聚双环戊二烯/纳米SiO_2复合材料的制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,聚合物基纳米二氧化硅(Nano-SiO_2)复合材料是纳米复合材料的一个研究热点方向。本课题在总结了聚合物基Nano-SiO_2复合材料的研究进展的基础上,采用物理负载和化学负载的方法将钨-酚络合催化剂负载到了Nano-SiO_2上,并利用此负载型催化剂制备出了聚双环戊二烯(PDCPD)/Nano-SiO_2复合材料。主要包括以下方面内容:
     1.采用WD-57和DB-171两种偶联剂对Nano-SiO_2进行了表面改性,进行了红外光谱图分析,证明了Nano-SiO_2改性前后的区别。应用安瓿瓶实验分析对比了不同偶联剂对聚合的影响,考察了温度、催化剂用量、凝胶时间等相关工艺参数。结果表明:WD-57改性的Nano-SiO_2要比DB-171改性的Nano-SiO_2活性要好,双环戊二烯(DCPD)单体与钨的最佳摩尔比为1200:1,Al/W的最佳摩尔比为20:1,温度控制在80℃。
     2.采用两种化学方法进行负载:(1)通过化学反应将特殊的酚键合到了Nano-SiO_2上,合成出了大分子配体,而后再与六氯化钨(WCl6)生成钨酚配合物,形成新型负载型催化剂;(2)在催化剂的存在下,使钨酚络合物与Nano-SiO_2进行反应,得到硅氧键直接与钨原子相连的负载型催化剂。通过扫面电镜成分(EDS)分析、热失重(TG)分析,结果表明:通过化学的方法成功地制备出了两种新型的负载型催化剂。
     3.使用自制的负载催化剂,以烷基铝为助催化剂,在拟RIM装置上对双环戊二烯进行了注射反应成型工艺研究,优化了安瓿瓶实验配方和反应条件,制备出了PDCPD/Nano-SiO_2纳米复合材料复合材料。通过扫描电镜、差热失重等仪器分对所制材料的结构与性能进行了表征,用电子万能材料试验机和冲击仪对所制材料的机械性能进行了测试。结果表明:通过物理负载和化学负载的方式能够成功制备PDCPD/Nano-SiO_2复合材料;材料的拉伸性能从32.63MPa提升到48.16MPa,但冲击性能有下降的趋势。PDCPD/Nano-SiO_2复合材料的热稳定性要比纯的PDCPD材料的稍好。
Polymer/Nano-SiO_2 was one of the most important brands of nano- composite in recent years. In this thesis, the complexes of W and phenol were supported on Nano- SiO_2 through the support of physics and chemical methods, and Polydicyclopentadiene (PDCPD)/Nano-SiO_2 composites were prepared through the supported catalyst. This thesis mainly works as follows:
     1. Two kinds of coupling agents of theγ-aminopropyl-ethyl-2-ethoxy silane(WD-57) and the vinyl trimethoxysilane(DB-171) were adopted to modify the surface of Nano-SiO_2 and analyzed by the infrared spectra. The difference between Nano- SiO_2 and modified Nano-SiO_2 was shown through it. Through ampule test, the effects of different coupling agents on the polymerization were compared, and investigated the parameters of catalyst amount, reaction temperature and Gel-time. The results showed that the catalyst activities of Nano-SiO_2 modified by WD-57 was better than DB-171, the monomer (DCPD)/W mole rate was 1200:1, the Et2AlCl/W mole rate was 20:1, the molding temperature was 80 Celsius degree.
     2. Two chemical supported methods were used: (1)The special phenol was bonded to Nano-SiO_2 through chemical method, and the macromolecular ligands were synthesized, which reacted with WCl6 to generate a new supported catalyst W and phenol complexes. (2)In the presence of the catalyst, the supported catalyst that was bonded tungsten atoms with Si-O bond was synthesized by reacting of Nano-SiO_2 and the complexes of W and phenol. The products were characterized by IR, SEM and TGA, et al. The results showed that two new supported catalyst was successfully prepared through chemical method.
     3. Further enlarged polymer tests of DCPD were made through self-made RIM simulating device and the preparation parameters of nanocomposites were studied according to the result of the former small amount ampule test. Then the PDCPD/ Nano-SiO_2 composites were prepared through the supported catalysts and the alkyl aluminum cocatalyst. The products were characterized by SEM and TGA et al. Mechanical property was also measured by Electronic Universal Material Testing Machine and impact tester. The results showed that the PDCPD/Nano-SiO_2 composites were successfully synthesized by the support of physical and chemical methods. Tensile strength of composites raised from 32.63MPa to 48.16MPa, and the impact property descended. The thermal stability of the PDCPD/Nano-SiO_2 composites were better than pure PDCPD.
引文
[1]陈德铭.反应性增容制备纳米SiO_2/PP复合材料的研究[D].广州:中山大学,2006:1-1
    [2]樊新民,车剑飞.工程塑料及其应用[M].1版.北京:机械工业出版社,2006:1-1
    [3]丰沧.功能化纳米二氧化硅溶胶与聚合物的组装研究[D].南京:南京工业大学,2005:1-1
    [4]刘颖.纳米SiO_2的修饰及其纳米复合材料的制备[D].天津:天津大学,2006:3-4
    [5]徐明丽,张正富等.纳米材料及其在电催化领域的研究发展[J].材料导报.2006-11,20(Ⅶ):2-3
    [6]王永康,王立.纳米材料科学与技术[M].1版.杭州:浙江大学出版社,2003:210-213
    [7]蔡亮珍,杨挺.纳米SiO_2在高分子领域中应用[J].现代塑料加工应用,2002,14(6):20-23
    [8] Cullum B M,Criffin G D,Miller G H,et al.Intracellular measurements in mammary carcinoma cells using fiber-optic nanosensors[J].Anal Biochem,2000,277:25-32
    [9] Stockle R,Foksa L,Deckert V,et al.High-qualitynear-field optical probes by tube etching[J].Appl Phys Lett,1999,75:160-162
    [10] Bui J D,Zellea T,Lou H J,et al.Probing intracellular dynamics with near-field optics[J].J Neurosci Meth ods,1999,89:9-15
    [11] Vo-Dinh T,Cullum B M.Biosensors and biochips:advances in biological and medical diagnostics[J].Trese-nius J Anal Chem,2000,366:540-541
    [12] Vo-Dinh T,Alarie J P,Cullam B,et al.Antibody based nanoro befor measurement of fluorescent analyte in a single cell[J].Nat Biotechmol,2000,18:764-767
    [13] Timothy V W,Timothy E P.Atom transfer radical polymerization from nanoparticles:a tool for the preparation of well-defined hybrid nano structures and for understanding the chemistry of controlled/living radical polymerizations from surfaces[J].Journal of the American Chemical Society,2001,123(31):7497-7505
    [14] Timothy V W,Timothy E P.Preparation of structurally well-defined polymer nanoparticle hybrids with controlled/living radical polymerizations[J].Journal of the American Chemical Society,1999,121:7409-7410
    [15] Spange S.Silica surface modification by cationic polymerization and carbenium intermediates[J].Progress in Polymer Science,2000,25:781-849
    [16]马海红,史铁钧,宋秋生,等.PMMA/SiO_2杂化纤维的制备及表征[J].高分子材料科学与工程,2008,24(12):46-49
    [17] Raible R,Hamann K.Formation of chemically bound polymer layers on oxide surfaces and their role in colloidal stability[J].Adv.Colloid Interface Sci,1980,13:65-71
    [18] Espiard P,Guyot A.Poly(ethyl acrylate)latexes encapsulating nanoparticles of silica:2. Grafting process onto silica[J].Polymer,1995,36:4391-4395
    [19] Prucker O,Ruhe J.Synthesis of poly(styrene)monolayers attached to high surface area silica gels through self-assembled monolayers of azo initiators [J].Macromolecules,1998,31 (3):592-601
    [20] N.Tsubokawa,H.Ishida.Graft Polym erization of Vinyl Nonomers by Peroxyester Groups Introduced onto the Surface of Inorganic Ultrafine Particles [J].Polymer Journal,1992,24(8):809~816
    [21] Schomaker E,Zwarteveen A J,Challa G,et al.Synthesis of isotactic poly (methylmethacrylate) covalently bound to microparticulate silica[J].Polymer Communications,1988,29:158-160
    [22] Schomaker E,Zwarteveen A.Synthesis of isotacticpoly (methylmethacrylate) covalently bound to microparticulate silica[J].Polym Comm,1988,29:158-160
    [23] Michiel L C M O,Sein A,Schouten A J.Anionic grafting of polystyrene and poly (styrene-block-isoprene) onto microparticulate silica and glass slides[J]. Polymer,1992,33:4394-4400
    [24] Perruchot C,Khan M A,Kamitsi A,et al.Synthesis of well-defined,polymer-grafted silica particles by aqueous ATRP[J].Langmuir,2001,17:4479-4481
    [25] YangX,Shi J,Johnson S,et al.Growth of ultrathin covalently attached polymer films: uniform thin films for chemical microsensors[J].Langmuir,1998,14(7):1505-1507
    [26]郭朝霞,李莹,于建.聚芳酯树枝状分子接枝改性纳米二氧化硅[J].高等学校化学学报, 2003,24 (6):1139-1141
    [27] T subokaw a N,Yoshikaw a S.Grafting of polymers with controlled molecular weight onto ultrafine silica surface[J].Journal of Polymer Science Part A: Polymer Chemistry,1995,33(3):581-586
    [28] Shang S W,William J M,Soderhlm J.Work of adhesion influence on the rheological properties of silica filled polymer composites[J].J.Materials Sci,1995,30:4323-4334
    [29] Rong M Z,Zhang M Q,Zheng Y X,et al.Improvement of tensile properties of nano-SiO_2/PP composites in relation to percolation mechanism[J].Polymer,2001,42(7):3301-3304
    [30] X J Xiang,J W Qian,W Y Yang,et al.Synthesis and properties of nanosilica-reinforced polyurethane for grouting[J].Journal of Applied Polymer Science,2006,100(6):4333-4337
    [31]冯利邦,苏致兴,郭金山.含纳米硅氧化物的聚酯型水性聚氨酯涂料研究[J].国外建材科技,2004,25(4):62-64
    [32] Warrier K G K,Anikumar G M.Densification of mullite-SiC nanocomposite sol-gel precursors by pressureless sintering[J].Materials Chemistry and Physics,2001,67:263-266
    [33]朱岩,陈雨.热分析法对阳离子型二氧化硅/聚氨酯纳米复合材料相行为的研究[J].化学工程师,2007,7:4-6
    [34]李春喜,王子镐.超声技术在纳米材料制备中的应用[J].化学通报,2001(5):268-271
    [35] Netzer L,Sagiv J.A new approach to construction of artificial monolayer assemblies[J].J Am Chem Soc,1983,105:674-676
    [36]郭旭虹,蔡兴贤.双环戊二烯在高分子合成和改性中的应用[J].绝缘材料通讯.1996,5:15-20
    [37]曾庆乐.双环戊二烯聚合材料新进展[J].化学与粘合.1999,1:30-33
    [38]马国章,侯彩英.双环戊二烯的生产及应用[J].精细与专用化学品.2004,12(11):7-13
    [39]黄葆国,陈伟.茂金属催化剂及其烯烃聚合物[M].1版.北京:化学工业出版社.2000:14-15
    [40] Stepanek,K.DCPD-An important raw material for synthesis organic specialties [J].Chem Prum,1997,72(5):24-25
    [41]陈晓农,李宁,焦书科.双环戊二烯二甲酸的合成与表征[J].合成橡胶工业.1996,19(3):159-16
    [42]沈开猷.不饱和聚酯树脂及其应用[M].1版.北京:化学工业出版社,2001:45-47
    [43]马国章,吉爱顺.石油树脂及改性石油树脂的现状及发展建议[J].精细与专用化学品.2001,9:3-5
    [44]汪京力译.茂金属聚合物保持高速增长[J].中国化工信息,2003,15:14
    [45] Yamaguchi K,Uragami T,Yamaguchi T.Preparation of phenol polymers [P].JP170424,1992
    [46]刘朋生,黎华明.双环戊二烯聚合反应热力学及动力学研究[J].高分子材料科学与工程,1995,3:41-44
    [47] Oshima M,Obara T,Natsume Y.Polymethacrylates for optical disk substrates [P].JP45409, 1989
    [48]郭敬,袁莉等.双环戊二烯催化开环移位聚合研究进展[J].材料导报,2007-2,21(2):57-58
    [49]戴晴.钌催化剂引发含离子液体降冰片烯类单体开环移位聚合研究,硕士,上海:华东师范大学,2006
    [50] Herrison J L,Chauvin Y.Catalyse de transformation desoléfin par les complexes du tungstèneⅡ: Tèlomèrisationdes oléfins cycliquesen présenced' oléfins acycliques [J].Makromol Chem,1970,141:161-176
    [51] Libor Matejka.Polymerization of dicyclopentadiene:A new reaction injection molding system[J].J Appl Polymer Sci,1985,30(7):2787
    [52] Grubbs,R,H.[P].US Patent 4,607,112
    [53] Qian Yanlong,Keleypette Dono.Ring-Opening metathesis polymerization of dicyclopen-tadiene catalyzed by Titanium tetrachloride adduct complexes with Oxygen-Containing ligands[J].J Appl Polymer Sci,2001,(81):662
    [54]多诺·克莱伯特,黄吉玲.四氯化钛配合物/甲基锂体系催化降冰片烯开环移位聚合的研究[J].华东理工大学学报,1999,25(4):427
    [55] Nicos A Petasis,Dian-Kui Fu.Ring-opening metathesis polymerization of norbornene with titanium alkylidenes generated by thermolysis of dimethyltitanocene and related cyclopentadienyltitanium(IV) derivatives[J].J Am Chem Sci,1993,115:7208-7214
    [56] Jianfei Liu.Dimethyl titanium dichloride:a high active catalyst for the ring opening metathesis polymerization[J].Journal of Polymer Science:Part A:Polymer Chemistry,2000,38:1639–1641
    [57] Hong Li , Zheng Wang , Yuqin Wang.Ring-opening metathesis polymerization of dicyclopentadiene catalyzed by a polymer-supported tungsten catalyst [J].Reactive & Functional Polymers,1997,33 :193-200
    [58] Andrew Bell.Aryloxide derivatives of tungsten oxytetrachloride as ring-opening metathesis polymerization catalysts[J].Inorg.Chem,1986,25:1962-1964
    [59] Ari Lehtonen,Reijo Sillanpaa.Bisdiolatotungsten(Ⅵ)phenoxide-based catalytic systems for ring opening metathesis polymerization[J].Inorganic Chemistry Communications,2001,4(2):108-110
    [60]许斌.MoCl5-AlCl3-AlEt3催化双环戊二烯的聚合反应研究[J].合成树脂及塑料,1997,14(4):22-24
    [61] Justin P Gallivan,Jason P Jordan.A neutral,water-soluble olefin metathesis catalyst based on an N-heterocyclic carbene ligand[J].Tetrahedron Letters,2005,46(15):2577
    [62] Damien Quemener,Abraham Chemtob.Synthesis of latex particles by ring- opening metathesis polymerization[J].Polymer,2005,(46):1067
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.