CWRF在中国东部季风区的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模拟区域的选择是区域气候模拟研究中的首要问题,计算区域及侧边界处理的最优化(物理和数值上的)对区域气候模式的模拟性能有决定性的作用。物理上合理数值上连续的计算区域为尽可能准确的区域气候模拟奠定了基础,进而为发展合理的物理过程参数化方案提供了前提条件。因此,本文的核心内容为模拟区域的选择问题,分别从影响中国东部季风区降水的天气系统、与大尺度环流场的相关分析及侧边界场资料的代表性三个方面分析区域气候模式模拟区域东西南北四个边界的位置,确定中国东部季风区降水模拟的最佳计算区域,将美国伊利诺伊州立大学水文研究所梁信忠开发的CWRF(Climate extension of WRF—气候版WRF模式)应用于中国东部季风区,研究模拟区域及侧边界条件(驱动场、缓冲区位置、缓冲区处理方案)对中国东部季风区降水模拟的影响。在此基础上,对于选定的最佳模拟区域和侧边界条件,进行嵌套和水平分辨率影响试验,以研究CWRF对中国东部季风区降水模拟宜采用的方案。模式发展的最终目的是要进行相对准确的气候模拟,模拟区域确定以后,模式内部的物理过程至关重要,而对于不同的研究区域和不同的模式,各物理过程的表现并不相同,因此,对CWRF中的物理过程参数化方案进行敏感性试验,为发展适合模拟中国东部季风区降水的物理过程参数化方案提供参考。由于RegCM3为目前国内广为应用的区域气候模式,因此在相同水平和垂直分辨率下,将CWRF的模拟结果与其进行对比研究,结果表明,无论对月平均降水的空间分布型式还是区域平均降水的逐日变化,CWRF对中国东部季风区降水的模拟明显优于RegCM3,同时CWRF较成功地消除了RegCM3模拟时大量出现的数值点风暴(NPS)。
The domain of a regional climate model must be carefully selected for its specific application. RCMs are run over limited-area domains and are driven by time-dependent large-scale meteorological fields specified in a buffer area adjacent to the domain's lateral boundaries. Thus, a successful RCM downscaling from GCM predictions requires an accurate buffer zone treatment that integrates realistic energy and mass fluxes across the RCM lateral boundaries. The most importmant part of the thesis is the choice of model domain. Three factors are considered carefully to decide the best model domain for East China Monsoon Area application. The CWRF—Cliamte extension of WRF—developed by Xin-Zhong Liang is used in the thesis to study the effects of lateral bondary conditions (large scale driver field, buffer zone location, data assimilation technique) as well as model domain on the simulation of East China precipitation. On the basis of the decided model domain and lateral boundary conditions, the experiment of nesting and horizontal grid spacing are conducted to study the scheme of CWRF application in East China. The object of regional climate model is to conduct relative accurte climate simulation, so for the selected model domain, the model internal physical processes are important. While for specific area and regional climate model, the different physical processes have distinct performances. For this consideration, the sensivitiy experiments are conducted to investigate the performances of the physical processes coupled in CWRF. On account of RegCM3 is the most popular regional climate model in China, a comparison between CWRF and RegCM3 simulation results is conducted and the conclusion is that CWRF has apparent superiority than RegCM3.
引文
[1] Dickinson, R. E., R. M. Errico, F. Giorgi, and G T. Bates, A regional climate model for the western united states, Climate Change, 1989(15), 383~422.
    [2] Giorgi, F., M. R. Marinucci, and G. Visconti, Use of a limited-area model nested in a general circulation model for regional climate simulation over Europe, J. Geophys. Res., 1990(95), 18413-18431.
    [3] Giorgi, F., and G T. Bates, The climatological skill of regional model over complex terrain, Mon. Wea. Rev. 1989(117), 2325-2347.
    [4] Dickinson, R. E., P. J. Kennedy, A. Henerson-Sellers, and M. Wilson, Biosphere-Atmosphere Transfer Scheme (BATS) for NCAR Community Climate Model. Tech. Note, NCAR/TN-275, 1986,69pp.
    [5] Anthes, R. A., A cumulus parameterization scheme utilizing a one-dimensional cloud model, Mon. Wea. Rev., 1977(105), 270-286.
    [6] Anthes, R. A., and D. Keyser, Tests of a fine-mesh model over Europe and the United Stated, Mon. Wea. Rev, 1979(107), 963-984.
    [7] Giorgi, F., G. T. Bates, and M. R. Marinucci, Development of a second generation regional climate model (RegCM2). Part I: boundary layer and radiative transfer process, Mon. Wea. Rev., 1993a (121), 2794-2821.
    [8] Giorgi, F., M. R. Marinucci, and G T. Bates, Development of a second generation regional climate model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions, Mon. Wea. Rev, 1993b (121), 2814—2832.
    [9] Briegleb, B. P., Delta-Eddington approximation for solar radiation in the NCAR community climate model, J. Geophys. Res., 1992(97), 7603—7612.
    [10] Hack, J., B. Boville, B. Briegleb, et al., Description of the NCAR Community Climate Model (CCM2), NCAR Tech. Note, NCAR/TN-382+STR, National Center for Atmospheric Research, Boulder, Colo, 1993.
    [11] Dickinson, R. E., A. Henerson-Sellers, and P. J. Kennedy, Biosphere Atmosphere Transfer Scheme (BATS) Version le as Coupled to the NCAR Community Climate Model, NCAR Tech. Note, NCAR/TN-387+STR, 1993,72pp.
    [12] Holtslag, E I. F. de Bruijn, and H. L. Pan, A high resolution air mass transformation model for short-range weather forecasting, Mon. Wea. Rev., 1990(118), 1561 — 1575.
    [13] Grell, G, Prognostic evaluation of assumptions used by cumulus parameterizations, Mon. Wea. Rev., 1993(121), 764-787 .
    [14] Giorigi, R, and C. Shields, Tests of precipitation parameterization available in latest version of NCAR regional climate model (RegCM) over continental United States, J. Geophys. Res., 1999(104), 6353-6375.
    [15] Berts, A. A new convective adjustment scheme. Part I: Observational land theoretical basis, 1986(112), 667-691.
    [16] Betts, A. K., and Miller, A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, and arctic air-mass data sets, Q. J. Roy. Meteor. Soc, 1986(112), 693-709.
    [17] Emanuel, K. A., A scheme for representing cumulus convection in large-scale models, Q. J. Roy. Meteor. Soc, 1991(48), 2313-2335.
    [18] Giorgi, F., Francisco, R. and Pal, J., Effects of subgrid-scale topography and land use scheme on the simulation of surface climate and hydrology. Part I: Effects of temperature and water vapor disaggregation, J. Hydrometeoroi, 2003(4), 317—333.
    [19] Giorgi, F., Shields, C, Brodeur and Bates, G., Regional climate change scenarios over the United States produced with a nested regional climate model: spatial and seasonal characteristics, J. climate, 1994(7), 374—399..
    [20] Giorgi, F., Mearns, L., Shields, C. and McDaniel, L., Regional nested model simulations of present day and 2xco2 climate model (RegCM) over the continental U. S, J. Geophys. Res., 1998(104), 6353-6376.
    [21] Liang X.-Z., K. E. Kunkel, and A. N. Samel, Development of a regional climate model for U.S. Midwest application. Part I: Sensitivity to buffer zone treatment, J. Climate, 2001(14): 4363-4378.
    [22] Liang X.-Z., L. Li, K. E. Kunkel, M. Ting, and J.X.L. Wang, Regional climate simulation of U.S. precipitation during 1982-2002. Part I: Annual Cycle, J. Climate, 2004a(17), 3510— 3529.
    [23] Liang, X.-Z., J. Pan, K.E. Kunkel, J.X.L. Wang, E.C. Hunke, and W.H. Lipscomb, Coupling the CWRF with the CICE for Arctic climate applications. In Proceedings of 5~(th) WRF/14~(th) MM5 User's Workshop, Boulder, CO, June 2004b, 22-25, pp. 215-220.
    [24] Zhu J. H., X.-Z. Liang, Regional climate model simulation of U.S. soil temperature and moisture during 1982—2002, J. Geophys. Res., 2005(110), D24110, doi: 10.1029/2005 JD006472.
    [25] Gutowski, W. J., F. O. Otieno, A. W. Raymond, E. S. Takle, and Z. pan, Diagnosis and attribution of a seasonal precipitation deficit in a U.S. regional climate simulation, J. Hydrometeorol, 2004(5), 230—242.
    [26] Girogi, E, L. O. Mearns, C. Shields, and L. Mayer, A regional model study of the importance of local versus remote control of the 1988 drought and 1993 flood over the central United Stats, J. Climate, 1996(5), 1150-1162
    [27] Anderson, C. J., R. W. Arritt, E. S. Takle, et al. Hydrological processes in regional climate model simulations of the central United States flood of June-July 1993, J. Hydrometeor., 2003(4), 584-598.
    [28] Giorgi, R, Sensitivity of simulated wintertime precipitation and soil hydrology simulation over the western United States to lower boundary specifications, Atmos. Ocean, 1990b(28), 1-23.
    [29] Giorgi, R, Sensitivity of simulated summertime precipitation over the western United States to different physics parameterization, Mon. Wea. Rev., 1991(119), 2870—2888.
    [30] Giorgi, R, G T. Bates, and S. J. Nieman, The multi-year surface climatology of a regional atmospheric model over the western United States, J. Climate, 1993c(6), 75—95.
    [31] Anderson, B. T., and J. O. Roads, Regional simulation of summertime precipitation over the southwestern United States, J. Climate, 2002(15), 3321—3341.
    [32] Giorgi, R and Marinucci, M., Validation of a regional atmospheric model over Europe: Sensitivity of wintertime and summertime simulations to selected physics parameterizations and lower boundary conditions, Quart. J.Roy. Meteor. Soc, 1991(117), 1171 —1206.
    [33] Marinucci, m. and Girogi, R, A 2xco2 climate change scenario over Europe generated using a limited area model nested in a general circulation model, I: Present-day climate simulation, J. Geophys. Res., 1992(97), 9989-10009.
    [34] Christensen, J. H., B. Machenhauer, R. G Jones, C. Schar, R M. Ruti, M. Castro, and G Visconti, Validation of present day regional climate simulations over Europe: LAM simulations with observed boundary conditions, Clim. Dyn, 1997(13), 489—506.
    [35] Machenhauer, B., M. Wubdelband, Validataion and analysis of regional present-day climate and climate change simulations over Europe: Nested LAM and variable resolution global model simulations with observed or mixed layer ocean boundary conditions, MPI Report, Hamburg Germany, MPI, 1996, No.1991.
    [36] Machenhauer, B., M. Wubdelband, Validataion and analysis of regional present-day climate and climate change simulations over Europe, MPI Report, Hamburg Germany, MPI, 1998,No.275.
    [37] Noguer, M., R. G Jones, J. Murphy, Source of systematic errors in the climatology of a nested regional climate model (RCM) over Europe, Clim. Dyn., 1998(14), 691—712.
    [38] Pal, J. S., F. Giorgi, X. Bi, Consistency of recent European summer precipitation trends and extremes with future regional climate projections, Geophys. Res. Lett., 2004(31), L1 3202(1 — 4).
    [39] Rainsanen, J., U. Hansson, A. Ullerstig, et al., European climate in the late twenty-first century: regional simulations with two driving global models and two forcing scenarios, Clim. Dyn., 2004(22), 13-31.
    [40] Walsh, K., and j. L. McGregor, January and July climate simulations over the Australian region using a limited-area model, J. Climate, 1995(8), 2387~2402.
    [41] Sun. L., F. H. Semazzi, F. Giorgi, and L. Ogallo, Application of the NCAR regional climate model to eastern Africa ,11: Simulations of interannual variability of short rains, J. Geophys. Res., 1999(104), 6549-6562.
    [42] Small, E. E., F. Giorgi, and L. C. Sloan, Regional climate model simulation of precipitation in central Asia: Mean and interannual variability, J. Geophys. Res., 1999(104), 6563—6582.
    [43] Rinke, A., K. Dethloff, Sensitivity studies concerning initial and boundary conditions in a regional climate model of the Arcitic, Clim. Res., 1999(14), 101 — 113.
    [44] Wei Helin, W. J. Gutowski, C. J. Vorosmarty, and B. M. Fekete, Calibration and validation of a regional climate model for Pan-Arctic hydrologic simulations, J. Climate, 2002(15), 3222-3236.
    [45] Giorgi, F., Y. Huang, K. Nishizawa, and C. Fu, A seasonal cycle simulation over eastern Asia and its sensitivity to radiative transfer and surface processes, J. Geophys. Res., 1999(104), 6403-6424.
    [46] Christensen, O. B., J. H. Christensen, B. Machemhauer, and M. Botzet, Very high resolution regional climate simulations over Scandinavia-present climate, J. Climate, 1998(11), 3204— 3229.
    [47] Liang X. Z., J.P. Pan, J. H. Zhu, K. E. Kunkel, Regional climate model downscaling of the U.S. summer climate and future change, J. Geophys. Res., 2006, in publication.
    [48] Leung, L. R., Y. Qian, and X. Bian, Hydroclimate of the western United States based on observations and regional climate simulation of 1981-2000. Part I: seasonal statistics, J. Climate, 2003(16), 1892~1911.
    [49] Leung, L. R., Y. Qian, and X. Bian, Hydroclimate of the western United States based on observations and regional climate simulation of 1981-2000. Part II: mesoscale ENSO anomalies, J. Climate,2003(16), 1912—1928.
    [50] Lee, D. -K., and M. -S. Suh, Ten-year Asian summer monsoon simulations using a regional climate model (RegCM2), J. Geophys. Res., 2000(105), 29565—29577.
    [51] Pan Z., E. Takle, W. Gutowski, R. Turner, Long simulation of regional climate as a sequence of short segments, Mon. Wea. Rev., 1999(127), 308—321.
    [52] Giorgi, F., R. Francisco, Uncertainties in a regional climate change prediction: a regional analysis of ensemble simulations with the HADCM2 coupled AOGCM, Clim. Dyn., 2000(16), 169-182.
    [53] Giorgi, R, Bi, X. and Qian, Y, Direct radiative forcing and regional climatic effects of anthropogenic aerosols over East Asia: A regional coupled climate-chemistry/aerosols model study, J. Geophys. Res., 2002, 107 (D20), 4439, doi: 10.1029/2001JD001066.
    [54] Pan, Z., J. H. Christensen, R. W. Arritt, W. J. Gutowski, E. S. Takle, R Otieno, Evaluation of uncertainties in regional climate change simulations, J. Geophys. Res., 2001(106), 17735— 17751.
    [55] Christensen, O. B., M. A. Gaertner, J. A. Prego, J. Polcher, Internal variability of regional climate models, Clim. Dyn., 2001(17), 875—887.
    [56] Giorgi, R, Bi, X., A study of internal variability of a regional climate model, J. Geophys. Res., 2000(105), 29503-29512.
    [57] Takle, E. S., Gutowski, W.J., R. W. Arritt, et al., Project to Intercompare Regional Climate Simulations (PIRCS): Description and initial results, J. Geophys. Res., 1999(104), 19443~19462.
    [58] 钱永甫、颜宏、骆启仁等,一个有大地形影响的初始方程数值模式,大气科学,1978(2),91~192.
    [59] Kuo, H. L., Qian Yongfu, Influence of the Tibetan Plateau on cumulative and diumal changes of weather and climate in summer, Mon. Wea. Rev., 1981(109),2337~2356.
    [60] Kuo, H. L., Qian Yongfu, Numerical simulation of the development of mean monsoon circulation in July, Mon. Wea. Rev., 1982(110), 1879~1897.
    [61] 王谦谦、钱永甫,青藏高原大地形对夏季东亚大气环流的影响,高原气象,1984(3),13~26.
    [62] 钱云、钱永甫,区域气候模式中云量参数化方案的研究,热带气象学报,1994(4),342~348.
    [63] Liu Y. Q., F. Giorgi, W. Washington, Simulation of summer monsoon climate over East Asia with an NCAR regional climate model, Mon. Wea. Rev., 1994(102), 2331~2348.
    [64] 张耀存、钱永甫,一个包含土壤和植被的区域气候模式及其性能检验,大气科学,1995(3),329~338.
    [65] 张耀存,地气耦合系统中下垫面气候效应的数值模拟,南京大学学报(自然科学版),1995(4),657~665.
    [66] 张耀存、钱永甫,土壤类型变化对区域气候影响的数值试验,南京气象学院学报,1995(4),465~470.
    [67] 陈玉春、吕世华,一有限区域模式对1979年7月气候平均场的模拟,高原气象,1996(1),105~111.
    [68] Liu Y. Q., R. Avissar, F. Giorgi, Simulation with the regional climate model RegCM2 of extremely anomalous precipitation during the 1991 east Asian flood: An evaluation study, J. Geophys. Res., 1996(101), 26199~26215.
    [69] 万齐林、施永年,CSU—RAMS模式在区域气侯模拟中的应用,热带气象学报,1996(2),152~159.
    [70] 万齐林、粱建茵、施永年,月尺度区域气候数值预测试验,热带气象学报,1996(4),349~355.
    [71] 龚威、李维亮、周秀骥,用改进的NCAR区域气候模式模拟中国夏季降水[C]//曹鸿兴,中国短期气候变化及成因研究,北京:气象出版社,1996:110~116.
    [72] 龚威、李维亮,中国区域气候模式的建立和模拟试验结果分析[A],见:气候变化规律及其数值模拟研究论文第二集[C],北京:气象出版社,1996,273~288.
    [73] 郑维忠等,中尺度大气模式用于我国东部区域气候模式的长期积分试验,全球变化与我国未来的生存环境,符漴斌,严中伟主编,气象出版社,1996,242~247.
    [74] 钱云、钱永甫、张耀存,模拟区域气候变化的模式系统的建立及其效能检验,南京大学学报(自然科学版),1997(3),426~435.
    [75] 魏和林,区域气候模式及其对东亚气候模拟的研究,博士论文,中国科学院大气物理研究所,1997.
    [76] 龚威、李维亮,中国区域气候模式对1991年江淮流域特大暴雨过程的模拟,应用气象学报,1997(3),325~334.
    [77] 赵宗慈、罗勇、R.Leung,S.Ghan,W.C.Wang,H.Wei,东亚夏季风的模拟研究—3个区域气候模式的对比,应用气象学报,1997(s1),116~123.
    [78] 罗勇、赵宗慈,NCAR RegCM2对东亚区域气候的模拟试验,应用气象学报,1997(s1),124~133.
    [79] 钱云、钱永甫、张耀存,末次冰期东亚区域气候变化的情景和机制研究,大气科学,1998(3),283~293.
    [80] 张敏锋、刘晓东、焦彦军,利用有限区域模式对1979年1月东亚平均环流和寒潮过程的初步模拟试验,大气科学,1998(3),294~304.
    [81] 周秀骥、李维亮、罗云峰,中国地区大气气溶胶辐射强迫及区域气候效应的数值模拟,大气科学,1998(4),418~427.
    [82] 符淙斌、魏和林、陈明、苏炳凯、赵鸣、郑维忠,区域气候模式对中国东部季风雨带演变的模拟,大气科学,1998(4),522~534.
    [83] 魏和林、符淙斌、王维强,区域气候模式侧边界的处理对东亚夏季风降水模拟的影响,大气科学,1998(5),779~790.
    [84] 丁一汇、张晶、赵宗慈,一个改进的陆面过程模式及其模拟试验研究第二部分:陆面过程模式与区域气候模式的耦合模拟试验,气象学报,1998(4),385~400.
    [85] 赵宗慈、罗勇,区域气候模式在东亚地区的应用研究—垂直分辨率与侧边界对夏季季风降水影响研究,大气科学,1999(5),522~532.
    [86] 刘黎平、钱永甫、吴爱明,初始条件和边界条件对区域模式模拟青藏高原区域气候的影响,高原气象,1999(1),22~27.
    [87] 王世玉、张耀存,不同区域气候模式对中国东部区域气候模拟的比较,高原气象,1999(1),28~38.
    [88] 吕世华、陈玉春,西北植被覆盖对我国区域气候变化影响的数值模拟,高原气象,1999(3),416~424.
    [89] 吕世华、陈玉春,区域气候模式对华北夏季降水的气候模拟,高原气象,1999(4),632~640.
    [90] 范广洲、吕世华,高分辨嵌套区域气候模式对我国中、东部地区夏季气候的数值模拟,高原气象,1999(4),641~648.
    [91] 刘华强、钱永甫,P-σ坐标系区域气候模式对冬夏季月平均场的模拟试验,南京大学学报(自然科学版),1999(3),337~345.
    [92] 郑益群、苗曼倩、钱永甫,湍流动能闭合对区域气候模拟效果影响的机理研究,南京大学学报(自然科学版),1999(6),724~735.
    [93] 郑益群、苗曼倩、钱永甫,湍流动能闭合方法在区域气候模式中的应用,气象学报,1999(6),641~650.
    [94] 罗群英、林而达,区域气候变化情景下气候变率对我国水稻产量影响的模拟研究,生态学报,1999(4),557~559.
    [95] 陈明、符淙斌,区域和全球模式的嵌套技术及其长期积分试验,大气科学,2000(2),253~262.
    [96] 刘黎平、钱永甫、吴爱明,区域模式和GCM对青藏高原和西北地区气候模拟结果的对比分析,高原气象,2000(3),313~322.
    [97] 吕世华、陈玉春、朱伯承,南海海域海-气耦合模式及其数值模拟试验,高原气象,2000(4),415~426.
    [98] 刘华强、钱永甫,包络地形和重力波拖曳对区域气候模拟效果的影响,大气科学,2001(2),209~220.
    [99] 汤剑平、苏炳凯、江静、赵鸣、潘益农、符淙斌,一个引入近地层的区域气候模式,大气科学,2001(2),221~230.
    [100] 钱永甫、刘华强,论区域气候模式与全球模式嵌套时边界区的选择,大气科学,2001(4),492~502.
    [101] 王世玉、钱永甫,P-σ坐标区域气候模式的垂直分辨率对模拟结果的影响,高原气象,2001(1),28~35.
    [102] 刘华强、钱永甫,p-σ RCM模式对中国区域气候季节变化的模拟,南京气象学院学报,2001(2),165~170.
    [103] 刘一鸣、丁一汇,修正的质量通量积云对流方案及其模拟试验研究Ⅰ:方案介绍及对1991年洪涝过程的模拟,气象学报,2001(1),10~22.
    [104] 刘一鸣、丁一汇,修正的质量通量积云对流方案及其模拟试验研究Ⅱ:三种积云方案的积云对流活动及MFS方案相关参数的敏感性试验,气象学报,2001(2),129~142.
    [105] 史学丽、丁一汇、刘一鸣,区域气候模式对中国东部夏季气候的模拟试验,气候与环境研究,2001(2),10~22.
    [106] 曾新民、赵鸣、苏炳凯,“结合法”表示的下垫面温湿非均匀对夏季风气候影响的数值试验,大气科学,2002(1),41~56.
    [107] 潘劲松、翟国庆、高坤,区域气候模拟中多种对流参数化方案的比较研究,大气科学,2002(2),206~220.
    [108] 王喜红、石广玉、马晓燕,东亚地区对流层人为硫酸盐辐射强迫及其温度响应,大气科学,2002(6),751~760.
    [109] 王喜红、石广玉,东亚地区云和地表反照率对硫酸盐直接辐射强迫的影响,气象学报,2002(6),758~765.
    [110] 郑益群、钱永甫、桂祈军、于革,初、边值条件对区域气候模拟的影响,大气科学,2002(6),794~806.
    [111] 刘华强、钱永甫、郑益群,P-σ坐标系区域气候模式与GCM的嵌套试验,高原气象,2002(2),113~118.
    [112] 刘华强,钱永甫,郑益群,嵌套域大小对区域气候模式模拟效果的影响(英文),大气科学进展(英文版),2002(1),111~120.
    [113] 吴涧、蒋维楣、刘红年、汤剑平,区域气候模式和大气化学模式对中国地区气候变化和对流层臭氧分布的模拟,南京大学学报(自然科学版),2002(4),572~582.
    [114] 郑益群、钱永甫、苗曼倩、于革、孔玉寿、章东华,植被变化对中国区域气候的影响Ⅰ:初步模拟结果,气象学报,2002(1),1~16.
    [115] 郑益群、钱永甫、苗曼倩、于革、孔玉寿、章东华,植被变化对中国区域气候的影响Ⅱ:机理分析,气象学报,2002(1),17~30.
    [116] 王守荣、黄荣辉、丁一汇、L.R.Leung、M.S.Wigmosta、L.W.Vail,水文模式DHSVM与区域气候模式RegCM2/China嵌套模拟试验,气象学报,2002(4),421~427.
    [117] 罗勇、赵宗慈、丁一汇,NCAR RegCM2对1991年夏季江淮流域异常降水事件中关键物理过程的模拟能力检验(英文),大气科学进展(英文版),2002(2),236~254.
    [118] 高学杰、赵宗慈、Filippo Giorgi,东亚区域极端气候事件变化的数值模拟试验(英文),大气科学进展(英文版),2002(5),927~942.
    [119] Liang X. Z., W. Gao, K. Kunkel, J. Slusser, X. L. Pan, H. Liu, Y. J. Ma, Sustainability of vegetation over northeast China Part Ⅰ: climate response to grasssland, Proceedings of SPIE-The International Society for Optical Engineering, 2003(4890), 29~44.
    [120] 翟国庆、高坤、潘劲松,区域气候模拟中Betts-Miller对流参数化方案的敏感性试验,大气科学,2003(3),330~344.
    [121] 王世玉、钱永甫,P-σ九层区域气候模式对东亚区域气候季节与年际变化的模拟,大气科学,2003(5),798~810.
    [122] 吴涧、蒋维楣、刘红年、汤剑平、王卫国,我国对流层臭氧增加对气温的影响,高原气象,2003(2),132~142.
    [123] 王兰宁、郑庆林、宋青丽,青藏高原中西部下垫面对东亚大气环流季节转换影响的数值模拟,高原气象,2003(2),179~184.
    [124] 曾新民、赵鸣、苏炳凯、汤剑平、郑益群、桂祁军、周祖刚,一个耦合水文模型的区域气候模式的模拟研究(英文),南京大学学报(自然科学版),2003(1),91~96.
    [125] 高学杰、赵宗慈、丁一汇、黄荣辉、Filippo Giorgi,温室效应引起的中国区域气候变化的数值模拟Ⅰ:模式对中国气候模拟能力的检验,气象学报,2003(1),20~28.
    [126] 高学杰、赵宗慈、丁一汇、黄荣辉、Filippo Giorgi,温室效应引起的中国区域气候变化的数值模拟Ⅱ:中国区域气候的可能变化,气象学报,2003(1),29~38.
    [127] 高学杰、林一骅、赵宗慈,用区域气候模式模拟人为硫酸盐气溶胶在气候变化中的作用,热带气象学报,2003(2),169~176.
    [128] 高学杰、罗勇、林万涛;、赵宗慈、Filippo GIORGI,土地利用变化对我国区域气候影响的数值试验(英),大气科学进展,2003(4),583~592.
    [129] 郑益群、于革、王苏民、薛滨,140年来植被和大气CO_2浓度变化对东亚气候影响的数值模拟,自然科学进展,2003(9),951~956.
    [130] 汤剑平、苏炳凯、赵鸣,MM5v3多种物理过程不同参数化方案的组合试验—对东亚区域 气候模拟,南京大学学报(自然科学版),2003(6),754~769.
    [131] 宋帅、符淙斌、周林、王汉杰,REGCM2和SUCROS模式的双向耦合模拟试验,气象学报,2003(6),702~711.
    [132] 钟中、苏炳凯、赵鸣、汤剑平,区域气候模式中侧边界地形缓冲区作用的数值试验,高原气象,2004(1),48~54.
    [133] 郑益群、于革、王苏民,地球轨道偏心率变化对东亚季风气候模拟的影响,大气科学,2004(1),48~58.
    [134] 李巧萍、丁一汇.区域气候模式对东亚季风和中国降水的多年模拟与性能检验,气象学报,2004(2),140~153.
    [135] 黄丽萍、颜宏、赵俊英,区域气候模拟中侧边界嵌套误差的研究,应用气象学报,2004(2),152~161.
    [136] 许吟隆、Richard Jones,利用ECMWF再分析数据验证PRECIS对中国区域气候的模拟能力,中国农业气象,2004(1),5~9.
    [137] 刘红年、蒋维楣,沙尘表面非均相化学过程的气候效应的初步模拟研究,地球物理学报,2004(3),417~422.
    [138] 黄安宁、张耀存,海温季节和年际变化对东亚区域气候变率模拟的影响,南京大学学报(自然科学版),2004(3),319~329.
    [139] 熊喆,区域气候模式RIEMS对东亚气候的模拟,气候与环境研究,2004(2),295~302.
    [140] 熊喆,区域气候模式对东亚气候时空演变特征的模拟研究,气候与环境研究,2004(2),295~302.
    [141] 张耀存,我国北方地区植被类型变化气候效应的虚拟数值试验,南京大学学报(自然科学版),2004(6),684~691.
    [142] 王体健、谢曼、高丽洁、杨浩明,一个区域气候-化学耦合模式的研制及初步应用,南京大学学报(自然科学版),2004(6),711~727.
    [143] 汤剑平、苏炳凯、赵鸣、赵得明,东亚区域气候变化的长期数值模拟试验,气象学报,2004(6),752~763.
    [144] 钟科、王汉杰,区域气候模拟研究中的物理集合技术,气象学报,2004(6),776~781.
    [145] 汤剑平、赵鸣、苏炳凯、赵得明,MM5BATS对东亚夏季气候及其变化的模拟试验,高原气象,2005(1),136~142.
    [146] 张英娟、高会旺、Gerhard LAMMEL,区域气候模式REMO对东亚季风季节变化的模拟研 究,气候与环境研究,2005(1),41~55.
    [147] 李巧萍、丁一汇,区域气候模式对东亚冬季风多年平均特征的模拟,应用气象学报,2005(s1),30~40.
    [148] 刘一鸣、丁一汇、李清泉,区域气候模式对中国夏季降水的10年回报试验及其评估分析,应用气象学报,2005(s1),41~47.
    [149] 朱新胜、张耀存,次网格地形坡度坡向参数化及其对区域气候模拟的影响,高原气象,2005(2),136~142.
    [150] 刘华强、孙照渤、王举、闵锦忠,青藏高原东西部积雪效应的模拟对比分析,高原气象,2005(3),357~365.
    [151] 熊伟、许吟隆、林而达、田展,区域气候模式与作物模型联接的影响评估模拟实验及不确定性分析,生态学杂志,2005(7),741~746.
    [152] 吴涧、罗燕、王卫国,东亚地区人为硫酸盐气溶胶辐射气候效应不同模拟方法的对比,云南大学学报(自然科学版),2005(4),323~331.
    [153] 刘晓东、江志红、罗树如、张雪梅、李爱华、程智,RegCM3模式对中国东部夏季降水的模拟试验,南京气象学院学报,2005(3),351~359.
    [154] 王卫国、吴涧、刘红年、郭世昌、陈新梅、罗燕,中国及邻近地区污染排放对对流层臭氧变化与辐射影响的研究,大气科学,2005(5),734~746.
    [155] Liang X.-Z., K. E. Kunkel, R. Wilhelmson, J. Dudhia, and J.X.L. Wang, The WRF simulation of the 1993 central U.S. heavy rain: Sensitivity to cloud microphysics representation, In Proceedings of the 82nd AMS Annual Meeting: 16th Conference on Hydrology, Orlando, FL, January 2002 13-17, pp. 123~126.
    [156] Giorgi, F., M. R. Marinucci, An investigation of the sensitivity of simulated precipitation to model resolution and its implications for climate studies, Mon. Wea. Rev., 1996(124), 148~166.
    [157] 钱永甫、王谦谦、刘华强、郑维忠,中国区域气候变化的模拟和问题,高原气象,1999(3),341~349.
    [158] Dudhia, J., D. Gill, Y.-R. Guo, K. Manning, W. Wang, and J. Chriszar, PSU/NCAR Mesoscale Modeling System Tutorial Class Notes and User's Guide: MM5 Modeling System Version 3, 2000. (http://www.mmm.ucar.edu/mmS/doc.html).
    [159] Liang, X.-Z., H. Choi, K.E. Kunkel, Y. Dai, E. Joseph, J.X.L. Wang, and P. Kumar, Surface boundary conditions for mesoscale regional climate models, Earth Interactions, 2005a(9), 1-28.
    [160] Liang, X.-Z., M. Xu, J. Zhu, K.E. Kunkel, and J.X.L. Wang, Development of the regional climate-weather research and forecasting model (CWRF): Treatment of topography. In Proceedings of the 2005 WRF/MM5 User's Workshop, Boulder, CO, June 2005b, 27-30, 5 pp.
    [161] Liang, X.-Z., M. Xu, W. Gao, K.E. Kunkel, J. Slusser, Y. Dai, Q. Min, P.R. Houser, M. Rodell, C.B. Schaaf, and F. Gao, Development of land surface albedo parameterization bases on Moderate Resolution Imaging Spectroradiometer (MODIS) data. J. Geophys. Res., 2005c(110), D11107, doi:10.1029/2004JD005579.
    [162] Skamarock, W. C, J. B. Klemp., J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, J. G Powers, A Description of the Advanced Research WRF Version 2 , NCAR Tech. Note NCAR/TN-486+STR, 2005.
    [163] Ooyama, K. V., A thermodynamic foundation for modeling the moist atmosphere, J. Atmos. Sci., 1990(47), 2580-2593.
    [164] Laprise, R., The Euler Equation of motion with hydrostatic pressure as independent variable, Mon. Wea. Rev., 1992(120), 197-207.
    [165] Haltiner, G. J., and R. T. Williams, Numerical prediction and dynamic meteorology, John Wiley & Sons, Inc., 1980,477pp.
    [166] Kessler, E., On the distribution and continuity of water substance in atmospheric circulation, Meteor. Monogr., 1969(32), Amer. Meteor. Soc, 84pp.
    [167] Wicker, L. J., and R. B. Wilhelmson, Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm, J. Atmos. Sci., 1995(52),2675— 2703.
    [168] Lin, Y.-L., R. D. Farley, and H. D. Orville, Bulk parameterization of the snow field in a cloud model, J. Climate, 1983(22),1065~1092.
    [169] Rutledge, S. A., and P. V. Hobbs, The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cloud-frontal rainbands, J. Atmos. Sci., 1984(20), 2949-2972.
    [170] Tao, W.-K., J. Simpson, and M. McCumber, An ice-water saturation adjustment, Mon. Wea. Rev., 1989(117), 231-235.
    [171] Chen, S.-H., and W.-Y. Sun, A one-dimensional time dependent cloud model, J. Meteor. Soc Japan, 2002(80), 99—118.
    [172] Hong, S.-Y., H.-M. H. Juang, and Q. Zhao, Implementation of prognostic cloud scheme for a regional spectral model, Mon. Wea. Rev., 1998(126), 2621—2639.
    [173] Hong, S.-Y., J. Dudhia, and S.-H. Chen, A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation, Mon. Wea. Rev., 2004(132), 103-120.
    [174] Dudhia, J., Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 1989(46), 3077—3107.
    [175] Ryan, B. F., On the global variation of precipitating layer clouds, Bull. Amer. Meteor. Soc, 1996(77), 53-70.
    [176] Reisner, J. R., R. M. Rasmussen, and R. T. Bruintjes, Explicit forecasting of supercooled liquid water in in winter storms using the MM5 mesoscale model, Quart. J. Roy. Meteor. Soc, 1998(124), 1071 — 1107.
    [177] Thompson, G., R. M. Rasmussen, and K. Manning, Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis, Mon. Wea. Rev., 2004(132), 519—542.
    [178] Cooper, W. A., Ice initiation in natural clouds. Precipitation Enhancement — A Scientific Challenge, Meteor. Monogr., 7986,No. 43, Amer. Met. Soc, 29—32.
    [179] Fletcher, N. H., The Physics of Rain Clouds. Cambridge University Press, 1962,386 pp.
    [180] Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, Newe RAMS cloud microphysics parameterization. Part I: The single-moment scheme, Atmos. Res., 1995(38), 29—62.
    [181] Kain, J. S., and J. M. Fritsch, A one-dimensional entraining/ detraining plume model and its application in convective parameterization, J. Atmos. Sci., 1990(47), 2784—2802.
    [182] Kain, J. S., and J. M. Fritsch, Convective parameterization for mesoscale models: The Kain-Fritcsh scheme, The representation of cumulus convection in numerical models, K. A. Emanuel and D.J. Raymond, Eds., Amer. Meteor. Soc, 1993,246 pp.
    [183] Janjic, Z. I., The step-mountain eta coordinate model: further developments of the convection, viscous sublayer and turbulence closure schemes, Mon. Wea. Rev., 1994(122), 927—945.
    [184] Janjic, Z. I., Comments on "Development and Evaluation of a Convection Scheme for Use in Climate Models", J. Atmos. Sci., 2000(57), p. 3686.
    [185] Grell, G. A., and D. Devenyi, A generalized approach to parameterizing convection combining ensemble and data assimilation techniques, Geophys. Res. Lett., 2002(14), Article 1693.
    [186] Paulson, C. A., The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer, J. Appl. Meteor., 1970(9), 857—861.
    [187] Dyer, A. J., and B. B. Hicks, Flux-gradient relationships in the constant flux layer, Quart. J. Roy. Meteor. Soc., 1970(96), 715-721.
    [188] Webb, E. K., Profile relationships: The log-linear range, and extension to strong stability, Quart. J. Roy. Meteor. Soc, 1970(96), 67~90.
    [189] Beljaars, A.C.M., The parameterization of surface fluxes in large-scale models under free convection, Quart. J. Roy. Meteor. Soc, 1994(121), 255—270.
    [190] Zhang, D.-L., and R.A. Anthes, A high-resolution model of the planetary boundary layer-sensitivity tests and comparisons with SESAME-79 data, J. Appl. Meteor., 1982(21), 1594-1609.
    [191] Janjic, Z. I., The surface layer in the NCEP Eta Model, Eleventh Conference on Numerical Weather Prediction, Norfolk, VA, 19-23 August;Amer. Meteor. Soc, Boston, MA, 1996, 354-355.
    [192] Janjic, Z. I., Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model, NCEP Office Note, 2002, No. 437,61 pp.
    [193] Monin, A.S. and A.M. Obukhov, Basic laws of turbulent mixing in the surface layer of the atmosphere, Contrib. Geophys. Inst. Acad. Sci., USSR, 1954 (151), 163-187 (in Russian).
    [194] Zilitinkevich, S. S., Non-local turbulent transport: pollution dispersion aspects of coherent structure of convective flows, Air Pollution III — Volume I. Air Pollution Theory and Simulation, Eds. H. Power, N. Moussiopoulos and C.A. Brebbia. Computational Mechanics Publications, Southampton Boston, 1995, 53—60.
    [195] Chen, F., and J. Dudhia, Coupling an advanced land-surface/ hydrology model with the Perm State/ NCAR MM5 modeling system. Part I: Model description and implementation, Mon. Wea. Rev., 2001(129), 569—585.
    [196] Smirnova, T. G., J. M. Brown, and S. G. Benjamin, Performance of different soil model configurations in simulating ground surface temperature and surface fluxes, Mon. Wea. Rev., 1997(125), 1870-1884.
    [197] Smirnova, T. G., J. M. Brown, S. G. Benjamin, and D. Kim, Parameterization of coldseason processes in the MAPS land-surface scheme, J. Geophys. Res., 2000(105 (D3)), 4077—4086.
    [198] Keith W. Oleson, Y.J. Dai, et al., Technical description of the community land model (CLM), NCAR Techn Note 461+STR, 2004.
    [199] Dai Yongjiu, Zeng Qingcun, A land-surface model (IAP94) for climate studies, Part I: Formation and validation in off-line experiments, Adv. Atmos. Sci., 1998(4), 433—460.
    [200] Xubin Zeng, Muhammad Shaikh, Yongjiu Dai, et al., Coupling of the common land model to the NCAR community climate model, J. Climate, 2002(15), 1832—1854.
    [201] Running S. W., Loveland T. R., Peerce L. L., A vegetation classification logic based on remote sensing for using in global scale biogeochemical models, Ambio, 1994(23), 77—81.
    [202] Janjic, Z. I., The step-mountain coordinate: physical package, Mon. Wea. Rev., 1990(118), 1429-1443.
    [203] Mellor, G. L., and T. Yamada, Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys. Space Phys., 1982(20), 851—875.
    [204] Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 1997(102 (D14)), 16663-16682.
    [205] Schwarzkopf, M. D., and S. B. Fels, Improvements to the algorithm for computing CO2 transmissivities and cooling rates, J. Geophys. Res., 1985(90 (ND6)), 541—550.
    [206] Schwarzkopf, M. D., and S. B. Fels, The simplified exchange method revisited — An accurate, rapid method for computation of infrared cooling rates and fluxes, J. Geophys. Res., 1991(96 (D5)), 9075-9096.
    [207] Roberts, R. E., J. E. A. Selby, and L. M. Biberman, Infrared continuum absorption by atmospheric water-vapor in 8-12 urn window, Applied Optics, 1976(15 (9)), 2085—2090.
    [208] Rodgers, C. D., Some extensions and applications of the new random model for molecular band transmission, Quart. J. Roy. Meteor. Soc., 1968(94), 99—102.
    [209] Lacis, A. A., and J. E. Hansen, A parameterization for the absorption of solar radiation in the earth's atmosphere, J. Atmos. Sci., 1974(31), 118~133.
    [210] Sasamori, T., J. London, and D. V. Hoyt, Radiation budget of the Southern Hemisphere, Meteor. Monogr., 1972(35), 9~23.
    [211] Stephens, G. L., Radiation profiles in extended water clouds. Part Ⅱ: Parameterization schemes, J. Atmos. Sci., 1975(35), 2123~2132.
    [212] 钱永甫、刘华强,论区域气候模式与全球模式嵌套时边界区的选择,大气科学,2001(25),492~502.
    [213] 刘宣飞、朱乾根,中国东部夏季降水的主相关型及其环流特征,南京气象学院学报,1999,11(2),283~245.
    [214] 张庆云、陶诗言,亚洲中高纬度环流对东亚夏季降水的影响,气象学报,1998,56(2),199~211.
    [215] 黄荣辉,引起我国夏季旱涝德东亚大气环流异常遥相关及其物理机制的研究,大气科学,1990,14(1),108~117.
    [216] 陶诗言,论梅雨的年际变异,大气科学,1988,12(特刊):13~21.
    [217] 陶诗言、张小玲、张顺利等,长江流域梅雨锋暴雨灾害研究,气象出版社,2004.
    [218] 廖荃荪、赵振国,7~8月西太平洋副热带高压的南北位置异常变化及其对我国天气的影响,气象出版社(章基嘉,黄荣辉主编),1992,131~139.
    [219] 庄世宇,1998年夏季西太平洋副热带高压活动的异常特征及机理,1998年夏季中国暴雨的形成机理与预报研究(陶诗言等主编),气象出版社,2001,19~31.
    [220] 黄荣辉,长江黄河流域早涝规律和成因研究,济南:山东科学技术出版社,1996,1~387.
    [221] 赵汉光等,盛夏副高脊线位置的变化规律及其成因分析,气象,1992(18),3~18.
    [222] 陈其恭、陆菊中、徐桂玉、毛凤英,用500毫巴环流特征预报长江中下游6月份的旱涝,1978,副热带高压的长期变化及其与长江下游汛期早涝关系得初步研究,北京:科学出版社,1978,77~84.
    [223] Rodwell M. J., Hoskins B.J., Subtropical anticyclones and monsoons, J. Climate, 2001(14), 3192~3211.
    [224] Murakami T., Masumato J., Summer monsoon over the Asian continent and Western North Pacific., J. Meteor. Soc., Japan, 1999(72), 719~745.
    [225] 刘长征、王会军、姜大膀,东亚季风区夏季风强度和降水的配置关系,大气科学,2004(5),700~712.
    [226] 钱永甫、张琼、张学洪,南亚高压与我国盛夏气候异常,南京大学学报(自然科学),2002(3),295~307.
    [227] 王梓坤,概率论基础及应用,北京:科学出版社,1976,148~150.
    [228] 符淙斌、王淑瑜、熊喆、冯锦明,亚洲区域气候模式比较计划的进展,气候与环境研究,2004(2).225~239
    [229] Trenberth, K. E., J. C. Berry, and L. E. Buja, Vertical interpolation and truncation of model-coordinate data, NCAR Tech. Note NCAR/TN-396+STR, 1993, 54pp.
    [230] Higgin, R. W., K. C. Mo., and S. D. Schubert, The moisture budget of the central United States in spring as evaluated in the NCEP/NCAR and the NASA/DAO reanalysis, Mon. Wea. Rev., 1996(124), 939~963.
    [231] Mo, K. C., and R. W. Higgins, Large-scale atmospheric moisture transport as evaluated in the NCEP/NCAR and the NASA/DAO reanalysis, J. Climate, 1996(9), 1531~1545.
    [232] Boyle, J. S., Comparison of atmospheric water vapor in observational and model datasets. PCMDI Rep. 54, UCRL-ID-138187, Lawrence Livermore National Laboratory, University of Califomia, 2000, 10pp.
    [233] 曾庆存、李荣风,不等距差分格式的计算紊乱问题,大气科学,1982(4),345~354.
    [234] 廖洞贤、陆维松,有限区域预报中的一些问题,气象学报,1982(4),387~397.
    [235] 颜宏,复杂地形条件下嵌套细网格模式的设计(一)数值模式的基本原理,高原气象,1987(2),1~62.
    [236] 颜宏,复杂地形条件下嵌套细网格模式的设计(二)数值模式中次网格物理过程参数化,高原气象,1987(2),63~138.
    [237] Davies,H.C., and R.E. Turner, Updating prediction models by dynamical relaxation: An examination of the technique. Quart. J. Roy. Meteor Soc., 1977(103), 225~245.
    [238] 冯锦明,不同区域气候模式对亚洲地区十年积分的比较研究:博士学位论文,北京:中国科学院大气物理研究所,2005.
    [239] 陶诗言、张庆云、张顺利,1998长江流域洪涝灾害的气候背景河大尺度环流条件,气候与环境研究,1998(3),290~299.
    [240] 黄荣辉、徐予红、王鹏飞等,1998年夏长江流域特大洪涝特征及其成因探讨,气候与 环境研究,1998(3),300~313.
    [241] 李维京,1998年大气环流异常及其对中国气候异常的影响,气象,1999(4),20~25.
    [242] Leung, L. R., S. J. Ghan, Z. C. Zhao, et al., Intercomparison of regional climate simulation of the 1991 summer monsoon in eastern Asia, J. Geophys. Res., 1999(104), 425~454.
    [243] Seth A., Giorgi F.,The effect of domain choice on summer precipitation simulation and sensitivity in a regional climate model, J. of Climate, 1998,11 (10), 2698~2712.
    [244] Wang W., Seaman N. L., A comparison study of convective parameterizaion schemes in a mesoscale model, Mon. Wea. Rev., 1997, 125(2), 252-277.
    [245] Dickinson R.E. and Henderson-Sellers A., Modeling tropical deforestation: a study of GCM land-surface parameterizations, Quart. J. Roy.Meteor Soc., 1998(114), 439~462.
    [246] Sato N., Sellers P.J., Randall D.A.,Schneider E.K.,Shukla J.,Kinter J.L.,Hou Y.T. and Albertazi E.,Effects of implementing the simple biosphere model in a general circulation model, J. Atmos.Sci., 1989,46(18), 2757~2782.
    [247] 戴永久,陆面过程模式及其与大气环流模式的耦合模拟研究:(学位论文),北京:中科院大气物理研究所,1995.
    [248] 张晶、丁一汇,一个改进的陆面过程模式及其模拟试验研究,第一部分:陆面过程模式及其“独立(off-line)”模拟试验分析和模式性能分析,气象学报,1998,56(1),1~19.
    [249] Slingo, A., A GCM parameterization for the shortwave radiative properties of water clouds,J. Atmos. Sci., 1989(46), 1419~1427.
    [250] Deardorff, J. W., Efficient prediction of ground surface temperature and moisture with inclusion of a layer ofvegetatiohn, J. Geophys. Res., 1978(63), 1889~1903.
    [251] Henderson-Sellers, A., Evaluation for the continent of Australia of the simulation of the surface climate using the Biosphere/Atmosphere Transfer Schemes (BATS) coupled into a global climate model, Climate Research, 1990(1), 43~62.
    [252] Holtslag, A. A., and B. A. Boville, Local versus non-local boundary-layer diffusion in a global climate model, J. Climate, 1993(6), 1111~1132.
    [253] 叶笃正、陶诗言、李麦村,在六月和十月大气环流的突变现象,气象学报,1958(4),249~263.
    [254] 陶诗言、赵煜佳、陈晓敏,东亚梅雨与亚洲上空大气环流变化的关系,气象学报,1958 (2),119~134.
    [255] 董敏、于建锐、高守亭,东亚西风急流变化与热带对流加热关系的研究,大气科学,1999(1),62~70.
    [256] 周兵、韩桂荣、何金海,高空西风急流对长江中下游暴雨影响的数值试验,南京气象学院学报,2003(5),595~604.
    [257] Xin-Zhong Liang, A. N. Samel, and W.-C. Wang, Observed and GCM simulated decadal variability of monsoon rainfall in east China, Clim. Dyn., 1995(11), 103~114.
    [258] Xin-Zhong Liang and W.-C. Wang, Association between China monsoon rainfall and tropospheric jets, Q. J. R. Meteorol, Soc., 1998(24), 2597~2623.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.