多带小波及小波框架的几点研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经典的小波理论是基于二带的情形研究的,然而在大量的实际应用中,需要对信号作更为精细的分析和处理以得到满意的效果,仅考虑二带小波是不够的,还需要进一步使用多带小波;另一方面,多带小波还具有一些二带小波所不具有的性质,如既正交同时又具有线性相位等。所以多带小波的理论与构造已经成为信息领域一个新的研究热点。本文在经典的二带小波理论基础上,研究了三带正交小波的若干性质并对其进行了严格证明,特别是证明了三带情况下尺度函数离散矩与连续矩的关系,并给出了代数方法构造三带正交小波的几个算例,该方法将尺度函数的构造问题转化为求解滤波器系数的约束方程组,克服了已有算法过于复杂或不能保证对称性质等缺陷。
     小波框架及小波紧框架是近年来新的理论研究热点。Daubechies和Meyer分别在其著作《小波十讲》和《小波算子》中提出了生成框架的母小波的充分必要条件,Wang和Weiss对单变量小波紧框架进行了刻画,而后Bin Han给出了多元情况下小波紧框架的显式刻画。此外,Ron和Shen还给出了所有小波框架的一般刻画,并且该理论也可以特殊化到小波紧框架的情况。近来,Daubechies和Bin Han等构造出基于多分辨分析的小波紧框架,并对对偶小波框架的存在性和构造方法进行了讨论。考虑到多分辨分析在小波框架的构造中有着非常重要的作用,本文在小波紧框架和框架多分辨分析的基础上,提出了一个构造多带对偶小波紧框架尺度函数的充分条件,并给出了详细证明。
The typical wavelet theory is researched around two-band wavelets, but in order to acquire satisfactory outcoming with analyzing and processing the signal precisely, it is not enough to use only two-band wavelets, and M-band wavelets is needed. Besides, M-band wavelets have some good properties that two-band wavelets don't have, such as being orthogonal and liner phase simultaneously. So it has been a hotspot in information fields to research M-band wavelets'theory and construction. In this paper, we studied some properties of three-band orthogonal wavelets based on the classical two-band wavelets theory. Especially, we proved the relationship between discrete and continuous moments of the scaling functions in case three. Then an algebraic method and a few examples to construct the three-band orthogonal wavelets were given. This method converts the structure of scaling function to solving the constraint equations of the filter coefficients. It overcame that the existing algorithms were too complex or could not ensure the symmetry etc.
     Wavelet frames and tight wavelet frames become new research hotspots in recent years. Daubechies and Meyer advanced necessary and sufficient conditions for mother wavelet to generate frames in "Ten Lectures on Wavelets" and "Ondelettes et Operateurs". Characterizations of univariate tight wavelet frames are implicit in the works of Wang and Weiss. Then an explicit characterization of tight wavelet frames in the multivariate case was obtained by Bin Han. Independently of these, Ron and Shen gave a general characterization of all wavelet frames, and specialized this to the case of tight wavelet frames. Recently, Daubechies and Bin Han constructed MRA-based tight wavelet frames, and discussed the existence of dual wavelet frames and its construction method. Considering MRA plays a very important role during the construction of the wavelet frames, we presented and proved a sufficient condition for constructing the scaling functions of M-band dual wavelet frames based on tight wavelet frames and FMRA.
引文
[1]Daubechies I. Ten lectures on wavelets [M]. Philadelphia PA:Society for Industrial and Applied Mathematics,1992.
    [2]S. Mallat, A Wavelet Tour of Signal Processing, second ed.[M]. Academic Press, New York,1998.
    [3]C. Burrus, R. Gopinath, H. Guo, Introduction to Wavelets and Wavelet Transforms:a Primer[M], Prentice-Hall, New Jersey,1998.
    [4]P.N. Heller, T.Q. Nguyen, H.'Singh, W.K. Carey, Linear-phase M-band wavelets with application to image coding[J], Proc. ICASSP,1995,2:1496-1499.
    [5]P.N. Heller, V. Strela, G. Strang, P. Topiwala et al., Multiwavelet filter banks for data compression[J], Proc. ISCAS,1995,1796-1799
    [6]Q. Sun, N. Bi, D. Huang, A Introduction to Multiband Wavelets[M], Zhejiang University Press,China,2001.
    [7]F.C.A. Fernandes, C.S. Burrus, M-band multiwavelet systems [M], Proc. ICASSP,1999.
    [8]P. Steffen, P.N. Heller, R.A. Gopinath, C.S. Burrus, Theory of regular M-band wavelet bases[J], IEEE Trans. Signal Process.1993,41:3497-3511.
    [9]C. Burrus, R. Gopinath, H. Guo, Introduction to Wavelets and Wavelet Transforms:a Primer[M], Prentice-Hall, New Jersey,1998.
    [10]Vaidyanathan.P.P, Theory and design of M-channel maximally decimated quadrature mirror filters with arbitrary M, having the perfect-reconstruction property[J].IEEE Transactions on Signal Processing,1987,35(4):476-492.
    [11]Nguyen.T.Q, Vaidyanathan.P.P, Mximally decimated perfect-reconstrction FIR filter banks with pairwise mirror-image analysis (and synthesis) frequency resopnsesy[J].IEEE Transactions on Acoustics, Speech, and Signal Processing,1988,36(5):693-706.
    [12]C.K.Chui, J.Lian, Construction of compactly supported symmetric and antisymmetric orthogonal wavelets with scale=3[J]. Applied and Computational Harmonic Analysis, 1993,2:21-51.
    [13]Regensburger G. Parametrizing compactly supported orthonormal wavelets by discrete moments[R]. J Kepler University,2005.
    [14]Tony Lin, Shufang Xu, Qingyun Shi, Pengwei Hao. An algebraic construction of orthonormal M-band wavelets with perfect reconstruction [J]. Applied Mathemetics and Computation,2006,172:717-730
    [15]S. Durand. M-band filtering and non-redundant directional wavelets [J]. Applied and Computational Harmonic Analysis,2007,1(22):124-139
    [16]K. Grochenig, Foundations of time-frequency analysis [M], Birkhauser,2001.
    [17]Stephane Mallat. A wavelet tour of signal processing,2nd ed [M]. New York:Academic, 1999.
    [18]Mallat S. Multiresolution approximation and wavelet orthonormal bases of L2(R)[J]. Trans Amer Math Soc,1989,315:69-87.
    [19]Daubechies I. Orthonormal bases of compactly supported wavelets[J]. Communications on Pure and Applied Mathematics,1988,41 (7):909-996.
    [20]R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series [J], Transactions of the American Mathematical Society,1952,72 (2):341-366.
    [21]R.R. Coifman and D.L. Donoho, Translation-invariant de-noising [J], Lecture Notes in Statistics-New York-Springer Verlag,1995,125-125.
    [22]David L. De-noising by soft-thresholding [J], IEEE transactions on information theory, 1995,41 (3):613-627.
    [23]C.K. Chui, W. He, and J. Stockler, Compactly supported tight and sibling frames with maximum vanishing moments [J], Applied and computational harmonic analysis,2002,13 (3):224-262.
    [24]I. Daubechies, B. Han, A. Ron, and Z. Shen, Framelets:Mra-based constructions of wavelet frames [J], Applied and Computational Harmonic Analysis,2003,14 (1):1-46
    [25]B. Han and Z. Shen. Duel wavelet frames and Riesz bases in Sobelev spaces[J], Constructive Appreximation,2009,29 (3):369-406.
    [26]J.F. Cai, R. Chan, L. Shen, and Z. Shen, Restoration of chopped and nodded images by framelets[J], SIAM J. Sci. Comput,2008,30 (3):1205-1227.
    [27]J.F. Cai, R.H. Chan, L. Shen, and Z. Shen, Convergence analysis of tight framelet approach for missing data recovery[J], Advances in Computational Mathematics,2008:1-27
    [28]J.F. Cai, Linearized Bregman iterations for frame-based image deblurring,[J], SIAM J. Imaging Sci,2009,2(1):226-252
    [29]R.H. Chan, Z. Shen, and T. Xia, A framelet algorithm for enhancing video stills[J], Applied and Computational Harmonic Analysis,2007,23 (2):153-170.
    [30]R. Chen, S.D. Riemenschneider, L. Shen, Z. Shen, Tight freme:En efficient wey fer high-reselutien imege recenstructien[J], Eppl. Cemput. Hermen. Enel.2004,17:91-115
    [31]Ames Ron, Zuowei Shen, Affine Systems in L2(Rd):The Analysis of the Analysis Operator[J], Journal of Functianal AnAlysis,1997,148 (2):408-447.
    [32]B. Dong, A. Chien, and Z. Shen, Frame based segmentation for medical images[M], Preprint,2010.
    [33]J. Cai, S. Osher, and Z. Shen, Multiscale Modeling and Simulation:A SIEM[J]. Inter-disciplinary Journel,2009,8(2):337-369
    [34]T. Chan and L. Vese, An active contour model without edges[J]. Scale-Space Theory in Computer Vision,1999:141-151
    [35]T. Chan and L. Vese. Active contours with edges[J], IEEE Transactions on image processing,2001,10(2):266-277
    [36]T. Chan, S. Esedoglu, and M. Nikolova. Algorithms for finding global minimizers of image segmentation and denoising models[J], ALGORITHMS,66(5),1632-1648
    [37]X. Bresson, S. Esedoglu, P. Vandergheynst, J. Thiran, and S. Osher, Fast global minimizationof the active contour/snake model[J], Journal of Mathematical Imaging and Vision.2007,28(2):151-167
    [38]B. Han, On Dual Wavelet Tight Frames[J], Applied and Computational Harmonic Analysis,1997,4(4):380-413
    [39]Ingrid Daubechies, Bin Han, The Canenicel Dual Frame of a Wavelet Frame[J], Applied and Computational Harmonic Analysis,2002,12:269-285
    [40]Qingjiang Chen, Zangtian Wei, Jinshun Feng, A note on the standard dual frame of a wavelet frame with three-scale[J], Chaos, Solitons & Fractals,2009,42:931-937
    [41]Martin Ahler, Bin Han, Wavelet bi-frames with few generations from multivariate refinable functions [J], Applied and Computational Harmonic Analysis.2008,25:407-414
    [42]Youfa Li, Shouzhi Yang, Construction of nonseparable dual X-wavelet frames in L2(R) [J], Applied Mahemaics ad Computation.2009,215:2082-2094
    [43]Bin Han, Dual multiwavelet frames with high balencing order and compectfast frame transform[J], Applied and Computational Harmonic Analysis.2009,26:14-42
    [44]王海辉,朱蕾琦,赵曜.基于小波框架变换的图像融合方法[J].鲁东大学学报(自然科学版),2007,23(2):101-103
    [45]李振华,敬忠良,孙韶媛,刘刚.基于不可分离小波框架变换的多聚焦图像融合算法[J].上海交通大学学报,2005,39(4):557-560
    [46]S.G. Mallat, Multiresolution approximetions and wavelet orthonormal bases of L2(R) [J], Transections of the American Mathemetical Society.1989,315(1):69-87.
    [47]Y. Meyer, Wavelets and operators[M]. Translated by DH Selinger, Combridge Studies in Advenced Mathemetics,1992.
    [48]Daubechies I. Orthonormal bases of compactly supported wavelets[J]. Communications on Pure and Applied Mathematics,1988,41 (7):909-996.
    [49]R.A. Gopinath and C.S. Burrus. On the moments of the scaling function y0 [J], Proc. of the IEEE ISCAS,1992,2:963.966.
    [50]W. Sweldens, R. Piessens, Quadrature formulae and asymptotic error expansions forwavelet approximations of smooth functions[J], SIEM J. Numer. Enel.1994,31 (4): 1240-1264.
    [51]Georg Regensburger, Otmar Scherzer. Symbolic computation for moments and filter coefficients of scaling functions[J]. Annals of Combinatorics.2005:223-243
    [52]Buchberger B, Winkler F. Grobner Bases and Applications[J]. London:London Mathematical Society Series 457, Cambridge University Press,1998,500.
    [53]Buchberger B. Grobner bases and systems theory[J]. Multidimensional Systems and Signal Processing,2001,12(3):223-251.
    [54]Buchberger B. An algorithm for finding the bases elements of the residue class ring modulo a zero dimensional polynomial ideal (German)[D]. Innsbruck:University of Innsbruck,1965.
    [55]Jiang Qingtang. Matlab Routines for Sobolev and Holder Smoothness Computations of Refinable Function [CP/OL]. http://www.cs.umsl.edu/~jiang/Jsoftware.htm,2006.04.15
    [56]Benedette J J, Li S. The theory of multiresolution analysis frames and application to filter banks[J]. Applied and Computational Harmonic Analysis,1998,5:398-427.
    [57]A Petukhov. Explicit construction of framelets[J]. Applied and Computational Harmonic Analysis,2001,11:313-327.
    [58]Chui C K, He W J. Compactly supported tight frames associated with refinables functions [J]. Applied and computational harmonic analysis,2000,8:293-319.
    [59]Ron A, Shen Z W. Affine systems in L2(R4):the analysis operater[J]. J Functinal Anol, 1997,148:617-637.
    [60]崔丽鸿,程正兴,杨守志.小波紧框架的显式构造[J].数学物理学报.2004,24E(1):94-104.
    [61]黄永东,程正兴.α-带小波紧框架的显式构造[J].数学物理学报,2007,27E(1):007-018.
    [62]Daubechies I, Han B. The canonical dual frame of a wavelet frame[J]. Epplied end Cemputetienel Hermenic Enelysis,2002,12:269-285.
    [63]Cui lihong, Cong ruixue. Construction for a class of interpolation multiscaling functions with dilation factor a≥3 [J]. Computer and Mathematics with Applications,2008,56: 2948-2956
    [64]丛瑞雪.基于代数方法的小波构造及图形实现[D].北京:北京化工大学,2008.
    [65]杨守志,杨晓忠.紧支撑正交对称与反对称小波的构造[J].计算数学,2000,22(3):333-338
    [66]杨守志,程正兴.紧支撑正交小波的构造[J].工程数学学报,1998,15(2):23-28
    [67]Bi N., Dai X., Sun Q. Construction of compactly supported M-band wavelets[J]. Appl.comput.Harmon.Anal.,1999,6:113-131
    [68]Shui P.L., Bao Z., Zhang X.D. M-band compactly supported orthogonal symmetric interpolating scaling functions[J]. IEEE Trans.Signal Proeessing,1993,49:1704-1713
    [69]马建云.3带正交小波的若干性质及其参数化[D].北京:北京化工大学,2009.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.