酵母核小体定位的理论预测及核小体体外组装的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真核生物中负载着遗传信息的DNA分子在细胞中被包装成核小体。核小体不仅是构成真核生物染色质的基本结构单位,更重要的是通过它在基因组上的定位及其组蛋白复合物的化学修饰调控诸如转录、DNA复制和修复等基因表达过程。由于核心DNA被包装进核小体中,阻断了那些负责最基本生命过程的蛋白与DNA的接触机会,而核小体之间的自由区域更有利于这些蛋白因子的进入并识别结合位点,从而保证蛋白因子易于接近染色质模板。目前基于全基因组的核小体定位分析,发现基因组上核小体分布极不均匀,某些区域核小体占据率高,某些区域核小体缺乏。在基因间区与基因区(ORFs)相比,核小体更加稀疏;在基因的一些调控区,如启动子区、转录起始和终止位点、复制起始等区域,通常缺乏核小体。也有一些工作表明启动子区核小体的占据与其下游的基因表达效率呈负相关。因此,核小体在基因组上的位置对基因的表达调控是非常重要的。
     随着高通量实验技术的快速发展,目前已得到多种真核生物核小体定位的高分辨率实验图谱,但采用实验技术提取全基因组的核小体定位信息时,不仅耗费大量的时间和经费,而且对后续实验数据的分析也存在着局限。因此,基于现有的实验数据,发展核小体定位的理论预测模型已经成为了生物信息学领域的热点问题。
     真核生物复制起始的调控是复制调控的重要环节,ARS(Autonomously Replicating Sequence)是酵母染色质复制所依赖的顺式作用元件。多项研究表明自主复制序列的结构影响其活性,且有不同活性的自主复制序列上的核小体分布不同。利用体外核小体重组技术研究核小体定位对ARS复制起始活性的研究有重要的生物学意义。
     本文基于酵母核小体序列信息发展了预测核小体定位的模型,并用于酵母全基因组核小体预测中,取得较好的预测效果。用分子生物学方法构建了含酵母ARS的重组质粒pRS405-ARS,采用酸抽提法提取酵母的组蛋白,为核小体的体外重组奠定了基础。主要研究内容如下
     1.基于核小体序列中k-mer频数信息,采用多样性增量与支持向量机结合(ID-SVM)的方法对酵母核小体核心DNA和连接DNA序列进行分类预测,取得了较高的预测精度。在人类和果蝇的核小体核心DNA和连接DNA序列分类预测中也取得了较为理想的效果。
     2.基于核小体序列中k-mer频数信息和poly(A)信息,发展了预测核小体定位的IDQD模型,并将模型应用于酵母全基因组的核小体占据分析。在对转录起始位点(TSS)、转录终止位点(TTS)、复制起始序列(ARS)等功能区的核小体占据预测分析时IDQD模型也体现出良好的性能。
     3.比较了溶菌酶法、蜗牛酶过夜处理法、蜗牛酶反复冻融法、珠磨法等4种破壁提取酵母基因组DNA的方法;利用基本分子生物学方法将含酵母ARS304(ARS305)及其两侧序列与酵母穿梭质粒pRS405重组后,命名为pRS405-ARS。得到一系列含有ARS304(ARS305)及两侧不同长度序列的重组质粒。
     4.酸抽提法提取酵母细胞的组蛋白,这是核小体体外组装的基础。
The genomic DNA in eukaryotic cell is packaged into nucleosomes that are the basic repeating units of eukaryotic chromatin. Nucleosomes not only play a basic structural role, but also participate in the regulation of diverse processes of life, including replication, transcription, DNA repair, and etc. Packaging of nucleosomal DNA into nucleosomes prevents other binding proteins from accessing the DNA template. Meanwhile, linker regions between nucleosomes facilitate the binding of transcription factors with DNA template, which thereby promote the expression of nearby genes. Several recent genome-scale mappings of nucleosome positioning have shown that the distribution of nucleosomes on DNA is heterogeneous. For example, nucleosomes are located less frequent in intergenic regions than in open reading frames (ORFs), and the regulatory regions, including promoters, transcription start and termination sites, regions around DNA replication origins are often depleted of nucleosomes. Additionally, there is an inverse correlation between the nucleosome occupancy in promoters and the transcription rates of downstream genes. All these findings indicated that the positions of nucleosomes on genomic DNA have a crucial role in regulating gene expression.
     With the breakthrough of high-throughput techniques, genome-wide nucleosome positioning has been mapped in several organisms. High-resolution data of nucleosome positions on genomic DNA provide an unprecedented opportunity for further modeling nucleosome positioning in vivo and investigating its relationship with gene regulation at genome level. The determination of nucleosome positioning purely using experimental approaches is time-consuming and expensive. Thus, the theoretical or computational methods for predicting nucleosome positioning along genome become increasingly important.
     The regulation of DNA replication origins is a substantially important issue in molecular biology. Autonomously Replicating Sequence (ARS) of Saccharomyces cerevisiae are the cis-acting sequences required for the initiation of chromosome replication. Previous works have demonstrated that the structure of the ARS affects its activity, and the activity of ARS is associated with nucleosome occupancy. Investigating the effect of nucleosome positioning on the activity of ARS using in vitro nucleosome reconstruction technique is of great significance.
     In this dissertation, based on the characteristic of nucleotide distribution in nucleosome and linker DNA sequences, a computational model used to predict nucleosome positioning was proposed and applied to S.cerevisiae genome. Several recombinant plasmids pRS405-ARS were constructed and histones were extracted and purified from yeast. The main contributions are summarized as follows:
     1. Based on k-mer frequency in nucleosome DNA and linker DNA, a computational model was developed using the method of Increment of Diversity combined with Support Vector Machine (ID-SVM). This model was used to predict nucleosome DNA and linker DNA and obtained good performance in S.cerevisiae, H.sapiens and D.melanogaster.
     2. Based on k-mer frequency and poly(A) information in nucleosome DNA and linker DNA, a computional model was proposed using the method of Increment of Diversity combined with Quadratic Discriminant analysis (IDQD). This model was used to analyze nucleosome occupancy in S.cerevisiae genome. The average nucleosome occupancy around the transcriptional start site (TSS), transcriptional termination site (TTS and ARS was also predicted with high accuracy.
     3. Four methods of extracting yeast genomic DNA, such as lysozyme digestion, snail enzyme treatment over night, repeated freezing and thawing, and grinding with glass beads, were compared. ARS304(ARS305) and its flanking sequences of S.cerevisiae and plasmid pRS405 were recombined, the product was termed pRS405-ARS. Several recombinant plasmids pRS405-ARS were constructed.
     4. Histones were extracted from S.cerevisiae cells by Acid Extraction Method. It is the basis of nucleosome reconstitution in vitro.
引文
[1]The ENCODE project consortium. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot Project. Genome Res,2007,1147:799-816.
    [2]Weinstock GM. ENCODE:more genomic empowernent. Genome Res,2007,17(6):667-668.
    [3]Denoeud F, Kapranov P, Ucla C, et al. Prominent use of distal 5'transcrption start sites and discovery of a large number of additional exons in ENCODE regions. Genome Res,2007, 17(6):746-759.
    [4]Koch CM, Andrews RM, Flicek P, et al. The landscape of histone modifications across 1% of the human genome in five human cell lines. Genome Res,2007,17(6):691-707.
    [5]Zhang ZD, Paccanaro A, Fu Y, et al. Statistical analysis of the genomic distribution and correlation of regulatory elements in the ENCODE regions. Genome Res,2007,17(6): 787-797.
    [6]McGhee JD, Felsenfeld G. and Eisenberg H. Nucleosome structure and conformational changes. Biophys. J.,1980,32:261-270.
    [7]Kornberg RD. and Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell,1999,98:285-294.
    [8]Schalch T, Duda S, Sargent DF, et al. X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature,2005,436:138-141.
    [9]Park PJ. ChIP-seq:advantages and challenges of a maturing technology. Nat Rev Genet,2009, 10(10):669-680.
    [10]Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell,2007,128(4): 669-681.
    [11]Luger K, Mader AW, Richmond R K, et al. Crystal structure of the nucleosome core particle at 2.8A resolution. Nature,1997,389:251-260.
    [12]Jiang C, Pugh BF. Nucleosome positioning and gene regulation:advances through genomics. Nat Rev Genet,2009,10(3):161-172.
    [13]Lee W, Tillo D, Bray N, et al. A high-resolution atlas of nucleosome occupancy in yeast. Nat Genet,2007,39:1235-1244.
    [14]Vaillant C, Audit B, Arneodo A. Experiments confirm the influence of genome long-range correlations on nucleosome positioning. Phys Rev Lett,2007,99:218-303.
    [15]Mavrich TN, Ioshikhes IP, Venters BJ, et al. A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res,2008,18: 1073-1083.
    [16]Sekinger EA, Moqtaderi Z, Struhl K. Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. Mol. Cell, 2005,18:735-748.
    [17]Guillemette B. Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol,2005,3:e384.
    [18]Richmond TJ, Davey CA. The structure of DNA in the nucleosome core. Nature,2003,423: 145-150.
    [19]Satchwell SC, Drew HR, Travers A A. Sequence periodicities in chicken nucleosome core DNA. J. Mol. Biol.1986,191:659-675.
    [20]Durant M, Pugh BF. NuA4-directed chromatin transactions throughout the Saccharomyces cerevisiae genome. Mol. Cell Biol,2007,27:5327-5335.
    [21]Field Y, Fondufe-Mittendorf Y, Moore IK, et al. Gene expression divergence in yeast is coupled to evolution of DNA-encoded nucleosome organization. Nature. Genetics,2009, 41:438-445.
    [22]Daenen F, van Roy F, De Bleser PJ. Low nucleosome occupancy is encoded around functional human transcription factor binding sites. BMC Genomics,2008,9:332.
    [23]Bernstein BE, Liu CL, Humphrey EL, et al. Global nucleosome occupancy in yeast. Genome Biology,2004,5:R62.
    [24]Field Y, Kaplan N, Fondufe-Mittendorf Y, et al. Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comput Biol,2008,4(11):e1000216.
    [25]Leimgruber E, Seguin-Estevez Q, Dunand-Sauthier I, et al. Nucleosome eviction from MHC class Ⅱ promoters controls positioning of the transcription start site. Nucleic Acids Res,2009, 37(8):2514-2528.
    [26]Audit B, Zaghloul L, Vaillant C, et al. Open chromatin encoded in DNA sequence is the signature of 'master' replication origins in human cells. Nucleic Acid Res,2009, 37(18):6064-6075.
    [27]Sequeira MJ, Diaz UR, Apedaile A, et al. Transcription initiation activity sets replication origin efficiency in mammalian cells. PLoS Genet,2009,5:e 1000446.
    [28]Gerbi SA, Bielinsky AK. DNA replication and chromatin. Curr. Opin. Genet. Dev.2002, 12:243-248.
    [29]Andersson R, Enroth S, Rada-Iglesias A, et al. Nucleosomes are well positioned in exons and carry characteristic histone modifications. Genome Res,2009,19:1732-1741.
    [30]Nahkuri S, Taft RJ, Mattick JS. Nucleosomes are preferentially positioned at exons in somatic and sperm cells. Cell Cycle,2009,8(20):3420-3424.
    [31]Tilgner H, Nikolaou C, Althammer S, et al. Nucleosome positioning as a determinant of exon recognition. Nat Struct Mol Biol,2009,16(9):996-1001.
    [32]Hagerman KA, Ruan H, Edamura KN, et al. The ATTCT repeats of spinocerebellar ataxia type 10 display strong nucleosome assembly which is enhanced by repeat interruptions. Gene,2009,434:29-34.
    [33]Martinez-Campa C. Precise nucleosome positioning and the TATA box dictate requirements for the histone H4 tail and the bromodomain factor Bdfl. Mol. Cell,2004,15:69-81.
    [34]Wyrick JJ. Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature,1999,402:418-421.
    [35]Lee CK, Shibata Y, Rao B, et al. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat Genet,2004,36:900-905.
    [36]Morohashi N, Yamamoto Y, Kuwana S, et al. Effect of sequence-directed nucleosome disruption on cell-type-specific repression by α2/Mcml in the yeast. Genome,2006, 5(11):1925-1933.
    [37]Bryant GO, Prabhu V, Floer M, et al. Activator control of nucleosome occupancy in activation and repression of transcription. PLoS Biol.,2008,6(12):e317.
    [38]Reyes-Dominguez Y, Narendja F, Berger H, et al. Nucleosome positioning and histone H3 acetylation are independent processes in the Aspergillus nidulans prnD-prnB bidirectional promoter. Eukaiyotic Cell,2008,7(4):656-663.
    [39]Agbottah E, Deng L, Dannenberg, LO, et al. Effect of SWI/SNF chromatin remodeling complex on HIV-1 Tat activated transcription. Retrovirology,2006,3:48.
    [40]Li JW, Langst G, Grummt I. NoRC-dependent nucleosome positioning silences rRNA genes. EMBO J,2006,25:5735-5741.
    [41]Kornberg RD, Noll M. Action of micrococcal nuclease on chromatin and the location of histone H1. J. Mol. Biol,1977,109:393-405.
    [42]Yuan GC, Liu YJ, Dion MF, et al. Genome-scale identification of nucleosome positions in S. cerevisiae. Science,2005,309:626-630.
    [43]Albert I, Mavrich TN, Tomsho LP, et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature,2007,446:572-576.
    [44]Segal E, Fondufe-Mittendorf Y, Chen L, et al. A genomic code for nucleosome positioning. Nature,2006,442:772-778.
    [45]Pokholok DK, Harbison CT, Levine S, et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell,2005,122:517-527.
    [46]Raisner RM, Hartley PD, Meneghini MD, et al. Histone variant H2A.Z marks the 59 ends of both active and inactive genes in euchromatin. Cell,2005,123:233-248.
    [47]Lantermann A, Stralfors A, Fagerstrom-Billai F, et al. Genome-wide mapping of nucleosome positions in Schizosaccharomyces pombe. Methods,2009,48(3):218-225.
    [48]Lantermann AB, Straub T, Stralfors A, et al. Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae. Nat Struct Mol Biol,2010,17(2):251-257.
    [49]Ozsolak F, Song JS, Liu XS, et al. High-throughput mapping of the chromatin structure of human promoters. Nat Biotechnol,2007,25:244-248.
    [50]Heintzman ND, Stuart RK, Hon G, et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet,2007,39: 311-318.
    [51]Barski A, Cuddapah S, Cui K, et al. High resolution profiling of histone methylations in the human genome. Cell,2007,129:823-837.
    [52]Schones DE, Cui K, Cuddapah S, et al. Dynamic regulation of nucleosome positioning in the human genome. Cell,2008,132(5):887-898.
    [53]Johnson SM, Tan FJ, McCullough HL, et al. Flexibility and constraint in the nucleosome core landscape of Caenorhabditis elegans chromatin. Genome Res,2006,16:1505-1516.
    [54]Mavrich TN, Jiang C, Ioshikhes IP, et al. Nucleosome organization in the Drosophila genome. Nature,2008,453:358-362.
    [55]Fraser RM, Keszenman-Pereyra D, Simmen MW, et al. High-resolution mapping of sequence-directed nucleosome positioning on genomic DNA. J Mol Biol,2009,390(2): 292-305.
    [56]Drew HR, Travers AA. DNA bending and its relation to nucleosome positioning. J. Mol. Biol, 1985,186:773-790.
    [57]Baldi P, Brunak S, Chauvin Y, et al. Naturally occurring nucleosome positioning signals in human exons and introns. J. Mol. Biol,1996,263:503-510.
    [58]Ioshikhes I, Bolshoy A, Derenshteyn K, et al. Nucleosome DNA sequence pattern revealed by multiple alignments of experimentally mapped sequences. J. Mol. Biol,1996,262:129-139.
    [59]Lowary PT, Widom J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol,1998,276:19-42.
    [60]Stein A, Bina M. A signal encoded in vertebrate DNA that influences nucleosome positioning and alignment. Nucleic Acids Res,1999,27:848-853.
    [61]Widom J. A genomic code for role of DNA sequence in nucleosome stability and dynamics. Q. Rev. Biophys,2001,34:269-324.
    [62]Trifonov EN. Genetic level of DNA sequences is determined by superposition of many codes. Mol. Biol. (Mosk.),1997,31:759-767.
    [63]Levitsky VG, Ponomarenko MP, Ponomarenko JV, et al. Nucleosomal DNA property database. Bioinformatics,1999,15:582-592.
    [64]Kiyama R, Trifonov EN. What positions nucleosomes?—A model. FEBS Lett,2002,523: 7-11.
    [65]Cui P, Zhang LF, Lin Q, et al. A novel mechanism of epigenetic regulation: nucleosome-space occupancy. Biochem and Biophys Res Commun,2010,391:884-889.
    [66]Tillo D, Hughes TR. G+C content dominate intrinsic nucleosome occupancy. BMC Bioinformatics,2009,10:442.
    [67]Valouev A, Ichikawa J, Tonthat T, et al. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res,2008,18: 1051-1063.
    [68]Stein A, Takasuka TE, Collings CK. Are nucleosome positions in vivo primarily determined by histone-DNA sequence preferences? Nucleic Acid Res,2010,38(3):709-719.
    [69]Kogan SB, Kato M, Kiyama R, et al. Sequence structure of human nucleosome DNA. J Biomol Struct Dyn,2006,24(1):43-48.
    [70]Caserta M, Agricola E, Churcher M, et al. A translational signature for nucleosome positioning in vivo. Nucleic Acid Res,2009,37(16):5309-5321.
    [71]Chung HR, Vingron M. Sequence-dependent nucleosome positioning. J. Mol. Biol,2009, 386(5):1411-1422.
    [72]Bettecken T, Trifonov EN. Repertoires of the nucleosome-positioning dinucleotides. PLoS One,2009,4(11):e7654.
    [73]BaoY, White CL, Luger K. Nucleosome core particles containing a poly(dA:dT) sequence element exhibit a locally distorted DNA structure. J. Mol. Biol,2006,361:617-624.
    [74]Worning P, Jensen LJ, Nelson KE, et al. Structural analysis of DNA sequence:evidence for lateral gene transfer in Thermotoga maritima. Nucleic Acids Res,2000,28:706-709.
    [75]Chen KF, Meng QS, Liu QY, et al. DNA sequence periodicity decodes nucleosome positioning. Nucleic Acids Res,2008,36:6228-6236.
    [76]Liu HD, Wu JS, Xie JM, et al. Characteristics of nucleosome core DNA and their applications in predicting nucleosome positions. Biophysical Journal,2008,94:1-8.
    [77]Widlund HR, Kuduvalli PN, Bengtsson M, et al. Nucleosome structural features and intrinsic properties of the TATAAACGCC repeat sequence.J Biol. Chem,1999,274:31847-31852.
    [78]Cao H, Widlund HR, Simonsson T, et al. TGGA repeats impair nucleosome formation. J. Mol. Biol,1998,281:253-260.
    [79]Iyer V, Struhl K. Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. EMBO J,1995,14:2570-2579.
    [80]Kaplan N, Moore IK, Fondufe-Mittendorf Y, et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature,2008,458:362-366.
    [81]Segal E, Widom J. Poly(dA:dT) tracts:major determinants of nucleosome organization. Current Opinion in Structural Biology,2009,19:65-71.
    [82]Cohanim AB, Haran E. The coexistence of the nucleosome positioning code with the genetic code on eukaryotic genomes. Nucleic Acid Res,2009,37(19):6466-6476.
    [83]Ioshikhes IP, Albert I, Zanton SJ, et al. Nucleosome positions predicted through comparative genomics. Nat Genet,2006,38:1210-1215.
    [84]Peckham HE, Thurman RE, Fu Y, et al. Nucleosome positioning signals in genomic DNA. Genome Res,2007,17:1170-1177.
    [85]Gupta S, Dennis J, Thurman RE, et al. Predicting human nucleosome occupancy from primary sequence. PLoS Comput Biol,2008,4:1-11.
    [86]Gabdank I, Barash1 D, Trifonov EN. Nucleosome DNA bendability matrix (C. elegans). J Biomole. Struc.& Dynam,2009,26:403-411.
    [87]Zhang Y, Shin HJ, Song JS, et al. Identifying positioned nucleosomes with epigenetic marks in human from ChIP-Seq. BMC Genomics,2008,9:537-548.
    [88]Yuan GC, Liu JS. Genomic sequence is highly predictive of local nucleosome depletion. PLoS Comput Biol,2008,4(1):e13.
    [89]Teif VB, Rippe K. Predicting nucleosome positions on the DNA:combining intrinsic sequence preferences and remodeler activities. Nucleic Acids Res,2009,37:5641-5655.
    [90]Narlikar GJ, Fan HY, Kingston RE. Cooperation between complexes that regulate chromatin structure and transcription. Cell,2002,108:475-487.
    [91]Wyrick JJ. Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins. Science,2001,294:2357-2360.
    [92]Yin S, Deng W, Hu L. The impact of nucleosome positioning on the organization of replication origins in eukaryotes. Biochem Biophys Res Commun,2009,385:363-368.
    [93]Danis E, Brodolin K, Menut S, et al. Specification of a DNA replication origin by a transcription complex. Nat Cell Biol,2004,6:721-730.
    [94]Chen ZQ, Christian S, Patricia W, et al. The architecture of the DNA replication origin recognition complex in Saccharomyces cerevisiae. Proc. Natl Acad. Sci.,2008,105: 10326-10331.
    [95]Eaton ML, Galani K, Kang S, et al. Conserved nucleosome positioning defines replication origins.Genes & Development,2010,24:748-753.
    [96]Reynolds AE, McCarroll RM, Newlon CS, et al. Time of replication of ARS elements along yeast chromosome III. Mol. Cell. Biol,1989,9:4488-4494.
    [97]Theis JF, Dershowitz A, Newlon CS, et al. Identification of mutations that decrease the stability of a fragment of Saccharomyces cerevisiae chromosome III lacking efficient replicators. Genetics,2007,177:1445-1458.
    [98]Irene C, Maciariello C, Cioci F, et al. Identification of the sequences required for chromosomal replicator function in Kluyveromyces lactis. Molecular Microbiology,2004, 51(5):1413-1423.
    [99]Theis JF, Newlon CS. Two compound replication origins in Saccharomyces cerevisiae contain redundant origin recognition complex binding sites. Mol. Cell. Biol,2001,21: 2790-2801.
    [100]Huang RY, Kowalski D. Multiple DNA elements in ARS305 determine replication origin activity in a yeast chromosome. Nucleic Acids Res,1996,24:816-823.
    [101]Xu WH, Aparicio JG, Aparicio OM, et al. Genome-wide mapping of ORC and Mcm2p binding sites on tiling arrays and identification of essential ARS consensus sequences in S. cerevisiae. BMC Genomics,2006,7:276-292.
    [102]Shigeheto I, Toshiko M, Keiji K. Identification and application of novel Autonomously Replicating Sequences (ARSs) for promoter-cloning and co-transformation in Candida utilis. Biosci.Biotechnol.Biochem,2009,73(1):152-159.
    [103]Clapier CR, Cairns BR. The biology of chromatin remodeling complexes. Annu. Rev. Biochem,2009,78:273-304.
    [104]Simpson RT. Nucleosome positioning can affect the function of a cis-acting DNA element in vivo. Nature,1990,343(25):387-389.
    [105]Lipford JR, Bell SP. Nucleosomes positioned by ORC facilitate the initiation of DNA replication. Molecular Cell,2001,7:21-30.
    [106]Laxton RR. The measure of diversity. J Theor Biol,1978,70(1):51-67.
    [107]徐克学.生物数学.北京:科学出版社,1999,277-286.
    [108]Zhang LR, Luo LF. Splice site prediction with quadratic discriminant analysis using diversity measure. Nucleic Acids Res,2003,31(21):6214-6220.
    [109]Vapnik V. The nature of statistical learning theory. New York:Springer,1995,1-188.
    [110]Burset M, Guigo R. Evaluation of gene structure prediction programs. Genomics,1996, 34(3):353-367.
    [111]Reddy TE, DeLisi C, Shakhnovich BE. Binding site graphs:a new graph theoretical framework for prediction of transcription factor binding sites. PloS Comput Biol,2007,3(5): 844-854.
    [112]Chen YL, Li QZ. Prediction of the subcellular location of apoptosis Proteins. J Theor Biol, 2007,245(4):775-783.
    [113]Matthews BW. Comparison of the Predieted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta,1975,405(2):442-451.
    [114]Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic(ROC) curve. Radiology,1982,143(1):29-36.
    [115]MetZ CE. Basic principles of ROC analysis. Semin Nucl Med,1978,8(4):283-298.
    [116]Aalberts DP, Daub EG, Dill JW. Quantifying optimal accuraey of local primary sequence bioinformatics methods. Bioinformatics,2005,21(16):3347-3351.
    [117]Toh KA, Kim J, Lee S. Maximizing area under ROC curve for biometric scores fusion. Pattern Recognition,2008,41(11):3373-3392.
    [118]Hand DJ, Till RJ. A simple generalisation of the area under the ROC curve for multiple class classification problems. Machine Learning,2001,45(2):171-186.
    [119]杜荣骞.生物统计学(第2版).北京:高等教育出版社,2003.
    [120]Shrader TE, Crothers DM. Artificial nucleosome positioning sequences. Proc. Natl Acad. Sci.1989,86:7418-7422.
    [121]Scipioni A, Morosetti S, De Santis P. A statistical thermodynamic approach for predicting the sequence-dependent nucleosome positioning along genomes. Biopolymers,2009, 91(12):1143-1153.
    [122]Berbenetz NM, Nislow C, Brown GW. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure. PloS One,2010,6(9):e 1001092.
    [123]Segal E, Widom J. What controls nucleosome positions? Trends Genet,2009,25:335-343.
    [124]Chen KF, Wang L, Yang M, et al. Sequence signature of nucleosome positioning in Caenorhabditis elegans. Genomics Proteomics & Bioinformatics,2010,8(2):90-102.
    [125]Chen W, Luo LF, Zhang LR. The organization of nucleosomes around splice sites. Nucleic Acid Res,2010,38:2788-2798.
    [126]Chodavarapu RK, Su HF, Bernatavichute YV, et al. Relationship between nucleosome positioning and DNA methylation. Nature,2010,466:388-392.
    [127]Clark DJ. Nucleosome positioning, nucleosome spacing and the nucleosome code. Biomol Struct Dynam,2010,27(6):781-793.
    [128]Clark DJ, Felsenfeld G. A nucleosome core is transferred out of the path of a transcribing polymerase. Cell,1992,71:11-22.
    [129]Weiner A, Hughes A, Yassour M, et al. High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. Genome Res,2010,20:90-100.
    [130]Wasserman WW, Sandelin A. Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet,2004,5:276-287.
    [131]Cherry JM, Adler C, Ball C, et al. SGD:Saccharomyces Genome Database. Nucl Acids Res, 1998,26:73-79.
    [132]Yang KL, Xu Q. Predicting Drosophila melanogaster promoter using the algorithm Increment of diversity and support vector machines. Biotechnology,2008,18(2):39-42.
    [133]Zhang Y, Moqtaderi Z, Rattner BP, et al. Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo. Nat Struct Mol Biol,2009,16:847-852.
    [134]Collings CK, Fernandez AG, Pitschka CG, et al. Oligonucleotide sequence motifs as nucleosome positioning signals. PloS One,2010,5(6):e 10933.
    [135]Alfonso GF, John NA. Nucleosome positioning determinants. J Mol Biol,2007,17: 649-668.
    [136]Schnitzler GR. Control of nucleosome positions by DNA sequence and remodeling machines. Cell Biochem Biophys,2008,51:67-80.
    [137]Rando OJ, Ahmad K. Rules and regulation in the primary structure of chromatin. Curr Opin Cell Biol,2007,19:250-256.
    [138]Schwab DJ, Bruinsma RF, Rudnick J, et al. Nucleosome switches. Phys Rev Lett,2008, 100:228105-228106.
    [139]Tirosh I, Barkai N. Two strategies for gene regulation by promoter nucleosomes. Genome Res,2008,18(7):1084-1091.
    [140]Vaillant C, Palmeira L, Chevereau G, et al. A novel strategy of transcription regulation by intragenic nucleosome ordering. Genome Res,2010,20(1):59-67.
    [141]Feng J, Dai X, Xiang Q, et al. New insights into two distinct nucleosome distributions: comparison of cross-platform positioning datasets in the yeast genome. BMC Genomics, 2010,11(1)33.
    [142]Choi JK, Kim YJ. Intrinsic variability of gene expression encoded in nucleosome positioning sequences. Nat Genet,2009,41(4):498-503.
    [143]Javaid S, Manohar M, Punja N, et al. Nucleosome remodeling by hMSH2-hMSH6. Mol Cell, 2009,36(6):1086-1094.
    [144]Athey BD, Smith MF, Rankert DA, et al. The diameters of frozen-hydrated chromatin fibers increase with DNA linker length:evidence in support of variable diameter models for chromatin. Cell Biol,1990,111:795-806.
    [145]Thoma F, Bergman LW, Simpson RT. Nuclease digestion of circular TRP1ARS1 chromatin reveals positioned nucleosomes separated by nuclease-sensitive regions. J Mol Biol,1984, 177:715-733.
    [146]Sclafani RA, Holzen TM. Cell cycle regulation of DNA replication. Annu Rev Genet,2007, 41:237-280.
    [147]Mori S, Shirahige K. Perturbation of the activity of replication origin by meiosis-specific transcription. J Biol Chem,2007,282:4447-4452.
    [148]Rando OJ, Chang HY. Genome-wide views of chromatin structure. Annu Rev Biochem, 2009,78:245-271.
    [149]Donaldson AD. Shapingtime:Chromatin structure and the DNA replication programme. Trends Genet,2005,21:444-449.
    [150]MacAlpine HK, Gordan R, Powell SK, et al. Drosophila ORC1 ocalizes to open chromatin and marks sites of cohesin complex loading. Genome Res,2010,20:201-211.
    [151]Remus D, Beuron F, Tolun G, et al. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell,2009,139:719-730.
    [152]Clarey MG, Botchan M, Nogales E. Single particle EM studies of the Drosophila melanogaster origin recognition complex and evi-dence for DNA wrapping. J Struct Biol, 2008,164:241-249.
    [153]Shimada K, Oma Y, Schleker T, et al. Ino80 chromatin remodeling complex promotes recovery of stalled replication forks. Cur rBiol,2008,18:566-575.
    [154]Rodicio R, Heinisch JJ. Together we are strong-cell wall integrity sensors in yeasts. Yeast, 2010,27(8):531-540.
    [155]Lorenz TC, Anand VC, Payne GS. High-throughput protein extraction and immunoblotting analysis in Saccharomyces cerevisiae. Methods Mol Biol,2008,457:13-27.
    [156]唐天乐,高炳淼,长孙东亭等.高质量毕赤酵母基因组DNA提取方法比较.生物技术 通报,2010,1:196-199.
    [157]杨翠竹,李艳,阮南等.酵母细胞破壁技术研究与应用进展.食品科技,2006,71:38-142.
    [158]Lakay FM, Botha A, Prior BA. Comparative analysis of environmental DNA extraction and purification methods from different humic acid-rich soils. J Appl Microbiol,2007,102(1): 265-273.
    [159]Koek A, Komori M, Veenhuis M, et al. A comparative study of peroxisomal structures in Hansenula polymorpha pex mutants. FEMS Yeast Res,2007,7(7):1126-1133.
    [160]Lopez de Heredia M, Jansen RP. RNA integrity as a quality indicator during the first steps of RNP purifications:a comparison of yeast lysis methods. BMC Biochem,2004,5:14.
    [161]魏群.分子生物学实验指导.北京:高等教育出版社,1999.
    [162]萨姆布鲁克,拉塞尔,著.黄培堂等译.分子克隆实验指南 第三版,科学出版社,2002.
    [163]莫志成,张勇,李宏帆等.核心组蛋白及染色质组装相关因子的分离、表达及纯化.基础医学与临床,2005,25:948-952.
    [164]Tauseef RB, Donald BJ, Mark ES. Nucleosome periodicity in HeLa cell chromatin as probed by micrococcal nuclease. Proc Natl Acad Sci,1979,76(4):1628-1632.
    [165]钟白玉,郝进,郝飞等.核小体的提取纯化及鉴定.第三军医大学学报,2004,26(24):2245-2247.
    [166]Shirahige K, Iwasaki T, Rashid MB, et al. Location and characterization of autonomously replicating sequences from chromosome VI of Saccharomyces cerevisiae. Mol Cell Biol, 1993,13(8):5043-5056.
    [167]Chang VK, Fitch MJ, Donato JJ, et al. Mcml binds replication origins. J Biol Chem,2003, 278(8):6093-6100.
    [168]Newlon CS, Theis JF. DNA replication joins the revolution:whole-genome views of DNA replication in budding yeast. Bioessays,2002,24(4):300-304.
    [169]Theis JF, Newlon CS. The ARS309 chromosomal replicator of Saccharomyces cerevisiae depends on an exceptional ARS consensus sequence. Proc Natl Acad Sci,1997, 94(20):10786-10791.
    [170]Poloumienko A, Dershowitz A, De J, et al. Completion of replication map of Saccharomyces cerevisiae chromosome III. Mol Biol Cell,2001,12(11):3317-3327.
    [171]Yassour M, KaplanT, Jaimovich A, et al. Nucleosome positioning from tiling microarray data. Bioinformatics,2008,24(13):1139-1146.
    [172]Bnjamin L. Gene Ⅸ. New York:Springer-Verlag,1989.
    [173]Thatcher TH, Gorovsky MA. Phylogenetic analysis of the core histones H2A, H2B, H3, and H4. Nucleic Acids Res,1994,22(2):174-179.
    [174]DeLange RJ, Fambrough DM, Smith EL, et al. Complete amino acid sequence of pea seedling histone Ⅳ; comparison with the homologous calf thymus histone. J Biol Chem, 1969,244(20):5669-5679.
    [175]Kuo MH, Allis CD. Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays,1998,20(8):615-626.
    [176]Kurdistani SK, Tavazoie S, Grunstein M. Mapping global histone acetylation patterns to gene expression. Cell,2004,117(6):721-733.
    [177]Jenuwein T, Allis CD. Translating the histone code. Science,2001,293(5532):1074-1080.
    [178]Kubicek S, JenuweinT. A crack in histone lysine methylation. Cell,2004,119(7):903-906.
    [179]Pal S, Sif S. Interplay between chromatin remodelers and protein arginine methyltransferases. J Cell Physiol,2007,213(2):306-315.
    [180]Rea S, Eisenhaber F, O'Carroll D, et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature,2000,406(6796):593-599.
    [181]Nowak SJ, Corces VG. Phosphorylation of histone H3:a balancing act between chromosome condensation and transcriptional activation. Trends Genet,2004, 20(4):214-220.
    [182]Henry KW, Wyce A, Lo WS, et al. Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev,2003, 17(21):2648-2663.
    [183]Cheung P, Allis CD, Sassone-Corsi P. Signaling to chromatin through histone modifieation. Cell,2000,103(2):263-271.
    [184]Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem,2001, 70:81-120.
    [185]Johnson CA, Turner BM. Histone deacetylases:complex transducers of nuclear signals. Semin Cell Dev Biol,1999,10(2):179-188.
    [186]Pazin MJ, Kadonaga JT. What's up and down with histone deacetylation and transcription. Cell,1997,89(3):325-328.
    [187]Wade PA, Pruss D, Wolffe AP. Histone acetylation:chromatin in action. Trends Biochem Sci,1997,22(4):128-132.
    [188]Katan-Khakovich Y, Struhl K. Dynamics of global histone acetylation and deacetylation in vivo:rapid restoration of normal histone acetylation status upon removal of activators and repressors. Genes Dev,2002,16(6):743-752.
    [189]Turner BM. Reading signals on the nucleosome with a new nomenclature for modified histones. Nat Struct Mol Biol,2005,12(2):110-112.
    [190]Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol,2005,6(11):838-849.
    [191]Fang J, Feng Q, Ketel CS. Purification and functional characterization of SET8, a nucleosomal histone H4-lysine 20-specific methyltransferase. Curr Biol,2002, 12(13):1086-1099.
    [192]Lacoste N, Utley RT, Himter JM. Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase. J Biol Chem,2002,277(34):30421-30424.
    [193]Ng HH, Feng Q, Wang H, et al. Lysine methylation with in the globular domain of histone H3 by Dotl is important for telomeric silencing and Sir protein association. Genes Dev,2002, 16(12):1518-1520.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.