多移动机器人编队控制与协作运输研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去20余年的发展过程中,多移动机器人系统依据其时间、空间的分布性与高效性展现了其无可匹敌的魅力,在工业、军事、国防、生活和深空等应用领域均受到了广泛关注。多移动机器人协作在诸如流水线生产、编队巡逻、仓储运输、交通规划与环境探索等应用领域的研究中均显示出了极大的优势。而在一些具体的应用任务,如大型物体的运输、目标的抓捕、多传感器协作地图探索等研究中,要求机器人组成特定的队形并在任务过程中保持队形不变或改变队形执行任务,以此引发了多机器人编队控制的研究热潮,并成为多移动机器人协作与协调的关键技术之一。本文以协作大型物体运输为应用背景,依据从底层运动控制、运动规划到高层任务规划的思路,对多移动机器人的编队行为控制到编队规划最终到编队任务分配做了相关研究。
     本文的研究工作可以总结为以下几个方面:
     1)作为机器人运动与编队控制的基础,首先设计了机器人基本运动行为和基于服务的运动行为结构。在基于行为的控制方法研究中,以往主要是针对具体任务或实验进行设计并且多为上层的描述性语言,缺少基本运动行为的设计和对行为的可重复利用的研究。本文提出以机器人与编队中虚拟目标机器人之间的位姿误差作为驱动输入,驱动轮速度作为输出,设计移动机器人的基本运动行为,运用具有可重用性的面向服务架构(service-oriented architecture, SOA),设计了基本运动行为的结构。基于服务的运动行为结构,只需根据编队任务进行适当修改或扩展、组合就能满足新的情况或任务。所设计的基本行为和基于服务的运动行为结构的可行性和可重用性,在仿真环境和物理实验中得到了验证,并在多机器人编队形成、编队运动与协作运输任务的研究中得到应用。
     2)在基本运动行为的基础上,研究基于Leader-Follower的编队形成与运动规划。本文提出了基于竞标机制的编队时间最优规划方法。该方法将多机器人编队问题转换成任务分配问题,即处于跟随位置的移动机器人对编队中的虚拟机器人位置进行投标,而处于领航者位置的机器人根据投标进行集中规划,将分布式投标方法与集中式优化方法相结合,在降低集中规划方法计算维数的同时,完成编队位置的指派任务。此外,利用竞标时产生的实时监督机制,实现在编队中机器人故障或任务需求等时刻重新规划队形,保持编队队形的完整性。通过仿真与物理实验验证了基于竞标机制的时间最优实时编队规划算法的可行性,与其他编队规划算法相比,所提出的编队时间最优策略在编队形成中具有时间短、效率高的优点。
     3)利用基本行为服务与监督机制,研究多移动机器人编队形成和运动过程中出现障碍物时的避障策略。本文提出了基于多动态虚拟目标跟踪的编队避障策略,同时考虑了编队和障碍物信息。将具有多动态虚拟目标的跟踪方法与基本运动行为服务结合,实现编队运动中移动机器人能脱离U型槽障碍物,继续形成编队运动,同时采用监督机制保证编队机器人的避障过程中编队队形不会发生改变。通过多机器人编队运动的避障实验,表明本文提出的基于多动态虚拟目标跟踪的编队避障策略的有效性。
     4)利用基本行为服务和避障策略,在编队控制的基础上,研究多移动机器人在开阔平坦环境中的协作运输问题。与已有的反应式行为协作运输不同,本文以观测者—推动者的协作关系,将运输任务转换成多移动机器人编队问题,考虑了实际机器人的传感器和搬运机构的限制条件。为减少反应式行为控制方法所导致的动作重复执行的缺陷,利用几何原理对编队运输的运动和避障路径进行规划,通过设置虚拟目标点,对虚拟目标进行跟踪,完成编队运输的任务。在Microsoft Robotics Developer Studio (MRDS)仿真环境中,设计推箱子实验并与反应式行为控制方法比较,验证协作运输策略的可行性。
     5)研究了起伏地形环境下的多移动机器人协作运输问题。起伏地形环境中由于地形限制,机器人的侧滑、驱动轮形变、摩擦和环境难以区分等,使得多机器人协作运输面临更多困难。本文提出了Navigate Straight Forward to Destination (NSFD)和Navigate Plain First to Destination (NPFD)导航策略,设计了推动者机器人发生滑动时编队重新形成策略。在起伏地形的仿真环境中,设计了协作推箱子实验,验证了协作运输策略的有效性,并对NSFD和NPFD两种导航策略在不同环境下的协作运输效果进行了比较,结果表明NPFD更适合于复杂地形环境下的协作运输。
     6)以多移动机器人编队与单任务为基础,研究多任务机器人—多机器人任务(MT-MR)的任务分配问题,研究多个任务并存时的机器人联盟建立问题。本文考虑机器人能源有限及携带传感器不同的情况,提出了一种具有次优解的基于信用机制的动态任务联盟形成方法CoSGCrM。通过与first-price竞拍方法进行比较,验证了提出的多机器人联盟多任务分配方法的可行性,并具有较高的任务完成效率。
Multiple mobile robots system provides an unchallenged incentive to all researchers in the past two decades, with its distribution characters in time and space, as well as its high efficiency. Great interests have been attracted to application domains including industry, military, national defense, daily life, and deep space, etc. In the research of specific application tasks, such as transporting heavy object, arresting target and multi-sensors cooperative map exploration, etc., robots are required to form and maintain specific shapes of formation during the tasks'execution. And these lead to a rush in the research of multi-robot formation control, which is one of the key techniques in multi-robot cooperation and coordination. Takes the heavy object transport problem as application background, problems in formation control are discussed in this thesis, from low level behavior-based motion control, motion planning, to high level formation task planning.
     Contributions of this thesis can be summarized in several points illustrated below:
     1. As the foundation of robot movement and formation control, the basic robot motion behavior and the behavior structure are designed at first. In the existing works on behavior-based control, behaviors are typically designed with focus on specific tasks or experiments, most of which are high level descriptive behaviors. The design of basic behavior and its reusability are less mentioned. In this thesis, the behaviors of multi-robot formation are proposed, with the posture deviation between robot and virtual target robot in formation as its input, and the driven wheel rotation velocity as its output. Service-oriented architecture (SOA) with reusability is introduced to the design of the basic motion behavior structure. This structure can satisfy new conditions with proper modification, extension or combination. The feasibility and reusability of the proposed service-based motion behavior structure are proved in both simulation and experiment. The structure is used in researches on multi-robot formation control and cooperative transport tasks.
     2. On the basis of basic motion behavior, formation initialization and movement planning are studied. An auction based formation initialization planning method with time optimal index is proposed. The formation problem has been transformed to task allocation problem, that is, the mobile robots in follower roles bid for the position where the virtual target robots is in formation, and the robot in leader role performs a centralized planning algorithm to allocate the positions to all followers. The integration of the centralized planning and distributed biddings can accomplish the position allocation task while reducing the complex of computation dimension. Besides, the real-time monitor mechanism raised at the bidding moment can help the leader to plan the formation shape again as soon as robots break down, or task requires. This mechanism can maintain the completeness of the formation. Simulation and experiments in formation control are taken to illustrate the feasibility of the proposed auction-based time optimal strategy. The formation time-optimal strategy is compared with single robot time shortest strategy and the strategy that robot and target with the same suffix are preferred. Results show that the proposed strategy cost less time and has higher efficiency in formation generation.
     3. Obstacle avoidance strategy in formation generation and movement is studied with the proposed basic motion behavior service and monitor mechanism. A multiple dynamic virtual targets tracking based obstacle avoidance strategy is proposed, takes both the formation information and the obstacle information into consideration. The proposed obstacle avoidance strategy combined with the motion behavior can accomplish the task that the robot in formation escapes from U-shape trough and returns to the position in formation. Monitor mechanism ensures the formation shape would be kept while robot is avoiding obstacle. Experiment of obstacle avoidance in formation illustrates the effectiveness of the proposed multiple dynamic virtual targets tracking based obstacle avoidance strategy.
     4. Multi-robot cooperative object transport task is studied on the basis of formation control, with the basic motion behavior service and obstacle avoidance strategy. Being different from the existing reactive behavior based cooperative transport method, the cooperative transport problem with robots in the relationship of pusher-watcher is transformed into the multiple mobile robots formation control problem. Limits on real robot sensors and actuators are also considered. In order to reduce the defects of the repetition movement controlled by reactive behaviors, geometric relation is considered in the path planning of the movement and obstacle avoidance of the formation. The virtual target in the path is set for robot formation to track, so robots can accomplish the transport task. Box pushing task with compare to reactive behavior-based approach in Microsoft Robotics Developer Studio (MRDS) is designed to illustrate the feasibility of the proposed cooperative transport strategy.
     5. Multiple mobile robot transport problem in the environment with undulating terrain is studied. With the restraint in terrain, as well as slipping of the robot, deformation of wheel, friction etc., it is more difficult for robots transport task. Navigation strategies of both Navigate Straight Forward to Destination (NSFD) and Navigate Plain First to Destination (NPFD) are proposed in this thesis. Formation rearrangement strategy is designed when pusher robots slipped. Simulation of the box pushing in the environment with undulating terrain is performed to illustrate the validity of the proposed strategy. The cooperative transport strategies with NSFD and NPFD are compared in different environment. The results show that the one with NPFD is more suitable for cooperative transport task in the complex environment.
     6. On the basis of the multiple mobile robot formation control and the single task allocation problem, task allocation problem of multi-task robots-multi-robot tasks (MT-MR) is studied. Considering the energy resource limits and the different sensors equipped in robot, a dynamic coalition structure generation based on credit mechanism (CoSGCrM) approach is proposed with sub-optimal solutions to the coalition formation problem. Compared with the first-price auction method, the feasibility and the higher efficiency in accomplishing tasks of the proposed multi-robot coalition formation task allocation approach has been proved.
引文
[1]Robot[EB/OL]. From Wikipedia, the free encyclopedia,2011. Available from: http://en.wikipedia.org/wiki/Robot.
    [2]R. R. Murphy. Introduction to AI robotics[M]. Cambridge, MA.:The MIT Press,2000.
    [3]R. Siegwart, I. R. Nourbakhsh. Introduction to autonomous mobile robots[M]. Cambridge, MA.:The MIT Press,2004.
    [4]刘金琨,尔联洁.多智能体技术应用综述[J].控制与决策.2001,16(2):133-140.
    [5]谭民,王硕,曹志强.多机器人系统[M].北京:清华大学出版社,2005.
    [6]Retired Robots[EB/OL]. USC Robotics Research Lab,2010,23rd, Jun. Available from: http://www-robotics.usc.edu/?l=Robots:Retired.
    [7]薛颂东,曾建潮.群机器人研究综述[J].模式识别与人工智能.2008,21(2):177-185.
    [8]T. Fukuda, S. Nakagawa, Y. Kawauchi, M. Buss. Structure decision method for self organising robots based on cell structures-CEBOT[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Scottsdale, AZ, USA.1989: 695-700.
    [9]R. C. Fitch. Heterogeneous self-reconfiguring robotics[R]. Department of Computer Science, Dartmouth College.2002. TR2002-436.
    [10]G. Bekey, et al. WTEC panel report on international assessment of research and development in robotics, final report[R]. World Technology Evaluation Center, Inc. 2006.
    [11]Army bridge combat team modernization [EB/OL]. U.S Army,2011. Available from: http://www.bctmod.army.mil/.
    [12]KIBO-Japanese Experiment Module[EB/OL]. Japan Aerospace Exploration Agency, 2008,29th, Aug. Available from:http://kibo.jaxa.jp/en/about/kibo/rms/index.html.
    [13]Aerial robotics & aerospace systems [EB/OL]. Australian Centre for Field Robotics, 2010,21st, Jan. Available from:http://www.acfr.usvd.edu.au/research/aerospace.shtml.
    [14]A. Gage. Multi-robot task allocation using affect[D]. University of South Florida,2004.
    [15]Automation required for the largest order in Georg Utz's hi story [EB/OL]. ABB,2011. Available from:http://www.abb.com/References/Default.aspx?db=db/db0003/db0014 66,nsf&c=3a52f3a6182649bfcl25755b002d0f30.
    [16]H. Kress-Gazit, et al. Courteous cars[J]. IEEE Robotics and Automation Magazine. 2008,15(1):30-38.
    [17]N. Lau, L. S. Lopes, G. Corrente, N. Filipe. Multi-robot team coordination through roles, positionings and coordinated procedures[A]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems[C]. St. Louis, USA.2009: 5841-5848.
    [18]G. Klancar, B. Zupancic, R. Karba. Modelling and simulation of a group of mobile robots[J]. Simulation Modelling Practice and Theory.2007,15(6):647-658.
    [19]K. Sugihara, I. Suzuki. Distributed motion coordination of multiple mobile robots[A]. Proceedings of the IEEE International Symposium on Intelligent Control [C]. Philadelphia, PA, USA.1990,1:138-143.
    [20]A. Martins, J. M. Almeida, E. Silva. Coordinated maneuver for gradient search using multiple AUVs[A]. Proceedings of OCEANS[C].2003,1:347-352.
    [21]L. B. Arranz, A. Seuret, C. C. d. Wit. Translation control of a fleet circular formation of AUVs under finite communication range[A]. Proceedings of the Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference[C]. Shanghai, P.R. China.2009:8345-8350.
    [22]J. Shao, G. Xie, L. Wang. Leader-following formation control of multiple mobile vehicles[J]. IET Control Theory and Applications.2007,1(2):545-552.
    [23]G. Zuo, J. Han, G. Han. Multi-robot formation control using reinforcement learning method [A]. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[C]. Beijing, China.2010, 6145 LNCS:667-674.
    [24]T. J. Koo, S. M. Shahruz. Formation of a group of unmanned aerial vehicles (UAVs)[A]. Proceedings of the American Control Conference[C]. Arlington, VA, USA.2001,1: 69-74.
    [25]E. N. Johnson, et al. Approaches to vision-based formation control [A]. Proceedings of the IEEE International Conference on Decision and Control [C].2004,2:1643-1648 Vol.2.
    [26]X. H. Wang, V. Yadav, S. N. Balakrishnan. Cooperative UAV formation flying with obstacle/collision avoidance [J]. IEEE Transactions on Control Systems Technology. 2007,15(4):672-679.
    [27]H. G. Tanner. Switched UAV-UGV cooperation scheme for target detection[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Rome, Italy.2007:3457-3462.
    [28]Swarm-bots project[EB/OL]. Laboratory of Intelligent Systems, Swiss Federal Polytechnic University at Lausanne. Available from:http://lis.epfl.ch/index.html? content=research/projects/SwarmBots/index.php
    [29]Formation flying[EB/OL]. Jet Populsion Laboratory, National Aeronautics and Space Administration (NASA). Available from:http://planetquest.ipl.nasa.gov/technology/ formation flying.cfm.
    [30]Cooperative control and localization of multiple robots [EB/OL]. MARS multiple autonomous robots. Available from:http://www.cis.upenn.edu/mars/site/proiects/ formation.htm.
    [31]Formation control of multiple autonomous agents[EB/OL]. The Robotics and Automation Laboratory, Michigan State University. Available from:http://www.egr.msu. edu/ralab/Pages/Project Formation Control.htm.
    [32]Reactive control for multi-agent robotic systems in hostile environments [EB/OL]. Mobile Robot Laboratory, Georgia Institute of Technology. Available from: http:/www.cc.gatech.edu/ai/robot-lab/research/arpa-multi-agent.html.
    [33]Cellular automata for control and interactions of large formations of robots. Multi-robot coordination and learning[EB/OL]. Robotics Research Lab. University of South California,2010. Available from:http://robotics.usc.edu/interaction/?l=Research: Projects:overviewmrcl.
    [34]J. Fredslund, M. J. Mataric. A general algorithm for robot formations using local sensing and minimal communication[J]. IEEE Transactions on Robotics and Automation.2002,18(5):837-846.
    [35]S. Glavaski, et al. Vehicle networks:Achieving regular formation[A]. Proceedings of the American Control Conference[C]. Denver, CO, United states.2003,5:4095-4100.
    [36]E. Bahceci, O, Soysal, E. Sahin. A review:pattern formation and adaptation in multi-robot systems[R]. Robotics Institute, Carnegie Mellon University.2003. CMU-RI-TR-03-43.
    [37]W. Ren, N. Sorensen. Distributed coordination architecture for multi-robot formation control[J]. Robotics and Autonomous Systems.2008,56(4):324-333.
    [38]C. C. Cheah, S. P. Hou, J. J. E. Slotine. Region following formation control for multi-robot systems[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Pasadena, CA, United states.2008:3796-3801.
    [39]P. B. Sujit, J. M. George, R. W. Beard. Multiple UAV coalition formation[A]. Proceedings of the American Control Conference [C].2008:2010-2015.
    [40]曹志强.未知环境下多机器人协调与控制的队形问题研究[D].北京:中国科学院自动化研究所,2002.
    [41]龙晓林.基于网络模型的多机器人系统研究[D].杭州:浙江大学,2007.
    [42]谢文龙.机器人系统运动规划与协调的研究[D].上海:上海交通大学,2008.
    [43]刘爽.多机器人编队的运动规则[D].合肥:中国科学技术大学,2010.
    [44]柳林.多机器人系统任务分配及编队控制研究[D].长沙:国防科学技术大学, 2006.
    [45]李向舜.网络化群体系统编队与一致性控制[D].武汉:华中科技大学,2009.
    [46]刘磊.多移动机器人编队及协调控制研究[D].武汉:华中科技大学,2009.
    [47]刘剑锋.卫星编队飞行队形控制与重构技术研究[D].哈尔滨:哈尔滨工业大学2008.
    [48]刘佰龙.群集智能理论及其在多机器人系统中的应用研究[D].哈尔滨:哈尔滨工程大学,2009.
    [49]F. Belkhouche, B. Belkhouche, P. Rastgoufard. Multi-robot hunting behavior [A]. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics[C].2005,3:2299-2304.
    [50]A. Weitzenfeld, A. Vallesa, H. Flores. A biologically-inspired wolf pack multiple robot hunting model[A]. Proceedings of the IEEE 3rd Latin American Robotics Symposium[C].2006:120-127.
    [51]T.-H. Kim, T. Sugie. Cooperative control for target-capturing task based on a cyclic pursuit strategy[J]. Automatica.2007,43(8):1426-1431.
    [52]D. Gu. A differential game approach to formation control [J]. IEEE Transactions on Control Systems Technology.2008,16(1):85-93.
    [53]J. P. Desai, V. Kumar, J. P. Ostrowski. Control of changes in formation for a team of mobile robots [A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Detroit, MI, USA.1999,2:1556-1561.
    [54]P. Ogren, N. E. Leonard. Obstacle avoidance in formation[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C].2003,2:2492-2497.
    [55]T. Keviczky, et al. Coordinated autonomous vehicle formations:decentralization, control synthesis and optimization[A]. Proceedings of the American Control Conference[C].2006:2022-2027.
    [56]E. F. Parra-Gonzalez, J. G. Ramirez-Torres, G. Toscano-Pulido. A new object path planner for the box pushing problem[A]. Proceedings of the Electronics, Robotics and Automotive Mechanics Conference[C]. Cuernavaca, Morelos, Mexico.2009:119-124.
    [57]P. K. C. Wang. Navigation strategies for multiple autonomous mobile robots[A]. Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems[C]. Tsukuba, Japan.1989.
    [58]J. P. Desai, J. Ostrowski, V. Kumar. Controlling formations of multiple mobile robots[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Leuven, Belgium.1998,4:2864-2869.
    [59]H. G. Tanner, G. J. Pappas, V. Kumar. Leader-to-formation stability[J]. IEEE Transactions on Robotics and Automation.2004,20(3):443-455.
    [60]S.-C. Liu, D.-L. Tan, G.-J. Liu. Formation control of mobile robots with active obstacle avoidance[J]. Acta Automatica Sinica.2007,33(5):529-535.
    [61]S. Mastellone, et al. Formation control and collision avoidance for multi-agent non-holonomic systems:Theory and experiments[J]. The International Journal of Robotics Research.2008,27(1):107-126.
    [62]吴孔逸,霍伟.不确定移动机器人编队间接自适应模糊动力学控制[J].控制与决策.2010,25(12):1769-1774,1781.
    [63]杨丽,曹志强,谭民.不确定环境下多机器人的动态编队控制[J].机器人.2010,32(2):283-288.
    [64]T. Balch, R. C. Arkin. Behavior-based formation control for multirobot teams[J]. IEEE Transactions on Robotics and Automation.1998,14(6):926-939.
    [65]Y. Inoue, T. Tohge, H. Iba. Cooperative transportation system for humanoid robots using simulation-based learning[J]. Applied Soft Computing.2007,7(1):115-125.
    [66]G. Lazea, et al. Mobile robots formation navigation with behavior based algorithms [A]. Proceedings of the IEEE International Conference on Automation, Quality and Testing, Robotics[C].2008,2:388-391.
    [67]张子迎,张汝波,刘心.多机器人混合编队控制[J].北京邮电大学学报.2008,31(6):38-41.
    [68]杨永明,田彦涛,陶军,尹香花.基于社会势场的群体机器人聚集队形控制[J].系统仿真学报.2009,21(4):1106-1110.
    [69]杨文,汪小帆,李翔.一致性问题综述[A]. Proceedings of the Chinese Control Conference[C]. Harbin, P. R. China.2006:1482-1486.
    [70]J. P. Desai. Modeling multiple teams of mobile robots:a graph theoretic approach[A]. Proceedings of the IEEE/RSJ International Conference onlntelligent Robots and Systems[C]. Maui, HI.2001,1:381-386 vol.1.
    [71]R. Olfati-Saber, R. M. Murray. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transactions on Automatic Control.2004, 49(9):1520-1533.
    [72]C. Yu, et al. Three and higher dimensional autonomous formations:Rigidity, persistence and structural persistence [J]. Automatica.2007,43:387-402.
    [73]B. D. O. Anderson, C. Yu, B. Fidan, J. M. Hendrickx. Rigid graph control architectures for autonomous formations[J]. IEEE Control Systems Magazine.2008,28(6):48-63.
    [74]吴正平.复杂网络建模与一致性及在多移动智能体中的应用[D].武汉:华中科技大学,2007.
    [75]Z. Qu. Cooperative control of dynamical systems-Applications to autonomous vehicles[M]. London:Springer-Verlag London Limited,2009.
    [76]P. Lin, Y. Jia. Consensus of a class of second-order multi-agent systems with time-delay and jointly-connected topologies[J]. IEEE Transactions on Automatic Control.2010, 55(3):778-784.
    [77]杨洪勇,李晓.时延多智能体系统的编队控制[J].浙江大学学报(工学版).2010,44(7):1355-1360.
    [78]Y. Q. Chen, Z. Wang. Formation control:a review and a new consideration[A]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems[C].2005:3181-3186.
    [79]M. A. Lewis, K.-H. Tan. High precision formation control of mobile robots using virtual structures[J]. Autonomous Robots.1997,4:387-403.
    [80]R. W. Beard, J. Lawton, F. Y. Hadaegh. A coordination architecture for spacecraft formation control[J]. IEEE Transactions on Control Systems Technology.2001,9(6): 777-790.
    [81]W. Ren. Consensus seeking, formation keeping, and trajectory tracking in multiple vehicle cooperative control[D]. Utah:Brigham Young University,2004.
    [82]E. Lalish, K. A. Morgansen, T. Tsukamaki. Formation tracking control using virtual structures and deconfliction[A]. Proceedings of the IEEE International Conference on Decision and Control[C].2006:5699-5705.
    [83]K. D. Do. Formation tracking control of unicycle-type mobile robots with limited sensing ranges[J]. IEEE Transactions on Control Systems Technology.2008,16(3): 527-538.
    [84]J. Ghommam, H. Mehrjerdi, M. Saad, F. Mnif. Formation path following control of unicycle-type mobile robots[J]. Robotics and Autonomous Systems.2010,58:727-736.
    [85]O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots[J]. The International Journal of Robotics Research.1986,5:90-98.
    [86]S. S. Ge, C. H. Fua. Queues and artificial potential trenches for multirobot formations [J]. IEEE Transactions on Robotics.2005,21(4):646-656.
    [87]贾秋玲,闫建国,王新民.基于势函数的多机器人系统的编队控制[J].机器人.2006,28(2):111-114.
    [88]樊玮虹,唐波,蔡宣平,刘云辉.基于人工势场法和Ad-hoc网络的多机器人编队控制[J].国防科技大学学报.2006,28(4):49-53.
    [89]X.-B. Chen, W.-B. Xu. Formation control of multiple mobile robots based on orientation bias[A]. Proceedings of the IEEE International Conference on Robotics, Automation and Mechatronics[C]. Chengdu, China.2008:683-687.
    [90]J. Ghommam, M. Saad, F. Mnif. Robust adaptive formation control of fully actuated marine vessels using local potential functions [A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Anchorage, AK, United states.2010:3001-3007.
    [91]A. Ajorlou, K. Moezzi, A. G. Aghdam, S. Tafazoli. Energy and time efficient formation reconfiguration strategies[A]. Proceedings of the Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference[C]. Shanghai, China.2009: 3081-3086.
    [92]H.-S. Ahn, Y. Chen. Iterative learning control for multi-agent formation[A]. Proceedings of the ICROS-SICE International Joint Conference [C]. Fukuoka, Japan. 2009:3111-3116.
    [93]王醒策,张汝波,顾国昌.多机器人动态编队的强化学习算法研究[J].计算机研究与发展.2003,40(10):1444-1450.
    [94]D. J. Naffin, G. S. Sukhatme. Negotiated formations [A]. Proceedings of the Eighth International Conference on Intelligent Autonomous Systems[C].2004:181-190.
    [95]F. D. Smet, D. Aeyels. Cluster transitions in a multi-agent clustering model[A]. Proceedings of the Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference[C]. Shanghai, China.2009:4778-4784.
    [96]王义萍,陈庆伟,胡维礼.机器人行为选择机制综述[J].机器人.2009,31(5):472-480.
    [97]R. Brooks. A hardware retargetable distributed layered architecture for mobile robot control[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C].1987,4:106-110.
    [98]R. A. Brooks. Intelligence without representation[J]. Artificial Intelligence.1991,47: 139-150.
    [99]C. Chen, H.-X. Li, D. Dong. Hybrid control for robot navigation-a hierarchical Q-learning algorithm[J]. IEEE Robotics and Automation Magazine.2008,15(2):37-47.
    [100]R. Emery, T. Balch. Behavior-based control of a non-holonomic robot in pushing tasks[A]. Proceedings of the IEEE International Conference onRobotics and Automation[C]. Seoul, Korea.2001,3:2381-2388.
    [101]Z. Tao, U. Haruki. Knowledge model-based heterogeneous multi-robot system implemented by a software platform[J]. Knowledge-Based System.2007,20(3): 310-319.
    [102]M. J. Mataric. Interaction and Intelligent Behavior[D]. Massachusetts:Massachusetts Institute of Technology,1994.
    [103]杨晶东,洪炳熔,朴松昊.基于模糊行为融合的移动机器人避障算法[J].华中科技大学学报(自然科学版)2008,36(Sup.1):310-313,320.
    [104]L. E. Parker. ALLIANCE:an architecture for fault tolerant, cooperative control of heterogeneous mobile robots[A]. Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems[C].1994,2:776-783.
    [105]L. E. Parker. Task-oriented multi-robot learning in behavior-based systems[A]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems[C]. Osaka, Japan.1996,3:1478-1487.
    [106]T. Balch. Behavioral diversity in learning robot teams[D]. Georgia Institute of Technology,1998.
    [107]R. C. Arkin. Motor schema-based mobile robot navigation[J]. The International Journal of Robotics Research.1989,8(4):92-112.
    [108]P. Maes. How to do the right thing[J]. Connection Science.1989,1(3):291-323.
    [109]J. K. Rosenblatt. DAMN:a distributed architecture for mobile navigation[J]. Journal of Experimental and Theoretical Artificial Intelligence.1997,9:339-339.
    [110]M. Carreras, J. Batlle, P. Ridao. Hybrid coordination of reinforcement learning-based behaviors for AUV control [A]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems[C]. Maui, HI, United states.2001,3:1410-1415.
    [111]S. Thrun, W. Burgard, D. Fox. Probabilistic robotics (Intelligence robotics and autonomous agents)[M]. Cambridge, MA.:The MIT press,2005.
    [112]A. K. Ray, P. Benavidez, L. Behera, M. M. Jamshidi. Decentralized motion coordination for a formation of rovers[J]. IEEE Systems Journal.2009,3(3):369-381.
    [113]张惠娣,刘士荣,俞金寿.基于情感认知的学习与决策算法在移动机器人行为协调中的应用[J].华东理工大学学报(自然科学版).2008,24(3):399-404.
    [114]蓝艇,刘士荣.受生物群体智能启发的多机器人系统研究[J].机器人.2007,29(3):298-304.
    [115]S. B. Niku.(孙富春,朱纪洪,刘国栋翻译)Introduction to robotics. Analysis, systems, applications (机器人学导论——分析、系统及应用)[M].北京:电子工业出版社,2004.
    [116]Microsoft Robotics[EB/OL]. Available from:http://www.microsoft.com/robotics/.
    [117]C. Belta, V. Kumar. Trajectory design for formations of robots by kinetic energy shaping[A]. Proceedings of the IEEE International Conference onRobotics and Automation[C]. Washington, DC, USA.2002,3:2593-2598.
    [118]C. Zhiqiang, et al. Cooperative hunting by distributed mobile robots based on local interaction[J]. IEEE Transactions on Robotics.2006,22(2):402-406.
    [119]M. Bennewitz, W. Burgard, S. Thrun. Finding and optimizing solvable priority schemes for decoupled path planning techniques for teams of mobile robots[J]. Robotics and Autonomous Systems.2002,41:89-99.
    [120]J. Berg, M. overmar. Prioritized motion planning for multiple robot[A]. Proceedings of the IEEE International conference on Intelligent Robots and Systems[C].2005: 430-435.
    [121]A. D. Nguyen, N. M. Kwok, V. T. Ngo, Q. P. Ha. Collision-free formations with reactively-controlled virtual head robot tracking[A]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems[C].2006:2509-2514.
    [122]董胜龙,陈卫东,席裕庚.移动机器人的时间最优编队[J].控制与决策.2001,16(5):573-576.
    [123]H. Yamaguchi. A distributed motion coordination strategy for multiple nonholonomic mobile robots in cooperative hunting operations [J]. Robotics and Autonomous Systems. 2003,43(4):257-282.
    [124]韩学东,洪炳熔,孟伟.多机器人任意队形分布式控制研究[J].机器人.2003,25(1):66-72.
    [125]S. Monteiro, E. Bicho. Robot formations:robots allocation and leader-follower pairs [A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Pasadena, CA, USA.2008:3769-3775.
    [126]A. Viguria, A. M. Howard. An integrated approach for achieving multirobot task formations[J]. IEEE/ASME Transactions on Mechatronics.2009,14(2):176-186.
    [127]L. E. Parker. ALLIANCE:an architecture for fault tolerant multirobot cooperation[J]. IEEE Transactions on Robotics and Automation.1998,14(2):220-240.
    [128]L. E. Parker. Cooperative robotics for multi-target observation [J]. Intelligent Automation and Soft Computing.1999,5:5-19.
    [129]B. B. Werger, M. J. Mataric. Broadcast of local eligibility for multi-target observation[A].5th International Symposium on Distributed Autonomous Robotic Systems(DARS)[C]. Knoxville, TN.2000:347-356.
    [130]S. C. Botelho, R. Alami. M+:a scheme for multi-robot cooperation through negotiated task allocation and achievement [A]. Proceedings of the IEEE International Conference on Robotics and Automation[C].1999,2:1234-1239 vol.2.
    [131]B. P. Gerkey, M. J. Mataric. Sold!:auction methods for multirobot coordination[J]. IEEE Transactions on Robotics and Automation.2002,18(5):758-768.
    [132]T. S. Dahl, M. J. Mataric, G. S. Sukhatme. Multi-robot task-allocation through vacancy chains [A]. Proceedings of the IEEE International Conference on Robotics and Automation[C].2003,2:2293-2298 vol.2.
    [133]J. Ferber. Multi-agent systems:An introduction to distributed artificial intelligence[M]. New York:Addison-Wesley,1999.
    [134]R. R. Murphy, et al. Emotion-based control of cooperating heterogeneous mobile robots[J]. IEEE Transactions on Robotics and Automation.2002,18(5):744-757.
    [135]R. G. Smith. The contract net protocol:high level communication and control in a distributed problem solver[J]. IEEE Transactions on Computers.1980,29(12): 1104-1113.
    [136]N. Kalra, M. B. Dias, R. M. Zlot, A. Stentz. Market-based multirobot coordination:a comprehensive survey and analysis[R]. R. Institute, Carnegie Mellon University.2005. CMU-RI-TR-05-16.
    [137]M. B. Dias, R. Zlot, N. Kalra, A. Stentz. Market-based multirobot coordination:a survey and analysis[J]. Proceedings of the IEEE.2006,94(7):1257-1270.
    [138]R. Zlot, A. Stentz, M. B. Dias, S. Thayer. Multi-robot exploration controlled by a market economy [A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Washington, DC, USA.2002,3:3016-3023.
    [139]B. P. Gerkey, M. J. Mataric. Pusher-watcher:An approach to fault-tolerant tightly-coupled robot coordination [A]. Proceeding of the IEEE International Conference on Robotics and Automation[C]. Washington, DC, USA.2002,1:464-469.
    [140]M. G. Lagoudakis, et al. Simple auctions with performance guarantees for multi-robot task allocation[A]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems[C]. Sendai, Japan.2004,1:698-705,
    [141]M. B. Dias. TraderBots:a new paradigm for robust and efficient multirobot coordination in dynamic environments[D]. Pittsburgh:Carnegie Mellon University, 2004.
    [142]L. Liu, Z. Zhiqiang. Combinatorial bids based multi-robot task allocation method[A]. Proceedings of the 2005 IEEE International Conference on Robotics and Automation[C].2005:1145-1150.
    [143]周浦城,洪炳镕,王月海.动态环境下多机器人合作追捕研究[J].机器人.2005,27(4):289-295,300.
    [144]H.-L. Choi, L. Brunet, J. P. How. Consensus-based decentralized auctions for robust task allocation[J]. IEEE Transactions on Robotics.2009,25(4):912-926.
    [145]A. Viguria, A. M. Howard. Probabilistic analysis of market-based algorithms for initial robotic formations[J]. The International Journal of Robotics Research.2010,29: 1153-1172.
    [146]陈宝林.最优化理论与方法[M].北京:清华大学出版社,2006.
    [147]常健,吴成东,李斌.移动机器人避障方法综述[J].仪器仪表学报.2010,31(8.sp):439-442.
    [148]R. W. Beard, T. W. McLain, M. A. Goodrich, E. P. Anderson. Coordinated target assignment and intercept for unmanned air vehicles [J]. IEEE Transactions on Robotics and Automation.2002,18(6):911-922.
    [149]Y. Kuwata, J. How. Three dimensional receding horizon control for UAVs[A]. Collection of Technical Papers-AIAA Guidance, Navigation, and Control Conference[C]. Providence, RI, United states.2004,3:2100-2113.
    [150]J. Miura. Support vector path planning[A]. Proceedings of thr IEEE/RSJ International Conference on Intelligent Robots and Systems[C]. Beijing, China.2006:2894-2899.
    [151]J. R. Bruce, M. M. Veloso. Safe multirobot navigation within dynamics constraints[J]. Proceedings of the IEEE.2006,94(7):1398-1411.
    [152]陈洋,赵新刚,韩建达.移动机器人3维路径规划方法综述[J].机器人.2010,32(4):568-576.
    [153]L. C. A. Pimenta, M. L. Mendes, R. C. Mesquita, G. A. S. Pereira. Fluids in electrostatic fields:an analogy for multirobot control[J]. IEEE Transactions on Magnetics.2007,43(4):1765-1768.
    [154]姚远,周兴社,张凯龙,董冬.基于稀疏A*搜索和改进人工势场的无人机动态航迹规划[J].控制理论与应用.2010,27(7):953-959.
    [155]王振华,章卫国.基于改进概率地图的无人机实时避障研究[J].计算机工程与应用.2010,46(25):220-222.
    [156]J. Borenstein, Y. Koren. Real-time obstacle avoidance for fast mobile robots[J]. IEEE Transactions on Systems, Man, and Cybernetics.1989,19(5):1179-1187.
    [157]O. Brock, O. Khatib. Real-time obstacle avoidance and motion coordination in a multi-robot workcell[A]. Proceedings of the 1999 IEEE International Symposium on Assembly and Task Planning[C]. Porto, Portugal.1999:274-279.
    [158]席裕庚,张纯刚.一类动态不确定环境下机器人的滚动路径规划[J].自动化学报.2002,28(2):]61-175.
    [159]A. Yahja, S. Singh, A. Stentz. An efficient on-line path planner for outdoor mobile robots[J]. Robotics and Autonomous Systems.2000,32:129-143.
    [160]H. G. Tanner. Flocking with obstacle avoidance in switching networks of interconnected vehicles[A]. Proceeding of the IEEE International Conference on Robotics and Automation[C]. New Orleans, LA, USA.2004,3:3006-3011.
    [161]A. S. Matveev, H. Teimoori, A. V. Savkin. A method for guidance and control of an autonomous vehicle in problems of border patrolling and obstacle avoidance[J]. Automatica.2011,47:515-524.
    [162]D. R. Parhi, M. K. Singh. Real-time navigational control of mobile robots using an artificial neural network[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science.2009,223(7):1713-1725.
    [163]G. Zong, L. Deng, W. Wang. A method for robustness improvement of robot obstacle avoidance algorithm[A]. Proceedings of the IEEE International Conference on Robotics and Biomimetics[C].2006:115-119.
    [164]I. Mas, S. Li, J. Acain, C. Kitts. Entrapment/escorting and patrolling missions in multi-robot cluster space control [A]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems[C].2009:5855-5861.
    [165]仲朝亮,刘士荣.基于虚拟子目标的移动机器人主动寻径导航[J].机器人.2009,31(6):548-555.
    [166]J. Hong, K. Park. A new mobile robot navigation using a turning point searching algorithm with the consideration of obstacle avoidance [J]. International Journal of Advanced Manufacturing Technology.2011,52:763-775.
    [167]R.-J. Wai, C.-M. Liu, Y.-W. Lin. Design of switching path-planning control for obstacle avoidance of mobile robot[J]. Journal of the Franklin Institute.2011:1-20.
    [168]J. M. Toibero, F. Roberti, R. Carelli, P. Fiorini. Switching control approach for stable navigation of mobile robots in unknown environments [J]. Robotics and Computer-Integrated Manufacturing.2011,27:558-568.
    [169]V. H. L. Cheng, B. Sridhar. Integration of active and passive sensors for obstacle avoidance[J]. IEEE Control Systems Magazine.1990,10(4):43-50.
    [170]L. E. Parker. Adaptive heterogeneous multi-robot teams[J]. Neurocomputing.1999, 28(1-3):75-92.
    [171]D. J. Stilwell, J. S. Bay. Toward the development of a material transport system using swarms of ant-like robots [A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Atlanta, GA, USA.1993:766-771 vol.1.
    [172]G. A. S. Pereira, B. S. Pimentel, L. Chaimowicz, M. F. M. Campos. Coordination of multiple mobile robots in an object carrying task using implicit communication[A]. Proceeding of the IEEE International Conference on Robotics and Automation[C]. Washington, DC, USA.2002,1:281-286.
    [173]T. G. Sugar, V. Kumar. Control of cooperating mobile manipulators[J]. IEEE Transactions on Robotics and Automation.2002,18:94-103.
    [174]M. J. Mataric, M. Nilsson, K. T. Simsarian. Cooperative multi-robot box-pushing [A]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems[C]. Pittsburgh, PA, USA.1995,3:556-561.
    [175]丁滢颍,何衍,蒋静坪.基于蚁群算法的多机器人协作策略[J].机器人.2003,25(5):414-418.
    [176]C. R. Kube, H. Zhang. Use of perceptual cues in multi-robot box-pushing [A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Minneapolis, MN, USA.1996,3:2085-2090.
    [177]J. Ota, T. Arai. Transfer control of a large object by a group of mobile robots[J]. Robotics and Autonomous Systems.1999,28(4):271-280.
    [178]S. Yamada, J. y. Saito. Adaptive action selection without explicit communication for multirobot box-pushing [J]. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews.2001,31(3):398-404.
    [179]A. K. Das, et al. A vision-based formation control framework[J]. IEEE Transactions on Robotics and Automation.2002,18(5):813-825.
    [180]D. T. Pham, M. H. Awadalla. Neuro-fuzzy based adaptive co-operative mobile robots[A]. Proceedings of the IEEE 28th Annual Conference of the Industrial Electronics Society[C].2002,4:2962-2967.
    [181]T. Fang, L. E. Parker. ASyMTRe:automated synthesis of multi-robot task solutions through software reconfiguration[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C].2005:1501-1508.
    [182]D. Zhang, L. Wang, J. Yu. Coordinated control of two biomimetic robotic fish in pushing-object task[J]. IET Control Theory and Applications.2007,1:1200-1207.
    [183]Y. Wang, H. Lang, C. W. De Silva. Q-learning based multi-robot box-pushing with minimal switching of actions[A]. Proceedings of the IEEE International Conference on Automation and Logistics[C]. Qingdao, China.2008:640-643.
    [184]T. Otani, M. Koshino. Applying a path planner based on RRT to cooperative multirobot box-pushing[J]. Artificial Life and Robotics.2009,13:418-422.
    [185]M. A. Golkar, S. T. Namin, H. Aminaiee. Fuzzy controller for cooperative object pushing with variable line contact[A]. Proceedings of the IEEE International Conference on Mechatronics[C]. Malaga, Spain.2009.
    [186]J. R. Hoare, L. E. Parker. Using on-line conditional random fields to determine human intent for peer-to-peer human robot teaming[A]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems[C]. Taipei, Taiwan.2010: 4914-4921.
    [187]E. F. Parra-Gonzalez, J. G. Ramirez-Torres. Cooperative multi-robot box-pushing in a cluttered environment[A]. Proceedings of the 5th Meeting of the Electronics, Robotics and Automotive Mechanics Conference[C]. Cuernavaca, Morelos, Mexico.2008: 514-519.
    [188]C. Zielinski, P. Trojanek. Stigmergic cooperation of autonomous robots[J]. Mechanism and Machine Theory.2009,44(4):656-670.
    [189]J. A. Bagnell, et al. Learning for autonomous navigation[J]. IEEE Robotics and Automation Magazine.2010,17(2):74-84.
    [190]C. M. Shoemaker, J. A. Bomstein. Overview of the Demo III UGV program[A]. Proceedings of the SPIE[C]. Orlando, Florida, USA.1998,3366:202-211.
    [191]Special Issue:Special Issue on the DARPA Grand Challenge, Part 1. Journal of Field Robotics[EB/OL].2006. Available from:http://onlinelibrary.wiley.com/doi/10.1002/ rob.v23:8/issuetoc.
    [192]E. Krotkov, et al. The DARPA PerceptOR evaluation experiments[J]. Autonomous Robots.2007,22(1):19-35.
    [193]A. Stentz, J. Bares, T. Pilarski, D. Stager. The crusher system for autonomous navigation [A]. Proceedings of the Unmanned Systems North America Conference [C]. Washington, D.C., United states.2007,2:972-986.
    [194]S. Williams, A. M. Howard. Developing monocular visual pose estimation for arctic environments[J]. Journal of Field Robotics.2010,27(2):145-157.
    [195]Journal of Field Robotics[EB/OL]. Available from:http://onlinelibrary.wiley.com/ journal/10.1002/(ISSN) 1556-4967.
    [196]M. J. Procopio, J. Mulligan, G. Grudic. Learning terrain segmentation with classifier ensembles for autonomous robot navigation in unstructured environments [J]. Journal of Field Robotics.2009,26(2):145-175.
    [197]R. Lenain, B. Thuilot, C. Cariou, P. Martinet. Mixed kinematic and dynamic sideslip angle observer for accurate control of fast off-road mobile robots[J]. Journal of Field Robotics.2010,27(2):181-196.
    [198]A. Krebs, C. Pradalier, R. Siegwart. Adaptive rover behavior based on online empirical evaluation:Rover-terrain interaction and near-to-far learning [J]. Journal of Field Robotics.2010,27(2):158-180.
    [199]C. B. Low, D. Wang. Maneuverability and path following control of wheeled mobile robot in the presence of wheel skidding and slipping[J]. Journal of Field Robotics.2010, 27(2):127-144.
    [200]F. Yang, S.-R. Liu, F. Liu. Cooperative transport strategy for formation control of multiple mobile robots[J]. Journal of Zhejiang University-SCIENCE C (Computers & Electronics).2010,11(12):931-938.
    [201]B. P. Gerkey, M. J. Mataric. A formal analysis and taxonomy of task allocation in multi-robot systems [J]. The International Journal of Robotics Research.2004,23(9): 939-954.
    [202]S. Onn, K. Sarit. Methods for task allocation via agent coalition formation[J]. Artificial Intelligence.1998,101(1-2):165-200.
    [203]M. B. Dias, A. Stentz. Opportunistic optimization for market-based multirobot control [A]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and System[C]. Lausanne, Switzerland.2002,3:2714-2720.
    [204]张嵛,刘淑华.多机器人任务分配的研究与进展[J].智能系统学报.2008,3(02): 116-120.
    [205]F. Tang. ASyMTRe:Building coalitions for heterogeneous multi-robot teams[D]. Knoxville:The University of Tennessee,2007.
    [206]L. Chaimowicz, M. F. M. Campos, V. Kumar. Dynamic role assignment for cooperative robots[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Washington, DC, USA.2002,1:293-298.
    [207]E. Balas, M. W. Padberg. On the set-covering problem[J]. Operations Research.1972, 20(6):1152-1161.
    [208]O. Shehory, S. Kraus. Coalition formation among autonomous agents:Strategies and complexity, in Proceedings of the 5th European Workshop on Modelling Autonomous Agents in a Multi-Agent World,1993.1995, Springer-Verlag GmbH & Company KG: Neuchatel, Switzerland. p.57-72.
    [209]T. W. Sandholm, V. R. Lesser. Coalition formation among bounded rational agents[R]. University of Massachusetts.1995. UM-CS-1995-071.
    [210]S. Tuomas, et al. Coalition structure generation with worst case guarantees [J]. Artificial Intelligence.1999,111(1-2):209-238.
    [211]K. S. Larson, T. W. Sandholm. Anytime coalition structure generation:an average case study[J]. Journal of Experimental and Theoretical Artificial Intelligence.2000,12(1): 23-42.
    [212]胡山立,石纯一.给定限界要求的联盟结构生成[J].计算机学报.2001,24(11):1285-1290.
    [213]张新良,石纯一.多Agent联盟结构动态生成算法[J].软件学报.2007,18(3):574-581.
    [214]刘惊雷,张伟,王玲玲.联盟结构图的代数性质及应用[J].模式识别与人工智能.2009,22(6):841-847.
    [215]徐晋晖,石纯一.一种基于等价的联盟演化机制[J].计算机研究与发展.1999,36(5):513-517.
    [216]L. E. Parker, T. Fang. Building multirobot coalitions through automated task solution synthesis[J]. Proceedings of the IEEE.2006,94(7):1289-1305.
    [217]T. Fang, L. E. Parker. A complete methodology for generating multi-robot task solutions using ASyMTRe-D and market-based task allocation[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C].2007:3351-3358.
    [218]Y. Zhang, L. E. Parker. IQ-ASyMTRe:Synthesizing coalition formation and execution for tightly-coupled multirobot tasks[A]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems[C]. Taipei, Taiwan.2010:5595-5602.
    [219]L. Vig, J. Adams. Market-based multi-robot coalition formation, in Distributed Autonomous Robotic Systems 7, M. Gini and R. Voyles, Editors.2006, Springer Japan: Tokyo. p.227-236.
    [220]L. Vig, J. Adams. Coalition formation:from software agents to robots[J]. Journal of Intelligent and Robotic Systems.2007,50(1):85-118.
    [221]T. D. Huynh, N. R. Jennings, N. R. Shadbolt. Fire:an integrated trust and reputation model for open multi-agent systems[A]. Proceedings of the 16th European Conference on Artificial Intelligence (ECAI)[C].2004:18-22.
    [222]李勇.多Agent系统联盟及任务分配的研究[D].合肥:合肥工业大学,2008.
    [223]H. Hosam, Z. Khaldoun. Planning coalition formation under uncertainty:auction approach[A]. Proceedings of the 2nd Information and Communication Technologies [C]. 2006,2:3013-3017.
    [224]P. M. Shiroma, M. F. M. Campos. CoMutaR:A framework for multi-robot coordination and task allocation[A]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems[C]. St. Louis, MO, United states.2009:4817-4824.
    [225]D. J. Hooper, G. L. Peterson, B. J. Borghetti. Dynamic coalition formation under uncertainty [A]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems[C]. St. Louis, MO, United states.2009:4799-4804.
    [226]D. T. Nguyen, Y. Katsumata, M. Tokumitsu, Y. Ishida. Using the spatial dilemma strategies to model agents'commitments for a coalition formation[J]. Artificial Life and Robotics.2009,14:429-432.
    [227]X. Liang, Y. Xiao. Studying bio-Inspired coalition formation of robots for detecting intrusions using game theory [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics.2010,40(3):683-693.
    [228]T. C. Service, J. A. Adams. Coalition formation for task allocation:Theory and algorithms[J]. Autonomous Agents and Multi-Agent Systems.2011,22:225-248.
    [229]R. Glinton, P. Scerri, K. Sycara. Agent-based sensor coalition formation[A]. Proceedings of the 11th International Conference on Information Fusion[C].2008:1-7.
    [230]M. Ebden, M. Briers, S. Roberts. Decentralized predictive sensor allocation[A]. Proceedings of the IEEE Conference on Decision and Control[C]. Cancun, Mexico. 2008:1702-1707.
    [231]J. G. Manathara, P. B. Sujit, R. W. Beard. Multiple UAV Coalitions for a Search and Prosecute Mission[J]. Journal of Intelligent and Robotic Systems:Theory and Applications.2010,62:1-34.
    [232]Y. Zhang, S. Liu, S. Fu, D. Wu. A quantum-inspired ant colony optimization for robot coalition formation[A]. Proceedings of the Chinese Control and Decision Conference[C]. Guilin, China.2009:626-631.
    [233]崔逊学.多目标进化算法及其应用[M].北京:国防工业出版社,2006.
    [234]M. B. Dias, A. T. Stentz. A free market architecture for distributed control of a multirobot system[A]. Proceedings of the 6th International Conference on Intelligent Autonomous Systems (IAS-6)[C].2000:115-122.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.