay display. Anal. Biochem.,2007,364(1):60-66
    [142]Zella L. A., Kim S., Shevde N. K., et al. Enhancers located in the vitamin D receptor gene mediate transcriptional autoregulation by 1,25-dihydroxyvitamin D3. J. Steroid Biochem. Mol. Biol.,2007,103:435-439
    [143]Fang X., Tan W. Aptamers generated from cell-SELEX for molecular medicine:A chemical biology approach. Accounts Chem. Res.,2010,43(1):48-57
    [144]Liang G, Cai S., Zhang P., et al. Magnetic relaxation switch and colorimetric detection of thrombin using aptamer-functionalized gold-coated iron oxide nanoparticles. Anal. Chim. Acta,2011,689(2):243-249
    [145]Endoh T., Funabashi H., Mie M., et al. Method for detection of specific nucleic acids by recombinant protein with fluorescent resonance energy transfer. Anal. Chem.,2005,77(14):4308-4314
    [146]Su X., Neo S. J., Peh W. Y. X., et al. A two-step antibody strategy for surface plasmon resonance spectroscopy detection of protein-DNA interactions in nuclear extracts. Anal. Biochem.,2008,376(1):137-143
    [147]Li J., Li M., Li X., et al. Study on the resonance light-scattering spectrum of lysozyme-DNA/CdTe nanoparticles system. Colloids Surf B Biointerfaces,2008, 67(1):79-84
    [148]李珊,刘忠芳,刘绍璞.胰蛋白酶与DNA相互作用的共振瑞利散射光谱及其分析应用研究.高等学校化学学报,2006,27(3):432-437
    [149]Krasnoslobodtsev A. V., Shlyakhtenko L. S., Lyubchenko Y. L. Probing interactions within the synaptic DNA-Sfil complex by AFM force spectroscopy. J. Mol. Biol.,2007,365(5):1407-1416
    [150]Esposito D., Del Vecchio P., Barone G. A thermodynamic study of herring protamine-DNA complex by differential scanning calorimetry. Phys. Chem. Chem. Phys.,2001,3(23):5320-5325
    [151]Buchmann W. Characterization of noncovalent complexes of nucleic acids with peptides and proteins by mass spectrometry. Mass Spectrom. Nucleos. Nucl. Acids,2010,329-369
    [152]Liu Y. Q., Li H. H., Ye Y. H., et al. Investigation of the interaction between HIV-1 DNA and cyclic peptides by electrospray ionization mass spectrometry. Chinese Chem. Lett.,2009,20(3):330-333
    [153]Jamin N., Toma F. NMR studies of protein-DNA interactions. Prog. Nucl. Magn. Reson. Spectrosc.,2001,38(1):83-114
    [154]Gerasimova Y. V., Erchenko I. A., Shakirov M. M., et al. Interaction of human serum albumin and its clinically relevant modification with oligoribonucleotides. Bioorg. Med. Chem. Lett.,2008,18(16):4511-4514
    [155]Robertson T., Varani G. Prediction of protein-nucleic acid interactions. Structural Bioinformatics (2nd Edition),2009,593-613
    [156]Qin S., Zhou H. Prediction of salt and mutational effects on the association rate of U1A protein and U1 small nuclear RNA stem/loop Ⅱ. J. Phys. Chem. B, 2008,112(19):5955-5960
    [157]Rodriguez M. C., Rivas G. A. Label-free electrochemical aptasensor for the detection of lysozyme. Talanta,2009,78(1):212-216
    [158]Yin Q., Zhang Z., Zhao Y. F. Studies of interaction between a new synthesized minor-groove targeting artificial nuclease and DNA. Spectrochim. Acta Part A, 2007,66:904-908
    [159]Bonham A. J., Braun G., Pavel I., et al. Detection of sequence-specific protein-DNA interactions via surface enhanced resonance Raman scattering. J. Am. Chem. Soc.,2007,129(47):14572-14573
    [160]Kersten B., Possling A., Blaesing F., et al. Protein microarray technology and ultraviolet crosslinking combined with mass spectrometry for the analysis of protein-DNA interactions. Anal. Biochem.,2004,331(2):303-313
    [161]Guo C., Boullanger P., Jiang L., et al. Highly sensitive gold nanoparticles biosensor chips modified with a self-assembled bilayer for detection of Con A. Biosens. Bioelectron.,2007,22(8):1830-1834
    [162]Huang C., Chiu S., Huang Y., et al. Aptamer-functionalized gold nanoparticles for turn-on light switch detection of platelet-derived growth factor. Anal. Chem.,2007,79(13):4798-4804
    [163]Huang C., Chen C., Shiang Y., et al. Synthesis of fluorescent carbohydrate-protected Au nanodots for detection of concanavalin a and Escherichia coli. Anal. Chem.,2009,81(3):875-882
    [164]Cocinero E. J., Carcabal P., Vaden T. D., et al. Exploring carbohydrate-peptide interactions in the gas phase:Structure and selectivity in complexes of pyranosides with N-acetylphenylalanine methylamide. J. Am. Chem. Soc.,2011,133(12):4548-4557
    [165]Fernandez C., Ausar S. F., Badini R. G, et al. An FT-IR spectroscopy study of the interaction between as-casein-bound phosphoryl groups and chitosan. Int. Dairy J.,2003,13(11):897-901
    [166]Semenova M. G., Belyakova L. E., Polikarpov Y. N., et al. Light scattering study of sodium caseinate+dextran sulfate in aqueous solution:Relationship to emulsion stability. Food Hydrocolloid.,2009,23(3):629-639
    [167]Xiang M., Xu X., Liu F., et al. Gold nanoparticle based plasmon resonance light-scattering method as a new approach for glycogen-biomacromolecule interactions. J. Phys. Chem. B,2009,113(9):2734-2738
    [168]Smith E. A., Thomas W. D., Kiessling L. L., et al. Surface plasmon resonance imaging studies of protein-carbohydrate interactions. J. Am. Chem. Soc.,2003, 125(20):6140-6148
    [169]Gondran C., Dubois M., Fort S., et al. Detection of carbohydrate-binding proteins by oligosaccharide-modified polypyrrole interfaces using electrochemical surface plasmon resonance. Analyst,2008,133(2):206-212
    [170]Liang P., Wang S., Wong C. Quantitative analysis of carbohydrate-protein interactions using glycan microarrays:Determination of surface and solution dissociation constants. J.Am. Chem. Soc.,2007,129(36):11177-11184
    [171]Hsiao H., Chen M., Wu H., et al. Fabrication of carbohydrate microarrays through boronate formation. Chem. Commun.,2011,47(4):1187-1189
    [172]Min, I., Choi L., Ahn K., et al. Electrochemical determination of carbohydrate-binding proteins using carbohydrate-stabilized gold nanoparticles and silver enhancement. Biosens. Bioelectron.,2011,26(4):1326-1331
    [173]Oliveira M. D. L., Correia M. T. S., Coelho L. C. B. B., et al. Electrochemical evaluation of lectin-sugar interaction on gold electrode modified with colloidal gold and polyvinyl butyral. Colloids Surf. B Biointerfaces,2008,66(1):13-19
    [174]Tan L., Xie Q., Yao S. Electrochemical piezoelectric quartz crystal impedance study on the interaction between concanavalin A and glycogen at Au electrodes. Bioelectrochemistry,2007,70(2):348-355
    [175]Mori T., Toyoda M., Ohtsuka T., et al. Kinetic analyses for bindings of concanavalin A to dispersed and condensed mannose surfaces on a quartz crystal microbalance. Anal. Biochem.,2009,395(2):211-216
    [176]Peng Y., Zhang L. Characterization of a polysaccharide-protein complex from Ganoderma tsugae mycelium by size-exclusion chromatography combined with laser light scattering. J. Biochem. Biophys. Methods,2003,56:243-252
    [177]Tao Y., Zhang L. Characterization of polysaccharide-protein complexes by size-exclusion chromatography combined with three detectors. Carbohydr. Res., 2008,343(13):2251-2257
    [178]Chen L., Liu T. Interaction behaviors between chitosan and hemoglobin. Int. J. Biol. Macromol.,2008,42(5):441-446
    [179]Anal A. K., Tobiassen A., Flanagan J., et al. Preparation and characterization of nanoparticles formed by chitosan-caseinate interactions. Colloids Surf. B Biointerfaces,2008,64(1):104-110
    [180]Zhu A., Yuan L., Chen T., Interactions between N-succinylchitosan and bovine serum albumin. Carbohydr. Polym.,2007,69(2):363-370
    [181]Kinoshita M., Kakehi K. Analysis of the interaction between hyaluronan and hyaluronan-binding proteins by capillary affinity electrophoresis:significance of hyaluronan molecular size on binding reaction. J. Chromatogr. B.,2005, 816:289-295
    [182]Nakajima K., Kinoshita M., Matsushita N., et al. Capillary affinity electrophoresis using lectins for the analysis of milk oligosaccharide structure and its application to bovine colostrum oligosaccharides. Anal. Biochem.,2006, 348(1):105-114
    [183]Kang J. Lee M. S., Gorenstein D. G. Chemiluminescence-based electrophoretic mobility shift assay of heparin-protein interactions. Anal. Biochem., 2006,349(1):156-158
    [184]Girard M., Turgeon S. L., Gauthier S. F. Thermodynamic parameters of beta-lactoglobulin-pectin complexes assessed by isothermal titration calorimetry. J. Agric. Food Chem.,2003,51(15):4450-4455
    [185]Dam T. K., Brewer C. F. Thermodynamic studies of lectin-carbohydrate interactions by isothermal titration calorimetry. Chem. Rev.,2002,102(2):387-429
    [186]Nurisso A., Kozmon S., Imberty A. Comparison of docking methods for carbohydrate binding in calcium-dependent lectins and prediction of the carbohydrate binding mode to sea cucumber lectin CEL-Ⅲ. Mol. Simulat.,2008, 34(4):469-479
    [187]Koppisetty C. A. K., Nasir W., Strino F., et al. Computational studies on the interaction of ABO-active saccharides with the norovirus VA387 capsid protein can explain experimental binding data. J. Comput. Aided Mol. Des.,2010, 24(5):423-431
    [188]Pasternack R. F., Collings P. J. Resonance light scattering:a new technique for studying chromophore aggregation. Science,1995,269:935-939
    [189]Huang C. Z., Li Y. F. Resonance light scattering technique used for biochemical and pharmaceutical analysis. Anal. Chim. Acta,2003,500:105-117
    [190]Lu W., Fernandez B., Beatriz S., et al. Resonance light scattering and derived techniques in analytical chemistry:past, present, and future. Microchim. Acta, 2007,158:29-58
    [191]Lu W., Shang J. A resonance light-scattering (RLS) serving for various quantitative events since 1995:A comment proposed towards how to apprehend well the meaning of RLS and its corresponding guiding role. Spectrochim. Acta Part A,2009,74A(1):285-291
    [192]Chen Z., Liu G., Chen M., et al, Determination of nanograms of proteins based on decreased resonance light scattering of zwitterionic gemini surfactant. Anal. Biochem.,2009,384(2):337-342
    [193]Tang N. L., Peng J. Y. Determination of proteins with tetracarboxy manganese(II) phthalocyanine by resonance light scattering technique. Spectrochim. Acta Part A,2008,71:1246-1249
    [194]Yue Q. L., Song Z. H., Dong F. X. A study on photochemical behavior of lysozyme-bromophenol blue complex and its analytical application. Spectrochim. Acta Part A,2008,69:1097-1102
    [195]Chen H., Zou Q., Yu H., et al. Study on interaction between cationic polystyrene nanoparticles and DNA, and the detection of DNA by resonance light scattering technology. Microchim. Acta,2010,168:331-340
    [196]Zou Q., Chen H., Yu H., et al. Synthesis of polycation with gemini structure and detection of DNA by resonance light scattering. Sensor. Actuat. B Chem., 2010,B145(1):378-385
    [197]Li L., Xu Z. S., Pan Q., et al. Determination of nucleic acid based on increased resonance light-scattering of fluorinated surfactants. J. Fluorine Chem., 2009,130(6):567-572
    [198]Hu Y., Fu X., Chen X., et al. Association behaviors between carboxymethyl cellulose and polylactic acid revealed by resonance light scattering spectra. Polym. Bull.,2009,62(4):549-559
    [199]Guo H. P., Huang C. Z., Ling J. Resonance light scattering imaging determination of heparin. Chinese Chem. Lett.,2006,17(1):53-56
    [200]Chen P. L., Liu S. P., Liu Z. F., et al. Study on the interaction between palladium(Ⅱ)-chlorpromazine hydrochloride and sodium tungstate by the resonance Rayleigh scattering, second-order scattering and frequency doubling scattering spectra and its analytical application. Sci. China Ser.B,2011, 54(3):506-514
    [201]Chen P., Liu S., Liu Z., et al. Study on the ternary mixed ligand complex of palladium(II)-aminophylline-fluorescein sodium by resonance Rayleigh scattering, second-order scattering and frequency doubling scattering spectrum and its analytical application. Spectrochim. Acta Part A,2011,78A(1):518-522
    [202]Yu L., Liu Z., Hu X., et al. Resonance Rayleigh scattering method for the determination of polyvinylpyrrolidone using eosin Y as the probe. Microchim. Acta,2010,169:375-382
    [203]Yang Q. L., Lu Q. M., Liu Z. F., et al. Resonance Rayleigh scattering spectra of ion-association nanoparticles of [Co(4-[(5-Chloro-2-pyridyl)azo]-1, 3-diaminobenzene)2]2+-sodium dodecyl benzene sulfonate system and its analytical application. Anal. Chim. Acta,2009,632:115-121
    [204]Fan Y, Long Y. F., Li Y. F. A sensitive resonance light scattering spectrometry of trace Hg2+ with sulfur ion modified gold nanoparticles. Anal. Chim. Acta,2009, 653:207-211
    [205]Cui F. L., Wang L., Cui Y. R. Determination of bismuth in pharmaceutical products using methyltriphenylphosphonium bromide as a molecular probe by resonance light scattering technique. J. Pharm. Biomed. Anal.,2007, 43:1033-1038
    [206]Liu S. P., Yang Z., Liu Z. F., et al. Resonance Rayleigh scattering method for the determination of proteins with gold nanoparticle probe. Anal. Biochem.,2006, 353:108-116
    [207]Zhou H., Wu X., Meng F., et al. Nucleic acids determination using the complex of eriochrome black T and silver nanoparticles in a resonance light scattering technique. Spectrochim. Acta Part A,2011,78A(2):681-686
    [208]Peng J., Liu S., Wang L., et al. Study on the interaction between CdSe quantum dots and chitosan by scattering spectra. J. Colloid Interf. Sci.,2009, 338(2):578-583
    [209]Chen Z., Peng Y., Chen M., et al. DNA as a target for anticancer compounds screening directly by resonance light scattering technique. Analyst,2010, 135(10):2653-2660
    [210]Li J., Li X., Tang J. et al. Resonance light scattering spectrometric study of poly diallyldimethylammonium chloride-antibody-antigen system. Luminescence, 2009,24(3):155-161
    [211]刘健,刘忠芳,胡小莉等.用硫酸软骨素A作探针共振瑞利散射及共振非线性散射法测定蛋白质.化学报学,2010,68(12):1210-1216
    [1]惠特福德著,魏群主译.蛋白质:结构与功能(译).北京:科学出版社,2008,369,16-18,199-200
    [2]Guo Z. X., Hao Y. M., Cong X., et al. Application of the dibromohydroxyphenylfluorone-molybdenum(Ⅵ) complex to the sensitive spectrophotometric determination of protein. Anal. Chim. Acta,2000, 403:225-233
    [3]刘典梅,李舒婷,赵书林.钡(Ⅱ)-偶氮氯膦Ⅲ络合物探针分光光度法测定蛋白质.分析化学,2004,32:187-190
    [4]Sozgen K., Cekic S. D., Tutem E., et al. Spectrophotometric total protein assay with copper(II)-neocuproine reagent in alkaline medium. Talanta,2006, 68:1601-1609
    [5]曹秋娥,李祖碧,王加林.偶氮胭脂红B与血清蛋白质相互作用的光度法研究及其分析应用.分析化学,2002,30:222-226
    [6]颜梅,陈欣,张丽娜,等Meso-四(3,5-溴-4-羟基苯基)卟啉褪色光度法测定蛋白质的研究与应用.光谱学与光谱分析,2008,28:1149-1152
    [7]Zheng H., Mao Y. X., Li D. H., et al. Dye-binding protein assay using a long-wave-absorbing cyanine probe. Anal. Biochem.,2003,318:86-90
    [8]Jiang C. Q., Luo L. Lysozyme enhanced europium-metacycline complex fluorescence:a new spectrofluorimetric method for the determination of lysozyme. Anal. Chim. Acta,2004,511:11-16
    [9]Chen X., Wei Q., Cai Y. Y., et al. Determination of ultra trace amounts of protein by 4-chlorosulfo-(2'-hyaroxylphenylazo)-rhodanine-Ti(IV) complex [ClSARP-Ti(IV)] as the fluorescence spectral probe in AOT microemulsion. Spectrochim. Acta Part A,2009,72:1047-1053
    [10]Cui F. L., Zhang Q. H., Yao X. J. The investigation of the interaction between 5-iodouracil and human serum albumin by spectroscopic and modeling methods and determination of protein by synchronous fluorescence technique. Pest Biochem. Physiol.,2008,90:126-134
    [11]Zhu X. S., Sun J., Hu Y. Y. Determination of protein by hydroxypropyl-β-cyclodextrin sensitized fluorescence quenching method with erythrosine sodium as a fluorescence probe. Anal. Chim. Acta,2007, 596:298-302
    [12]Wang L. Y, Wang L., Dong L., et al. Direct fluorimetric determination of y-globulin in human serum with organic nanoparticle biosensor. Spectrochim. Acta Part A,2005,61:129-133
    [13]Wang Y. S., Feng L., Jiang C. Q. Fluorimetric study of the interaction between human serum albumin and quinolones-terbium complex and its application. Spectrochim. Acta Part A,2005,61:2909-2914
    [14]Li Z. P., Li K. A., Tong S. Y. Microdetermination of proteins with the 1,10-phenanthroline-H2O2-cetyltrimethylammonium bromide-Cu(II) chemiluminescence system. Microchem. J.,1998,60:217-223
    [15]Deftereos N. T., Grekas N., Calokerinos A. C. Flow-injection chemiluminescence determination of albumin. Anal. Chim. Acta,2000, 403:137-143
    [16]Huang C. B., Zhang K., Liu X. L., et al. A flow-injection chemiluminescence method for the determination of human serum albumin, using the reaction of fluorescein-human serum albumin-sodium hypochlorite by the enhancement effect of the cationic surfactant cetyltrimethyl ammonium bromide. Luminescence,2007,22:393-400
    [17]黄春保,慈云祥,常文保.异硫氰酸荧光索-牛血清白蛋白标记物的化学发光反应.分析化学,2002,30:447-449
    [18]徐未,魏言春,邢达,等.基于高灵敏探针海萤荧光素类似物的化学发光法检测尿微量白蛋白.分析化学,2008,36:57-60
    [19]Chiku M., Ivandini T. A., Kamiya A. Direct electrochemical oxidation of proteins at conductive diamond electrodes. J. Electroanal. Chem.,2008, 612:201-207
    [20]Hui N., Niu X. L., Han J. Y., et al. Voltammetric investigation on interaction of protein with chromotrope 2R and its analytical application. Amino Acids,2010, 38(3):711-719
    [21]Rodriguez M. C., Rivas G. A. Label-free electrochemical aptasensor for the detection of lysozyme. Talanta,2009,78(1):212-216
    [22]Liu M. C., Shi G. Y., Zhang L., et al. Quantum dots modified electrode and its application in electroanalysis of hemoglobin. Electrochem. Commun.,2006, 8:305-310
    [23]Sun W., Jiao K., Wang X. L., et al. Electrochemical studies of the reaction between albumin and amaranth and its analytical application. J. Electroanal. Chem.,2005,578:37-43
    [24]Feng S. L., Pan Z. H., Fan J. Determination of trace proteins with pyronine Y and SDS by resonance light scattering. Anal. Bioanal. Chem.,2005, 383:1618-2642.
    [25]Dong L. J., Li Y., Zhang Y. H., et al. A flow injection sampling resonance light scattering system for total protein determination in human serum. Spectrochim. Acta Part A,2007,66:1317-1322
    [26]Li L., Song G. W., Fang G. R. Determination of bovine serum albumin by a resonance light-scattering technique with the mixed-complex La(Phth)(phen)3+. J. Pharma. Biomed. Anal.,2006,40:1198-1201
    [27]Feng S. L., Pan Z. H., Fan J. Determination of proteins at nanogram levels with Bordeaux red based on the enhancement of resonance light scattering. Spectrochim. Acta Part A,2006,64:574-579
    [28]Tang N. L., Peng J. Y. Determination of proteins with tetracarboxy manganese(II) phthalocyanine by resonance light scattering technique. Spectrochim. Acta Part A,2008,71:1246-1249
    [29]Li L., Song G. W., Fang G. R. Determination of bovine serum albumin in the form of its triple complex with Fe(bpy)(phen)SO4-myristylpyridinium bromide by Resonance light-scattering technique. Chem. Anal.,2009,54:99-107
    [30]陈启凡,孙世安,王岩,等.金纳米探针瑞利共振散射法测定溶菌酶.激光生物学报,2008,17:679-683
    [31]罗家刚,刘忠芳,刘绍璞,等.[HgI4]2--蛋白质离子缔合物体系共振瑞利散射和共振非线性散射光谱其分析应用.化学学报,2008,66:2604-2612
    [32]Bradford. M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.,1976,72:248-254
    [33]沈同,王镜岩.生物化学.第二版.北京:高等教育出版社,1990,280-281
    [34]Ni Y. N, Wang S. S., Kokot S. Spectrometric study of the interaction between Alpinetin and bovine serum albumin using chemometrics approaches. Anal. Chim. Acta,2010,663:139-146
    [35]Tanford C. Physical Chemistry of Macromolecules. New York and Landon:John Wiley & Sons, Inc,1961,275-316
    [36]刘绍璞,胡小莉,罗红群,等.阳离子表面活性剂与核酸反应的共振Rayleigh散射光谱特性及其分析应用.中国科学:B辑,2002,32:18-26
    [1]Diamond R. M. The aqueous solution behavior of large univalent ions. A new type of ion pairing. J. Phys. Chem.,1963,67(12):2513-2516
    [2]刘梅,樊静,孙玉平.汞(Ⅱ)-硫氰酸盐-罗丹明6G多元络合物混合胶束增敏分光光度法测定环境水中痕量汞.冶金分析,2009,29(2):28-31
    [3]冯胜,张治芬.硫氰酸盐-罗丹明B-聚乙烯醇光度法在水相中测定微量汞.分析化学,1991,19(1):86-88
    [4]Ni Y. N., Wang S. S., Kokot S. Spectrometric study of the interaction between Alpinetin and bovine serum albumin using chemometrics approaches. Anal. Chim. Acta,2010,663:139-146
    [5]Liu S., Jiang Z., Kong L., et al. Absorption and Rayleigh scattering and resonance Rayleigh scattering spectra of [HgX2]n nanoparticles. Sci. China Ser. B, 2002,45(6):616-624
    [6]Liu S., He Y., Liu Z., et al. Resonance Rayleigh scattering spectral method for the determination of raloxifence using gold nanoparticle as a probe. Anal. Chim. Acta. 2007,598(2):304-311
    [7]Tanford C. Physical Chemistry of Macromolecules. John Wiley & Sons,Inc.,New York and Landon.1961,275-316
    [8]Liu S., Hu X., Luo H., et al. Resonance Rayleigh scattering spectral characteristics of interaction of nucleic acids with some cationic surfactants and their analytical applications. Sci. China Ser. B,2002,45(2):173-183
    [1]Lakowicz J. R., Weber G. Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry,1973,12(21):4161-4170
    [2]Xie M. X., Long M., Liu Y., et al. Characterization of the interaction between human serum albumin and morin. Biochim. Biophys. Acta,2006,1760:1184-1191
    [3]杨频,高飞.生物无机化学原理,科学出版社,北京,2002,p.349
    [4]He W. Y., Li Y., Tang J. H., et al. Comparison of the characterization on binding of alpinetin and cardamonin to lysozyme by spectroscopic methods. Int. J. Biol. Macromol.2006,39:165-173
    [5]Ross P. D., Subramanian S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry,1981,20(11):3096-3102
    [6]中国生物制品标准化委员会.中国生物制品化学检定规程[M],北京:化学工业出版社,2000,p 3
    [7]中华人民共和国药典,2010版,三部附录VIIB,北京:化学工业出版社,2010
    [1]Sozgen K., Cekic S. D., Tutem E., et al. Spectrophotometric total protein assay with copper(II)-neocuproine reagent in alkaline medium. Talanta,2006, 68(5):1601-1609
    [2]Zheng H., Mao Y. X., Li D. H., et al. Dye-binding protein assay using a long-wave-absorbing cyanine probe. Anal. Biochem.,2003,318(1):86-90
    [3]Jiang C., Luo L. Lysozyme enhanced europium-metacycline complex fluorescence:a new spectrofluorimetric method for the determination of lysozyme. Anal. Chim. Acta,2004,511(1):11-16
    [4]Chen X., Wei Q., Cai Y., et al. Determination of ultra trace amounts of protein by 4-chlorosulfo-(2'-hyaroxylphenylazo)-rhodanine-Ti(IV) complex [ClSARP-Ti(IV)] as the fluorescence spectral probe in AOT microemulsion. Spectrochim. Acta Part A,2009,72A(5):1047-1053
    [5]Deftereos N. T., Grekas N., Calokerinos A. C. Flow injection chemiluminometric determination of albumin. Anal. Chim. Acta,2000,403:137-143
    [6]Huang C., Zhang K., Liu X., et al. A flow-injection chemiluminescence method for the determination of human serum albumin, using the reaction of fluorescein-human serum albumin-sodium hypochlorite by the enhancement effect of the cationic surfactant cetyltrimethylammonium bromide. Luminescence, 2007,22(5):393-400
    [7]Hui N., Niu X. L., Han J. Y., et al. Voltammetric investigation on interaction of protein with chromotrope 2R and its analytical application. Amino Acids,2010, 38(3):711-719
    [8]Rodriguez M. C., Rivas G. A. Label-free electrochemical aptasensor for the detection of lysozyme. Talanta,2009,78(1):212-216
    [9]Feng S., Pan Z., Fan J. Determination of trace proteins with pyronine Y and SDS by resonance light scattering. Anal. Bioanal. Chem.,2005,383(2):255-260
    [10]Tang N., Peng J. Determination of proteins with tetracarboxy manganese(II) phthalocyanine by resonance light scattering technique. Spectrochim. Acta Part A, 2008,71(4):1246-1249
    [11]D.惠特福德(D.Whitford)著,魏群主译.蛋白质结构与功能(Proteins:Structure and Function)北京,科学出版社,2008,15-16
    [12]Blindauer C. A, Harvey I., Bunyan K. E, et al. Structure, properties, and engineering of the major zinc binding site on human albumin. J. Biol. Chem., 2009,284(34):23116-23124
    [13]E.I.奥西埃(E.I.Ochiai)著,罗锦新,张乃正,陈汉文译,生物无机化学导论,北京,化学工业出版社,1987,360-390
    [14]田伦富,刘忠芳,孔玲,等[Hg(SCN)4]2-与蛋白质相互作用的共振瑞利散射光谱及其分析应用.科学通报,2011,56(6):396-406
    [15]Luo J., Liu Z., Hu X., et al. Study on the resonance Rayleigh scattering and resonance non-linear scattering spectra of ion-association complexes of [PdI4]2--protein systems and their analytical applications. Luminescence,2009, 24(6):429-437
    [16]罗家刚,刘忠芳,刘绍璞,等.[Hgl4]2--蛋白质离子缔合物体系共振瑞利散射和共振非线性散射光谱其分析应用.化学学报.2008,66(23):2604-2612
    [17]周永洽,张喜全,贺进田等.金属-血清白蛋白的结构研究(Ⅷ)—HSA和BSA中锌离子中心的荧光EXAFS研究.高等学校化学学报,1997,18(6):851-853
    [18]Motomizu S., Iwachido T., Toei K. Ion association reagents and their application. Bunseki,1980,4:234-243
    [19]滕毓敏,许生杰.超高灵敏显色反应及其应用的研究:Ⅳ.生命活性元素锌的高灵敏光度法.分析化学,1990,18(6):515-519
    [20]赵桦萍.在β-环糊精和阿拉伯树胶存在下硫氰酸盐-结晶紫显色体系测定锌的研究.冶金分析,2006,26(6):71-72
    [21]Dong H., Yue X. Solvent sublation-spectrophotometric determination of zinc(II) with thiocyanate and malachite green. Anal. Lett.,1988,21(6):1065-1073
    [22]刘绍璞,刘忠芳,用硫氰酸盐和维多利亚蓝4R分光光度法测定微量锌.化学通报,1982,(4):208-211
    [23]Stewart A. J., Blindauer C. A., Berezenko S., et al. Interdomain zinc site on human albumin. Proc. Natl. Acad. Sci. U S A.2003,100(7):3701-3706
    [24]郭明,孔亮,毛希琴,等.微透析取样法研究金属离子与蛋白质的竞争结合作用.中国科学B辑,2001,31(6):499-503
    [25]Wu F., Zhang L., Ji Z., et al. Spectroscopic investigation of the interaction between thiourea-zinc complex and serum albumin. J. Luminesc.2010, 130(7):1280-1284
    [26]Bradford. M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976,72:248-254
    [1]Luisa P., Antonio T. A sensitive HPLC method to detect hen's egg white lysozyme in milk and dairy products. Int. Dairy J.2000,10(7):435-442
    [2]Tsang C., Samaranayake L. Salivary lysozyme and related parameters of a predominantly Chinese, HIV-infected cohort in Hong Kong. Oral Dis.,1999, 5(3):241-246
    [3]Vidal M. L., Gautron J., Nys Y. Development of an ELISA for quantifying lysozyme in hen egg white, J. Agric. Food Chem.,2005,53:2379-2385
    [4]Wang Y., Pu K., Liu B. Anionic conjugated polymer with aptamer-functionalized silica nanoparticle for label-free naked-eye detection of lysozyme in protein mixtures. Langmuir,2010,26(12):10025-10030
    [5]Xu H., Chen H., Wang W. Design of ultrasensitive chemiluminescence detection of lysozyme in cancer cells based on nicking endonuclease signal amplification technology. Biosens. Bioelectron.,2010,26(l):248-254
    [6]Rodriguez M. C., Rivas G. A. Label-free electrochemical aptasensor for the detection of lysozyme. Talanta,2009,78(1):212-216
    [7]Li J., Li M., Li X., et al. Study on the resonance light-scattering spectrum of lysozyme-DNA/CdTe nanoparticles system. Colloids Surf B Biointerfaces,2008, 67(1):79-84
    [8]Wang J., Liu B. Fluorescence resonance energy transfer between an anionic conjugated polymer and a dye-labeled lysozyme aptamer for specific lysozyme detection. Chem. Commun.,2009,2284-2286
    [9]Radenovic D. C., de Kort B. J., Somsen G. W. Lamp-based native fluorescence detection of proteins in capillary electrophoresis. J. Chromatogr. A.2009, 1216(21):4629-4632
    [10]Chen Z., Liu J., Han Y. Rapid and sensitive determination of proteins by enhanced resonance light scattering spectroscopy of sodium lauroyl glutamate. Talanta, 2007,71(3):1246-1251
    [11]Yue Q., Song Z., Dong F. A study on photochemical behavior of lysozyme-bromophenol blue complex and its analytical application. Spectrochim. Acta Part A,2008,69A(4):1097-1102
    [12]Sener G., Ozgur E., Yilmaz E., et al. Quartz crystal microbalance based nanosensor for lysozyme detection with lysozyme imprinted nanoparticles. Biosens. Bioelectron.,2010,26(2):815-821
    [13]中国大百科全书编辑委员会编,中国大百科全书,生物学(Ⅱ,中国大百科全书出版社,北京,1991,1374
    [14]Liu S., Jiang Z., Kong L., et al. Absorption and Rayleigh scattering and resonance Rayleigh scattering spectra of [HgX2]n nanoparticles. Sci. China Ser. B, 2002,45(6):616-624
    [15]Liu S., He Y., Liu Z., et al. Resonance Rayleigh scattering spectral method for the determination of raloxifence using gold nanoparticle as a probe. Anal. Chim. Acta. 2007,598(2):304-311
    [16]Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem, 1976,72(1-2):248-254
    [1]Jena B. K., Raj C. R. Optical sensing of biomedically important polyionic drugs using nano-sized gold particles. Biosens. Bioelectron.,2008,23(8):1285-1290
    [2]Sun W., Ding Y., Gao R., et al. Spectrophotometric determination of heparin using phenosafranine and its application. J. Indian Chem. Soc.,2006,83(9):908-911
    [3]Wang M., Zhang D., Zhang G., et al. The convenient fluorescence turn-on detection of heparin with a silole derivative featuring an ammonium group. Chem. Commun., 2008, (37):4469-4471
    [4]Pu K., Liu B. A multicolor cationic conjugated polymer for naked-eye detection and quantification of heparin. Macromolecules,2008,41(18):6636-6640
    [5]Egawa Y., Hayashida R., Seki T., et al. Fluorometric determination of heparin based on self-quenching of fluorescein-labeled protamine. Talanta,2008,76(4):736-741
    [6]Wei W., Wang H., Jiang C. Spectrofluorimetric determination of trace heparin using lomefloxacin-terbium probe. Spectrochim. Acta Part A,2006,63A(2):241-246
    [7]Zhu X., Wang X., Jiang C. Spectrofluorimetric determination of heparin using a tetracycline-europium probe. Anal. Biochem.,2005,341(2):299-307
    [8]Miao Y., Hou F., Jiang C. Determination of heparin using ciprofloxacin-Tb3+ as a fluorescence probe. Anal. Sci.,2005,21(10):1207-1211
    [9]Li J., Liu J., Zhu X., et al. Spectrofluorimetric determination of heparin using doxycycline-europium probe. J. Luminesc.,2005,113(3-4):305-313
    [10]Patil S. R., Mote U. S., Patil S. R., et al. Determination of heparin using norfloxacin-cerium complex as a fluorescence probe by spectrofluorimetry. Bull. Korean Chem. Soc.,2009,30(12):3034-3038
    [11]Huo H., Luo H., Li N. Electrochemical sensor for heparin based on a poly(thionine) modified glassy carbon electrode. Microchim. Acta,2009,167(3-4):195-199
    [12]Tan L., Yao S., Xie Q. Electrochemical determination of heparin using methylene blue probe and study on competition of Ba2+ with methylene blue for binding heparin. Talanta,2007,71(2):827-832
    [13]Peng X., Luo H., Li Ni. Voltammetric study on the interaction of heparin with toluidine blue, and its analytical application. Microchim. Acta,2006, 156(3-4):297-302
    [14]Sun W., Jiao K., Ding Y., et al. Voltammetric investigation on the interaction of pyronine B with heparin and its application. Can. J. Anal. Sci. Spect.,2007, 52(2):57-65
    [15]Niu X., Zhang W., Zhao N., et al. Voltammetric determination of heparin based on its interaction with malachite green. Bull. Chem. Soc. Ethiopia,2008, 22(2):165-172
    [16]Hui N., Sun W., Ding Y., et al. Electrochemical studies on the interaction of heparin with phenosafranine and its analytical application. J. Chinese Chem. Soc.,2009, 56(2):271-278
    [17]Yu R., Ma M., Wang L., et al. Highly sensitive and surface-renewable electrochemical quartz crystal microbalance assays of heparin and chondroitin sulfate based on their effects on the electrodeposition of neutral red. Biosens. Bioelectron.,2009,24(6):1771-1776
    [18]Huang C., Pang X., Li Y. Determination of heparin using Azure B by flow injection analysis-resonance light scattering coupled technique. Anal. Lett.,2005, 38(2):317-330
    [19]Guo H., Huang C., Ling J. Resonance light scattering imaging determination of heparin. Chinese Chem. Lett.,2006,17(1):53-56
    [20]Long Y., Li Y., Huang C. A wide dynamic range detection of biopolymer medicines with resonance light scattering and absorption ratiometry. Anal. Chim. Acta,2005, 552(1-2):175-181
    [21]Liu S., Luo, H., Xu H., et al. Resonance Rayleigh scattering study of interaction of heparin with some cationic surfactants and their analytical application. Spectrochim. Acta Part A,2005,61 A(5):861-867
    [22]Chinese Pharmacopoeia(中华人民共和国药典)[S],2010 edition, Vol.Ⅱ, Beijing: Chemical Industry Press,2010,368
    [1]Jena B. K., Raj C. R. Optical sensing of biomedically important polyionic drugs using nano-sized gold particles. Biosens. Bioelectron.,2008,23(8):1285-1290
    [2]Sun W., Ding Y., Gao R., et al. Spectrophotometric determination of heparin using phenosafranine and its application. J. Indian Chem. Soc.,2006,83(9):908-911
    [3]Wang M., Zhang D., Zhang G., et al. The convenient fluorescence turn-on detection of heparin with a silole derivative featuring an ammonium group. Chem. Commun., 2008, (37):4469-4471
    [4]Pu K., Liu B. A multicolor cationic conjugated polymer for naked-eye detection and quantification of heparin. Macromolecules,2008,41(18):6636-6640
    [5]Zhu X., Wang X., Jiang C. Spectrofluorimetric determination of heparin using a tetracycline-europium probe. Anal. Biochem.,2005,341(2):299-307
    [6]Huo H., Luo H., Li N. Electrochemical sensor for heparin based on a poly(thionine) modified glassy carbon electrode. Microchim. Acta,2009,167(3-4):195-199
    [7]Sun W., Jiao K., Ding Y., et al. Voltammetric investigation on the interaction of pyronine B with heparin and its application. Can. J. Anal. Sci. Spect.,2007, 52(2):57-65
    [8]Tan L., Yao S., Xie Q. Electrochemical determination of heparin using methylene blue probe and study on competition of Ba2+ with methylene blue for binding heparin. Talanta,2007,71(2):827-832
    [9]Huang C., Pang X., Li Y. Determination of heparin using Azure B by flow injection analysis-resonance light scattering coupled technique. Anal. Lett.,2005, 38(2):317-330
    [10]Liu S., Luo, H., Xu H., et al. Resonance Rayleigh scattering study of interaction of heparin with some cationic surfactants and their analytical application. Spectrochim. Acta Part A,2005,61 A(5):861-867
    [11]Rodriguez M. C., Rivas G. A. Label-free electrochemical aptasensor for the detection of lysozyme. Talanta.2009,78(1):212-216
    [12]Ni Y. N., Wang S. S., Kokot S. Spectrometric study of the interaction between Alpinetin and bovine serum albumin using chemometrics approaches. Anal. Chim. Acta,2010,663:139-146
    [13]惠特福德著,魏群主译.蛋白质:结构与功能(译).北京:科学出版社,2008,199-200
    [14]沈同,王镜岩.生物化学.第2版.北京:高等教育出版社,1990,280-281
    [15]Imoto T., Forster L. S., Rupley J. A., et al. Fluorescence of lysozyme:Emission from tryptophan residues 62 and 108 and energy migration. Proc. Natl. Acad. Sci. U SA,1972,69(5):1151-1155
    [16]Liu S., Jiang Z., Kong L., et al. Absorption and Rayleigh scattering and resonance Rayleigh scattering spectra of [HgX2]n nanoparticles. Sci. China Ser. B, 2002,45(6):616-624
    [17]Liu S., He Y., Liu Z., et al. Resonance Rayleigh scattering spectral method for the determination of raloxifence using gold nanoparticle as a probe. Anal. Chim. Acta. 2007,598(2):304-311
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.