厚组织荧光显微图像复原方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学显微成像技术已经成为生命科学研究的强有力工具,结合荧光标记技术,人们可以从荧光显微图像中获得更为清晰的样品结构信息。但是,由于成像系统衍射和噪声干扰等因素,荧光显微图像不可避免出现模糊和噪声等退化现象。特别是厚组织成像时,随着深度的增加,生物样品对荧光的散射作用导致图像退化更加严重。图像复原技术作为后处理手段,是消除噪声和成像模糊,恢复样品荧光物体本来面目的有效途径。因此,本文针对厚组织的荧光显微图像的复原方法进行了深入研究,同时,在提高成像信噪比的随机扫描成像系统设计方面也做了一些有益的探索。主要研究工作如下:
     研究了荧光显微成像系统的成像模型,对系统中的噪声来源进行了分析,认为光子计数噪声是其主要噪声,该噪声与荧光本身相关而不可避免。泊松噪声成像模型符合探测器的光子统计特性,比高斯噪声模型更适用于荧光成像。探讨了常用荧光显微系统的点扩散函数及光学分辨率。研究了荧光显微图像的反卷积技术,对代表性的算法行了实验验证和简单结果分析。结果表明,反卷积结果都存在不同程度的噪声放大,出现了振铃状结构假象。
     反卷积之前对观测图像进行预去噪处理无疑是一种明智的方案。因此,深入研究了以Perona-Malik(P-M)非线性各向异性扩散方程为基础的边缘保持型去噪算法。分析了P-M方程边缘保持去噪的原理及不足,提出了一种融入图像局部方差信息的改进P-M扩散算法,算法既有效地消除了随机噪声又较好地保持了边缘结构。在此基础上,为进一步提高保边性能,提出了一种基于鲁棒估计子和像素局部统计特征的鲁棒P-M扩散自适应去噪算法,该算法在噪声消除的同时更好地保持了图像边缘结构,且具有收敛速度快、算法稳定的优点。模拟图像、标准测试图像和厚组织实际荧光显微切片图像的试验结果均证实了算法的有效性。
     正则化方法是解决反卷积不适定问题的有效方法。因此,深入研究了荧光显微图像Richardson-Lucy反卷积的正则化方法。在对最大熵复原研究的基础上,提出了鲁棒P-M扩散预去噪结合最大熵正则化的Richardson-Lucy反卷积方案。同时,由于Tikhonov和Total Variation正则化函数在形式上相似,在分析它们正则作用不足的基础上,提出了一种Tikhonov和Total Variation相结合的混合正则化方案。试验结果表明,两种方案均能一定程度上复原样品原始结构信息。
     通过随机扫描控制延长激发光在感兴趣区域的停留时间用于荧光信号积分,是从荧光图像来源上提高图像信噪比最本质的解决办法。因此,针对自行构建的随机扫描双光子荧光显微成像系统的声光偏转器扫描的精确时间控制,提出了一种基于数据采集卡子系统间时钟关系的高速时间同步方法,实现了精确的激光扫描控制和灵活设置荧光信号积分时间。
Combined with fluorescence labeling technique, fluorescence microscopy is becoming a powerful tool to investigate activities and morphologies of specimens in life science. However, image stacks are always inevitably blurred due to the diffraction limit and distorted by noises. The degradation increases with depth when imaging in deep tissue due to strong and multi-scattering of specimens. As a post-processing approach, image restoration is a potential technique to reverse the degradation and restore the original fluorescence objects. Therefore, the algorithms of denoising and deconvolution for deep tissue are well investigated in this dissertation. In addition, attempts to realize the random access controlling of laser and obtain variable integral time of fluorescence signal through the design of random scanning two-photon fluorescence microscope are explored. The main subjects are as follows:
     The imaging model of fluorescence microscope is studied. First, different sources of noise are analyzed and the photon counting noise, which is naturally induced by Poisson counting procedure of detector and dependent on fluorescence signal, is considered as the main one and can not be avoided. So Poisson imaging model is more suitable for image restoration than Gaussian model because it coincide with the natural properties of photon detection. Second, point spread function and optical resolutions of three typical fluorescence microscopes are discussed. Last, almost all of the deconvolution techniques for fluorescence image are comparably introduced, and some typical deconvolution algorithms are studied either theoretically or experimentally. The conclusion can be drawn that noise amplifying will occur in restored results more or less, and some tedious ringing artifacts are reproduced too.
     More literatures are shown that it is a wise approach to pre-filter noise before performing the deconvolution. So the edge-persevering denoising algorithms based on the Perona-Malik (P-M) nonlinear anisotropic diffusion equation are studied thoroughly. First of all, the principles of edge-persevering and the drawback of P-M diffusion equation are discussed, and then a modified scheme that the local variation of pixel is incorporated in diffusion coefficient is proposed. The modified algorithm performs well in random noise removing and edge preserving. Furthermore, in order to enhance the performance of edge-preserving, another adaptive and robust P-M diffusion algorithm is proposed, which combines the robust estimator with two local statistic parameters of pixel and obtains better edge preserving. Experimental results of synthetic, standard image and real fluorescence image slices in deep tissue show the better performance of proposed scheme in edge-persevering and noise removing, and the fast convergence and stable solution is obtained, too.
     Regularization technique is more vital to moderate the degree of ill-posed of deconvolution and it is well studied based on Richardson-Lucy deconvolution in this dissertation. A novel scheme that pre-filters noise employed modified robust anisotropic P-M diffusion then performs maximum entropy regularized Richardson-Lucy deconvolution is proposed, which is based on maximum entropy regularization technique. Meanwhile, another hybrid regularization scheme is also proposed too, which integrate Tikhonov regularization with Total Variation regularization together on the consideration of their similar model and their principles of regularization and drawbacks. Experiments show the limited effects on restored objects.
     Last, it is an essential alternative to improve the signal-to-noise of fluorescence image by exactly controlling the laser scanning and prolonging the dwell-time of regions of interesting of specimens. However, the precise controlling of acousto-optic deflector is a significant puzzle. Therefore, a high-speed timing synchronization approach between the clock relationships of two sub-systems in only one multi-functions board is proposed in the design of custom-built random access scanning two-photon fluorescence microscopy. It makes possible that laser scanning can be controlled accurately and dwell-time of fluorescence signal integral can be set flexibly.
引文
[1] Yuste R. Fluorescence microscopy today. Nature Methods, 2005, 2(12): 902-904
    [2] Stephens D. J., Allan V. J. Light microscopy techniques for live cell imaging. Science, 2003, 300(5616): 82-86
    [3] Minsky M. Memoir on inventing the confocal scanning microscope. Scanning, 1988, 10(4): 128-138
    [4] Denk W., Strickler J. H., Webb W. W. Two-photon laser scanning fluorescence microscopy. Science, 1990, 248(4951): 73-76
    [5] Hell S. W., Schrader M., van der Voort H. T. Far-field fluorescence microscopy with three-dimensional resolution in the 100-nm range. J Microsc, 1997, 187(Pt 1): 1-7
    [6] Lv X., Zhan C., Zeng S., et al. Construction of multiphoton laser scanning microscope based on dual-axis acousto-optic deflector. Review of Scientific Instruments, 2006, 77: 046101
    [7]吕晓华,占成,张红民等.随机扫描多光子荧光显微成像系统.光学学报, 2006, 26(12): 1823-1828
    [8]吕晓华.随机扫描双光子荧光显微成像系统研究: [博士论文].华中科技大学, 2006.
    [9] Sarder P., Nehorai A. Deconvolution methods for 3-D fluorescence microscopy images. Signal Processing Magazine, IEEE, 2006, 23(3): 32-45
    [10] M.顾(澳).共焦显微术的三维成像原理.王桂英,陈侦,杨莉松等译.北京:新时代出版社, 2000
    [11] Lashin N. A. M. A. Restoration Methods For Biomedical Images In Confocal Microscopy: [Ph.D thesis]. Technical University of Berlin, 2005.
    [12] Conchello J. A., Lichtman J. W. Optical sectioning microscopy. Nature methods, 2005, 2(12): 920-931
    [13]李楠,苏振伦,尹岭.激光扫描共聚焦显微术.北京:人民军医出版社, 1997
    [14] Majewska A., Yiu G., Yuste R. A custom-made two-photon microscope and deconvolution system. Anonymous,, 2000, 441(2-3): 398-408
    [15] Paddock S. W. Principles and practices of laser scanning confocal microscopy. Molecular biotechnology, 2000, 16(2): 127-149
    [16] Pawley J. E. Handbook of Biological Confocal Microscopy. Kluwer Academic Publishers, 1995
    [17] Adiga P. S., Chaudhuri B. B. Efficient cell segmentation tool for confocal microscopy tissue images and quantitative evaluation of FISH signals. Microsc Res Tech, 1999, 44(1): 49-68
    [18] Boutet de Monvel J., Le Calvez S., Ulfendahl M. Image restoration for confocal microscopy: improving the limits of deconvolution, with application to the visualization of the mammalian hearing organ. Biophys J, 2001, 80(5): 2455-2470
    [19] Callamaras N., Parker I. Construction of a confocal microscope for real-time x-y and x-z imaging. Cell calcium, 1999, 26(6): 271-279
    [20] Cahalan M. D., Parker I., Wei S. H., et al. Two-photon tissue imaging: seeing the immune system in a fresh light. Nature reviews.Immunology, 2002, 2(11): 872-880
    [21] Helmchen F., Denk W. Deep tissue two-photon microscopy. Nature Methods, 2005, 2(12): 932-940
    [22] Nikolenko V., Nemet B., Yuste R. A two-photon and second-harmonic microscope. Methods (San Diego, Calif.), 2003, 30(1): 3-15
    [23] Zipfel W. R., Williams R. M., Webb W. W. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol, 2003, 21(11): 1369-1377
    [24] Denk W., Svoboda K. Photon upmanship: Why multiphoton imaging is more than a gimmick. Neuron, 1997, 18(3): 351-357
    [25] Nguyen Q. T., Callamaras N., Hsieh C., et al. Construction of a two-photon microscope for video-rate Ca(2+) imaging. Cell calcium, 2001, 30(6): 383-393
    [26] Theer P., Hasan M. T., Denk W. Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. Optics Letters, 2003, 28(12): 1022-1024
    [27] van Kempen G. M. Image Restoration in Fluorescence Microscopy: [Ph.D thesis]. Delft University of Technology, 1999.
    [28] Wang Y. L. Computational restoration of fluorescence images: noise reduction, deconvolution, and pattern recognition. Methods in cell biology, 2007, 81: 435-445
    [29] Swedlow J. R. Quantitative fluorescence microscopy and image deconvolution. Methods in cell biology, 2007, 81: 447-465
    [30] Sibarita J. B. Deconvolution microscopy. Advances in biochemical engineering/biotechnology, 2005, 95: 201-243
    [31] Puetter R. C., Gosnell T. R., Yahil A. Digital image reconstruction: deblurring and denoising. Annu Rev Astron. Astrophys, 2005, 43: 139-194
    [32] Conchello J. A., Lichtman J. W. Optical sectioning microscopy. Nature Methods, 2005, 2(12): 920-931
    [33] Wang Y. L. Computational restoration of fluorescence images: noise reduction, deconvolution, and pattern recognition. Methods in cell biology, 2003, 72: 337-348
    [34] Swedlow J. R. Quantitative fluorescence microscopy and image deconvolution. Methods in cell biology, 2003, 72: 349-367
    [35] Dumas D., Grossin L., Cauchois G., et al. Comparison of wide-field/deconvolution and confocal microscopy in bioengineering. Interest of multi-photon microscopy in the study of articular cartilage. Biorheology, 2003, 40(1-3): 253-259
    [36] McNally J. G., Karpova T., Cooper J., et al. Three-dimensional imaging by deconvolution microscopy. Methods, 1999, 19(3): 373-385
    [37] Lichtman J. W., Conchello J. A. Fluorescence microscopy. Nat Methods, 2005, 2(12): 910-919
    [38] Castleman K. R. Digital image processing. Prentice Hall Press Upper Saddle River, NJ, USA, 1996
    [39]阮秋琦.数字图像处理学.北京:电子工业出版社, 2001
    [40] van Kempen G. M. P., van Vliet L. J., Verveer P. J., et al. A quantitative comparison of image restoration methods for confocal microscopy. J. Microsc, 1997, 185(3): 354-365
    [41]邹谋炎.反卷积和信号复原.北京:国防工业出版社, 2001
    [42] Markham J., Conchello J. A. Parametric blind deconvolution: a robust method for the simultaneous estimation of image and blur. Journal of the Optical Society of America, 1999, 16(10): 2377-2391
    [43] Markham J., Conchello J. A. Parametric blind deconvolution of microscopic images: Further results [3261-17]. Proceedings of SPIE - The International Society for Optical Engineering, 1998: 38-49
    [44] Banham M. R., Katsaggelos A. K. Digital image restoration. Signal Processing Magazine, IEEE, 1997, 14(2): 24-41
    [45] den Dekker A. J., van den Bos A. Resolution: a survey. J. Opt. Soc. Am. A, 1997, 14(3): 547-557
    [46] Agard D. A. Optical sectioning microscopy: cellular architecture in three dimensions. Annual review of biophysics and bioengineering, 1984, 13: 191-219
    [47] Brakenhoff G. J., van der Voort H. T., van Spronsen E. A., et al. 3-dimensional imaging of biological structures by high resolution confocal scanning laser microscopy. Scanning Microsc, 1988, 2(1): 33-40
    [48] Wang Y. L. Digital deconvolution of fluorescence images for biologists. Methods in cell biology, 1998, 56: 305-315
    [49] Gibson S. F., Lanni F. Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy. J Opt Soc Am A, 1991, 8(10): 1601-1613
    [50] Yoo H., Song I., Gweon D. G. Measurement and restoration of the point spread function of fluorescence confocal microscopy. J. Microsc, 2006, 221(Pt 3): 172-176
    [51] Agard D. A., Sedat J. W. Three-dimensional architecture of a polytene nucleus. Nature, 1983, 302(5910): 676-681
    [52] Carrington W. A., Lynch R. M., Moore E. D., et al. Superresolution three-dimensional images of fluorescence in cells with minimal light exposure. Science, 1995, 268(5216): 1483-1487
    [53] Richardson W. H. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am, 1972, 62(1): 55-59
    [54] Lucy L. B. An iterative technique for the rectification of observed distributions. The Astronomical Journal, 1974, 79(6): 745-754
    [55] van Kempen G. M., van Vliet L. J. Background estimation in nonlinear image restoration. Journal of the Optical Society of America, 2000, 17(3): 425-433
    [56] Shepp L. A., Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE transactions on medical imaging, 1982, 1(2): 113-122
    [57] Tsumuraya F., Miura N., Baba N. Iterative blind deconvolution method using Lucy's algorithm. Astronomy and Astrophysics, 1994, 282(2): 699-708
    [58] Boutet de Monvel J., Scarfone E., Le Calvez S., et al. Image-adaptive deconvolution for three-dimensional deep biological imaging. Biophys J, 2003, 85(6): 3991-4001
    [59] von Tiedemann M., Fridberger A., Ulfendahl M., et al. Image adaptive point-spread function estimation and deconvolution for in vivo confocal microscopy. Microsc Res Tech, 2006, 69(1): 10-20
    [60] van Der Voort H. T. M., Strasters K. C. Restoration of confocal images for quantitative image analysis. J Microsc, 1995, 178: 165-181
    [61] Joshi S., Miller M. I. Maximum a posteriori estimation with Good's roughness for three-dimensional optical-sectioning microscopy. J Opt Soc Am A, 1993, 10(5): 1078-1085
    [62] Verveer P. J., Jovin T. M. Image restoration based on Good's roughness penalty with application to fluorescence microscopy. J Opt Soc Am A, 1998, 15(5): 1077-1083
    [63] Strong D., Chan T. Edge-preserving and scale-dependent properties of total variation regularization. Inverse Problems, 2003, 19(6): S165-S187
    [64] Dey N., Blanc-Feraud L., Zimmer C., et al. Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution. Microsc Res Tech, 2006, 69(4): 260-266
    [65]陈华,金伟其,苏秉华等.基于马尔科夫约束最大后验概率三维显微图像复原算法.北京理工大学学报, 2006, 26(7): 634-638
    [66] Neelamani R., Hyeokho C., Baraniuk R. ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems. Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on], 2004, 52(2): 418-433
    [67] Zhang K., Zhang T., Zhang B. Nonlinear image restoration with adaptive anisotropic regularizing operator. Opt Eng, 2006, 45(12): 127004-127001
    [68] Verveer P. J. Computational and Optical Methods for Improving Resolution and Signal Quality in Fluorescence Microscopy: [Ph.D thesis]. Delft University of Technology, 1998.
    [69] Broser P. J., Schulte R., Lang S., et al. Nonlinear anisotropic diffusion filtering of three-dimensional image data from two-photon microscopy. J Biomed Opt, 2004, 9(6): 1253-1264
    [70] Zhang H., Zhang Z., Luo Q., et al. Richardson-Lucy deconvolution for two-photon fluorescence images via non-linear diffusion equation pre-filtering. Proceedings of SPIE, 2007, 6436: 64360P
    [71] Loupas T., McDicken W. N., Allan P. L. An adaptive weighted median filter for speckle suppression inmedical ultrasonic images. Circuits and Systems, IEEETransactions on, 1989, 36(1): 129-135
    [72] Ko S. J., Lee Y. H. Center weighted median filters and their applications to imageenhancement. Circuits and Systems, IEEE Transactions on, 1991, 38(9): 984-993
    [73]朱虹.数字图像处理基础.北京:科学出版社, 2005
    [74] Andrew C. Morphological anisotropic diffusion. Proc. of International Conference on Image Processing, 1997, 3: 348-351
    [75] Perona P., Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629-639
    [76] You Y. L., Kaveh M. Blind image restoration by anisotropic regularization. Image Processing, IEEE Transactions on, 1999, 8(3): 396-407
    [77] Alvarez L., Lions P. L., Morel J. M. Image Selective Smoothing and Edge Detection by Nonlinear Diffusion. II. SIAM Journal on Numerical Analysis, 1992, 29(3): 845-866
    [78] Catte F., Lions P. L., Morel J. M., et al. Image Selective Smoothing and Edge Detection by Nonlinear Diffusion. SIAM Journal on Numerical Analysis, 1992, 29(1): 182-193
    [79] Weickert J. Theoretical foundations of anisotropic diffusion in image processing. Computing, 1996, 11: 221-236
    [80] Black M. J., Sapiro G., Marimont D. H., et al. Robust anisotropic diffusion. Image Processing, IEEE Transactions on, 1998, 7(3): 421-432
    [81] Weickert J., Romeny B., Viergever M. A. Efficient and reliable schemes for nonlinear diffusion filtering. Image Processing, IEEE Transactions on, 1998, 7(3): 398-410
    [82] Weickert J. Coherence-Enhancing Diffusion Filtering. International Journal of Computer Vision, 1999, 31(2): 111-127
    [83] Gilboa G., Zeevi Y. Y., Sochen N. Complex diffusion processes for image filtering. Scale-Space, 2001: 299-307
    [84] Gilboa G., Zeevi Y. Y., Sochen N. Image enhancement segmentation and denoising by time dependentnonlinear diffusion processes. Image Processing, 2001. Proceedings. 2001 International Conference on, 2001, 3: 134-137
    [85] Gilboa G., Sochen N., Zeevi Y. Y. Forward-and-backward diffusion processes for adaptive image enhancement and denoising. Image Processing, IEEE Transactions on, 2002, 11(7): 689-703
    [86] Solo V. A fast automatic stopping criterion for anisotropic diffusion. Acoustics, Speech, and Signal Processing, 2002. Proceedings.(ICASSP'02). IEEE International Conference on, 2002, 2
    [87] Yu Y. J., Acton S. T. Speckle reducing anisotropic diffusion. Image Processing, IEEE Transactions on, 2002, 11(11): 1260-1270
    [88] Miao B., Jeraj R., Bao S., et al. Adaptive anisotropic diffusion filtering of Monte Carlo dose distributions. Phys Med Biol, 2003, 48(17): 2767-2781
    [89] Gilboa G., Sochen N., Zeevi Y. Y. Image enhancement and denoising by complex diffusion processes. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2004, 26(8): 1020-1036
    [90] Yu Y. J., Acton S. T. Edge detection in ultrasound imagery using the instantaneous coefficient of variation. Image Processing, IEEE Transactions on, 2004, 13(12): 1640-1655
    [91] Chao S. M., Tsai D. M. Astronomical image restoration using an improved anisotropic diffusion. Pattern Recognition Letters, 2006, 27(5): 335-344
    [92] Krissian K., Westin C. F., Kikinis R., et al. Oriented speckle reducing anisotropic diffusion. Image Processing, IEEE Transactions on, 2007, 16(5): 1412-1424
    [93]余庆军,谢胜利.基于人类视觉系统的各向异性扩散图像平滑方法电子学报, 2004, 32(1): 17-20
    [94]王毅,张良培,李平湘.各向异性扩散平滑滤波的改进算法.中国图象图形学报, 2006, 11(2): 210-216
    [95]谢美华,王正明.基于边缘定向增强的各向异性扩散抑噪方法.电子学报, 2006, 34(1): 59-64
    [96]谢美华,王正明.基于边缘定向扩散的图像增强方法.光子学报, 2006, 34(9): 1420-1424
    [97] Weickert J. A Review of Nonlinear Diffusion Filtering. Proceedings of the First International Conference on Scale-Space Theory in Computer Vision, 1997: 3-28
    [98] Lysaker M. L., Tai A. X. C. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. Image Processing, IEEE Transactions on, 2003, 12(12): 1579-1590
    [99] Murase K., Yamazaki Y., Shinohara M., et al. An anisotropic diffusion method for denoising dynamic susceptibility contrast-enhanced magnetic resonance images. Phys Med Biol, 2001, 46(10): 2713-2723
    [100] Kim H. Y., Cho Z. H. Robust anisotropic diffusion to produce clear statistical parametric map from noisy fMRI. Computer Graphics and Image Processing, 2002. Proceedings. XV Brazilian Symposium on, 2002: 11-17
    [101] Fernandez J. J., Li S. An improved algorithm for anisotropic nonlinear diffusion for denoising cryo-tomograms. Journal of structural biology, 2003, 144(1-2): 152-161
    [102] Hao Y., Yuan C. Fingerprint image enhancement based on nonlinear anisotropic reverse-diffusion equations. Conf Proc IEEE Eng Med Biol Soc, 2004, 3: 1601-1604
    [103] Sun Q., Hossack J. A., Tang J., et al. Speckle reducing anisotropic diffusion for 3D ultrasound images. Comput Med Imaging Graph, 2004, 28(8): 461-470
    [104] Zhu H., Shu H., Zhou J., et al. Image reconstruction for positron emission tomography using fuzzy nonlinear anisotropic diffusion penalty. Medical & biological engineering & computing, 2006, 44(11): 983-997
    [105] Yan J., Yu J. Median-prior tomography reconstruction combined with nonlinear anisotropic diffusion filtering. Journal of the Optical Society of America, 2007, 24(4):1026-1033
    [106]胡学龙,许开宇.数字图像处理.北京:电子工业出版社, 2006
    [107] Jovin T. M., Arndt-Jovin D. J. Luminescence digital imaging microscopy. Annual review of biophysics and biophysical chemistry, 1989, 18: 271-308
    [108] Kozubek M. Theoretical versus experimental resolution in optical microscopy. Microsc Res Tech, 2001, 53(2): 157-166
    [109] Kam Z., Hanser B., Gustafsson M. G., et al. Computational adaptive optics for live three-dimensional biological imaging. Proc Natl Acad Sci U S A, 2001, 98(7): 3790-3795
    [110] Preza C., Conchello J. A. Image estimation accounting for point-spread function depth variation in three-dimensional fluorescence microscopy,''. 3D and Multidimensional Microscopy: Image Acquisition and Processing X, Proc SPIE, 2003, 4964: 27
    [111] Gibson S. F., Lanni F. Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy. J Opt Soc Am A, 1992, 9(1): 154-166
    [112] Markham J., Conchello J. A. Fast maximum-likelihood image-restoration algorithms for three-dimensional fluorescence microscopy. Journal of the Optical Society of America, 2001, 18(5): 1062-1071
    [113] Sheppard C. J. R., Gu M. Image formation in two-photon fluorescence microscopy. Optik(Stuttgart), 1990, 86(3): 104-106
    [114] Sheppard C. J. R. Depth of field in optical microscopy. J. Microsc, 1988, 149(1): 73-75
    [115] Cox G., Sheppard C. J. R. Practical limits of resolution in confocal and non-linear microscopy. Microsc Res Tech, 2004, 63(1): 18-22
    [116]章毓晋.图像工程(上册)——图像处理和分析. (第1版).北京:清华大学出版社, 1999
    [117] Verveer P. J., Jovin T. M. Acceleration of the ICTM image restoration algorithm. J. Microsc, 1997, 188(3): 191-195
    [118] Krishnamurthi V., Liu Y. H., Bhattacharyya S., et al. Blind deconvolution of fluorescence micrographs by maximum-likelihood estimation. Applied Optics, 1995, 34: 6633-6647
    [119]张航,罗大庸.图像盲复原算法研究现状及其展望.中国图象图形学报, 2004, 9(10): 1145-1152
    [120] Holmes T. J. Blind deconvolution of quantum-limited incoherent imagery: maximum-likelihood approach. J Opt Soc Am A, 1992, 9(7): 1052-1061
    [121] Holmes T. J., O'Connor N. J. Blind deconvolution of 3D transmitted light brightfield micrographs. J Microsc, 2000, 200(Pt 2): 114-127
    [122] Zhang H., Luo Q., Zeng S. Restoration of fluorescence images from two-photon microscopy using modified nonlinear anisotropic diffusion filter. Proceedings of SPIE,2007, 6534: 65343H
    [123] Voci F., Eiho S., Sugimoto N., et al. Estimating the gradient in the Perona-Malik equation. Signal Processing Magazine, IEEE, 2004, 21(3): 39-65
    [124] Canny J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698
    [125] Yu Y., Acton S. T. Speckle reducing anisotropic diffusion. IEEE Trans Image Process, 2002, 11(11): 1260-1270
    [126] Yu H., Chua C. S. GVF-based anisotropic diffusion models. Image Processing, IEEE Transactions on, 2006, 15(6): 1517-1524
    [127] Katsaggelos A. K., Biemond J., Schafer R. W., et al. A regularized iterative image restoration algorithm. Signal Processing, IEEE Transactions on, 1991, 39(4): 914-929
    [128] Csiszar I. Why Least Squares and Maximum Entropy? An Axiomatic Approach to Inference for Linear Inverse Problems. The Annals of Statistics, 1991, 19(4): 2032-2066
    [129] Verveer P. J., Gemkow M. J., Jovin T. M. A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy. J Microsc, 1999, 193(1): 50-61
    [130] Pantin E., Starck J. L. Deconvolution of astronomical images using the multiscale maximum entropy method. Astronomy and Astrophysics, 1996, 118: 575-585
    [131] Bonavito N. L., Dorband J. E., Busse T. Maximum entropy restoration of blurred and oversaturated Hubble Space Telescope imagery. Applied Optics, 1993, 32(29): 5768-5774
    [132] Frieden B. R., Graser D. J. Closed-form maximum entropy image restoration. Opt Commun, 1998, 146: 79-84
    [133] Rudin L., Osher S., Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D, 1992, 60(1-4): 259-268
    [134] Durand S., Malgouyres F., Rouge B. Image deblurring, spectrum interpolation and application to satellite imaging. ESAIM: COCV, 2000, 5: 445-475
    [135]洪汉玉.成像探测系统图像复原方法研究: [博士论文].华中科技大学, 2004.
    [136] Nuyts J., Suetens P., Mortelmans L. Acceleration of maximum likelihood reconstruction, using frequencyamplification and attenuation compensation. Medical Imaging, IEEE Transactions on, 1993, 12(4): 643-652
    [137] Holmes T. J., Liu Y. H. Acceleration of maximum-likelihood image restoration for fluorescence microscopy and other noncoherent imagery. J. Opt. Soc. Am. A, 1991, 8(6): 893-907
    [138] Biggs D. S. C., Andrews M. Conjugate gradient acceleration of maximum-likelihood imagerestoration. Electronics Letters, 1995, 31(23): 1985-1986
    [139] Zaccheo T. S., Gonsalves R. A. Iterative maximum-likelihood estimators for positively constrained objects. J. Opt. Soc. Am, 1996, 13(2): 236-242
    [140] Biggs D. S. C., Andrews M. Acceleration of iterative image restoration algorithms.Applied Optics, 1997, 36(8): 1766-1775
    [141]陈春涛,黄步根,高万荣等.最大熵图像复原及其新进展.光学技术, 2004, 30(1): 36-39
    [142] Starck J. L., Bijaoui A. Filtering and deconvolution by the wavelet transform. Signal Processing, 1994, 35(3): 195-211
    [143] Willis M., Jeffs B. D., Long D. G. A new look at maximum entropy image reconstruction. Signals, Systems, and Computers, 1999. Conference Record of the Thirty-Third Asilomar Conference on, 1999, 2
    [144] Willis M., Jeffs B. D., Long D. G. Maximum entropy image restoration revisited. Image Processing, 2000. Proceedings. 2000 International Conference on, 2000, 1
    [145] Zeng S., Lv X., Zhan C., et al. Simultaneous compensation for spatial and temporal dispersion of acousto-optical deflectors for two-dimensional scanning with a single prism. Optics Letters, 2006, 31(8): 1091-1093
    [146] Zeng S., Lv X., Bi K., et al. Analysis of the dispersion compensation of acousto-optic deflectors used for multiphoton imaging. J Biomed Opt, 2007, 12(2): 024015
    [147]张红民,吕晓华,占成等.基于LabVIEW的随机扫描成像系统高速时间同步方法.仪器仪表学报, 2007, 28(3): 404-407
    [148]张红民,易秋实,李德荣等.多光子激发随机扫描显微成像软件系统仿真.计算机工程与应用, 2006, 42(28): 195-197
    [149]Bullen A., Patel S. S., Saggau P. High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators. Biophys J, 1997, 73(1): 477-491
    [150]张红民. AOD实现多光子随机扫描的机理及影响因素.压电与声光, 2006, 28(6): 637-639
    [151] Lechleiter J. D., Lin D. T., Sieneart I. Multi-photon laser scanning microscopy using an acoustic optical deflector. Biophys J, 2002, 83(4): 2292-2299
    [152] Saggau P. New methods and uses for fast optical scanning. Current opinion in neurobiology, 2006, 16(5): 543-550
    [153] Zeng S., Bi K., Xue S., et al. Acousto-optic modulator system for femtosecond laser pulses. Review of Scientific Instruments, 2007, 78: 015103
    [154] Iyer V., Saggau P. Compensation of temporal and spatial dispersion for multi-photon acousto-optic laser-scanning microscopy. in: Wilson, T., editor. Proceedings of SPIE - The International Society for Optical Engineering. Munich: vol. 5139, 2003. 7-19.
    [155] Iyer V., Losavio B. E., Saggau P. Dispersion compensation for acousto-optic scanning two-photon microscopy. in: Periasamy, A. and So, P. T. C., editors. Proceedings of SPIE - The International Society for Optical Engineering. San Jose, CA: vol. 4620, 2002. 281-292.
    [156] Iyer V., Losavio B. E., Saggau P. Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy. J Biomed Opt, 2003, 8(3): 460-471
    [157] Li D., Zeng S., Lv X., et al. Dispersion characteristics of acousto-optic deflector for scanning Gaussian laser beam of femtosecond pulses. Optics Express, 2007, 15(8): 4726-4734
    [158]李德荣,吕晓华,吴萍等.声光偏转器扫描飞秒激光的时间色散补偿.物理学报, 2006, 55(9): 4729-4733
    [159] Pologruto T. A., Sabatini B. L., Svoboda K. ScanImage: flexible software for operating laser scanning microscopes. Biomedical engineering online, 2003, 2: 13
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.