混合率的年际到年代际变化对赤道太平洋的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
跨越等密度面的混合(diapycnal mixing,下面简称为混合)控制着海洋中的热盐环流和向极热输送,对全球气候系统的维持和变化有重要影响。海洋中的混合过程是由风和潮汐输入的机械能维持的,这些机械能的变化会导致海洋中混合率的变化。最近一些研究表明,在过去几十年里,全球风输入到海洋中的机械能发生了大的年际到年代际时间尺度的变化,因此海洋中的混合率也应该存在相应的变化。
     考虑到风输入到海洋中机械能的年际到年代际变化,利用一个大洋环流模式,本文研究了混合率的年际到年代际变化对赤道太平洋的影响。本文采用的模式是Hallberg Isopycnal Model(HIM),这是一个等密度面坐标模式,其优点是可以有效地避免z-坐标模式中水平混合和平流引起的虚假跨密度面混合。本文的模式域是30 o S~30 o N之间的赤道太平洋地区。在本文的实验中,混合率在整个模式域内,或者模式域内的部分地区是周期性变化的。此外,本文还运行了混合率和风应力在模式域内同时变化的实验。
     本文的研究结果表明,当混合率在整个模式域内周期性变化时,赤道太平洋地区的海表温度和环流系统等都出现了一系列周期性的变化,其中最明显的变化是出现在赤道地区中-东部,特别是Nino3区(5 o S~5 o N,150 oW ~90 oW )的海表温度异常(SSTA)。当混合率呈现正异常时,Nino3 SSTA为负异常;而当混合率呈现负异常时,Nino3 SSTA为正异常。当混合率变化的振幅一定时,Nino3 SSTA的变化幅度随混合率变化周期的增长而增大;而当混合率变化周期一定时,Nino3 SSTA的变化幅度随混合率振幅的增大呈线性增大。
     在动力学上,模式中Nino3 SSTA的变化是由混合率变化诱发的赤道环流系统的变化以及大尺度波动引起的。当混合率为正异常时,强烈的混合将更多的次表层冷水夹卷到表层,致使表层温度降低。在Nino3区,温跃层较浅,冷水更容易被夹卷到海面,因此那里的SSTA变化最明显。另一方面,海洋上层的冷却导致海平面的降低,进而引起海盆东西方向压强梯度力的变化,这种变化增强了赤
Diapycnal mixing process, which control Meridional overturning circulation and polarward heat transport in the oceans, plays a vitally important role in global climate and climate change. Since it is sustained by the wind and tide energy input to the oceans, diapycnal mixing coefficient (DMC) will vary along with the change of external energy input. Recent studies showed that the wind energy input to the global oceans has changed greatly interannually to interdecadally over the past decades, so it will be naturally that the DMC in the oceans would has a great change correspondingly.
     In view of interannual to interdecadal variability of wind energy input, climate variability in the equatorial Pacific Ocean induced by interannual to interdecadal variability of DMC has been examined. The Hallberg Isopycnal Model (HIM) has been used in this study. HIM is an Oceanic General Circulation Model (OGCM) based on the isopycnal coordinate, whose advantage is that it can effectively avoid artificial diapycnal mixing associated with the horizontal mixing/advection in the z-coordinate model. The model domain covers the equatorial Pacific between 30 o S and 30 o N. In the numerical experiments of this study, DMC oscillates periodically either in the whole model domain or in part of the domain. Moreover, the experiments that both wind and DMC oscillate periodically in the domain are also run.
     As DMC oscillates periodically, both surface temperature and current system are forced into periodic changes in these experiments, in which the most outstanding one is sea surface temperature anomaly (SSTA) in the central and eastern equatorial Pacific, especially in Nino3 region (5 o S~5 o N, 150 oW ~90 oW ). Nino3 SSTA is in
引文
1. 冯士筰、李凤歧、李少菁 主编,1999:海洋科学导论,高等教育出版社,北京,503pp.
    2. 李崇银 编著,2000:气候动力学引论,气象出版社,北京,515pp.
    3. Adcroft, A. J., C. N. Hill, and J. C. Marshall, 1999: A new treatment of the coriolis terms in C-grid models at both high and low resolution. Mon. Wea. Rev., 127, 1928-1936.
    4. Alford, M. H., 2001: Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inertial motions. J. Phys. Oceanogr., 31, 2359-2368.
    5. Alford, M. H., 2003a: Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett., 30, 1424, doi: 10.1029/2002GL016614.
    6. Alford, M. H., 2003b: Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423, 159-162.
    7. Alford, M. H., and M. C. Gregg, 2001: Near-inertial mixing: Modulation of shear, strain and microstructure at low latitude. J. Geophys. Res., 106(C8), 16947-16968.
    8. Arakawa, A, and Y.-J. G.. Hsu, 1990: Energy conserving and potential-enstrophy dissipating schemes for the shallow water equations. Mon. Wea. Rev., 118, 1960-1969.
    9. Bleck, R., and L. T. Smith, 1990: A wind-driven isopycnal coordinate model of the North and Equatorial Atlantic Ocean. 1. Model development and supporting experiments. J. Geophys. Res., 95(C3), 3273-3285.
    10. Bleck, R., C. Rooth, D. Hu, and L. T. Smith, 1992: Salinity-driven thermocline transients in a wind- and thermocline-forced isopycnal coordinate model of the North Atlantic. J. Phys. Oceanogr., 22, 1486-1505.
    11. Boos, W. R., J. R. Scott, and K. A. Emanuel, 2004: Transient diapycnal mixing and the meridional overturning circulation. J. Phys. Oceanogr., 34, 334-341.
    12. Bryan, F., 1987: Parameter sensitivity of primitive equation ocean general circulation models. J. Phys. Oceanogr., 17,970-985.
    13. Bryan, K, 1991: Poleward heat transport in the ocean: A review of a hierarchy of models of increasing resolution. Tellus, 43AB, 104-115.
    14. Cerveny, R. S., and J. A. Shaffer, 2001: The moon and El Nino. Geophys. Res. Lett., 28(1), 25-28.
    15. Chan, J. C. L., and J. Shi, 1996: Long-term trends and interannual variability in tropical cyclone activity over the western North Pacific. Geophys. Res. Lett., 23(20), 2765-2767.
    16. Chelton, D. B., R. A. deSzoeke, M. G. Schlax, K. E. Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433-460.
    17. Chen, D., A. J. Busalacchi, and L. M. Rothstein, 1994a: The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacific Ocean. J. Geophys. Res., 99(C10), 20345-20359.
    18. Chen, D., L. M. Rothstein, and A. J. Busalacchi, 1994b: A hybrid vertical mixing scheme and its application to tropical ocean models. J. Phys. Oceanogr., 24, 2156-2179.
    19. Colin de Verdière, A., 1988: Buoyancy driven planetary flows. J. Mar. Res., 46, 215-265.
    20. Cravatte, S., J. Picaut, and G. Eldin, 2003: Second and first baroclinic Kelvin modes in the equatorial Pacific at intraseasonal timescales. J. Geophys. Res., 108(C8), 3266, doi:10.1029/ 2002JC001511
    21. Cummins, P. F., G. Holloway, and A. E. Gargett, 1990: Sensitivity of the GFDL ocean general circulation model to a parameterization of vertical diffusion. J. Phys. Oceanogr., 20, 817-830.
    22. Dalan, F., P. H. Stone, I. Kamenkovich, and J. Scott, 2005: Sensitivity of the ocean’s climate to diapycnal diffusivity in an EMIC. Part I: Equilibrium state. J. Climate, 18(13), 2460-2481.
    23. Easter, R. C., 1993: Two modified versions of Bott’s positive-definite numerical advection scheme. Mon. Wea. Rev., 121, 297-304.
    24. Emanuel, K. A., 2001: Contribution of tropical cyclones to meridional heat transport by the oceans. J. Geophys. Res., 106(D14), 14771-14781.
    25. Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686-688, doi: 10.1038/nature03906.
    26. Egbert, G. D., and R. D. Ray, 2000: Significant tidal dissipation in the deep ocean inferred from satellite data. Nature, 405, 775-778.
    27. Egbert, G. D., and R. D. Ray, 2001: Estimates of M 2tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res., 106(C10), 22475-22502.
    28. Egbert, G. D., R. D. Ray, and B. G. Bills, 2004: Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum. J. Geophys. Res., 109, C03003, doi: 10.1029/2003JC001973.
    29. Ferron, B., H. Mercier, K. Speer, A. Gargett, and K. Polzin, 1998: Mixing in the Romanche fracture zone. J. Phys. Oceanogr., 28, 1929-1945.
    30. Gargett, A. E., 1984: Vertical eddy diffusivity in the ocean interior. J. Mar. Res., 42, 359-393.
    31. Gargett, A. E., and G. Holloway, 1984: Dissipation and diffusion by internal wave breaking. J. Mar. Res., 42, 15-27.
    32. Garrett, C., 2001: What is the “near-inertial” band and why is it different from the rest of the internal wave spectrum? J. Phys. Oceanogr., 31, 962-971.
    33. Garrett, C., and L. St. Laurent, 2002: Aspects of Deep Ocean Mixing. J. Oceanogr. Soc. Japan, 58, 11-24.
    34. Gates, W. L., and A. B. Nelson, 1975: A new (revised) tabulation of the Scripps topography on a one-degree grid. Part 1: Terrain heights. Tech. Report R-1276-1-ARPA, The Rand Corporation, 132pp.
    35. Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150-155.
    36. Goldenberg, S. B., and J. J. O’Brien, 1981: Time and space variability of tropical Pacific wind stress. Mon. Wea. Rev., 109, 1190-1207.
    37. Graham, N. E., and W. B. White, 1988: The El Nino cycle: A natural oscillator of the Pacific ocean-atmosphere system. Science, 240, 1293-1302.
    38. Griffies, S. M., and R. W. Hallberg, 2000: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale-permitting ocean models. Mon. Wea. Rev., 128, 2935-2946.
    39. Griffies, S. M., R. C. Pacanowski, and R. W. Hallberg, 2000a:Spurious diapycnal mixing associated with advection in a Z-coordinate ocean model. Mon. Wea. Rev., 128, 538-564.
    40. Griffies, S. M., et al., 2000b: Developments in ocean climate modelling. Ocean Modelling, 2, 123-192.
    41. Griffies, S. M., 2004: Fundamentals of ocean climate models. Princeton University Press, Princeton, 518pp.
    42. Gu, D. F., and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the Tropics and extratropics. Science, 275, 805-807.
    43. Hallberg, R. and P. Rhines, 1996: Buoyancy-driven circulation in an ocean basin with isopycnals intersecting the sloping boundary. J. phys. Oceanogr., 26, 913-940.
    44. Hallberg, R, 1997: Stable split time stepping schemes for large-scale ocean modeling. J. Comput. Phys., 135, 54-65.
    45. Hallberg, R., 2000: Time integration of diapycnal diffusion and Richardson number dependent mixing in isopycnal coordinate ocean models. Mon. Wea. Rev., 128, 1402-1419.
    46. Hallberg, R., 2003: The ability of large-scale ocean models to accept parameterizations of boundary mixing, and a description of a refined bulk mixed-layer model. Proceedings of the 2003 Aha Hulikoa Hawaiian Winter Workshop, U. Hawaii, 187-203.
    47. Halpern, D., Y. Chao, C. C. Ma, and R. Mechoso, 1995: Comparison of tropical Pacific temperature and current simulations with two vertical mixing schemes embedded in an ocean general circulation model and reference to observations. J. Geophys. Res., 100, 2515-2522.
    48. Haney, R. L., 1971: Surface thermal boundary conditions for ocean general circulation models. J. Phys. Oceanogr., 1, 241-248.
    49. Higdon, R. L., and A. F. Bennett, 1996: Stability analysis of operator splitting for large-scale ocean modeling. J. Comput. Phys., 123, 311-329.
    50. Hsu, Y.-J. G., and A. Arakawa, 1990: Numerical modeling of the atmosphere with an isentropic vertical coordinate. Mon. Wea. Rev., 118, 1933-1995.
    51. Hu, D., 1996a: On the sensitivity of thermocline depth and meridional heat transport to vertical diffusivity in OGCMs. J. Phys. Oceanogr., 26, 1480-1494.
    52. Hu, D., 1996b: The computation of diapycnal diffusive and advective scalar fluxes in multilayer isopycnic coordinate ocean models. Mon. Wea. Rev., 124, 1834-1851.
    53. Hu, D., and Y. Chao, 1999: A global isopycnal OGCM: Validations using observed upper-ocean variabilities during 1992-93. Mon. Wea. Rev., 127, 706-725.
    54. Huang, R. X., 1998: Mixing and available potential energy in a Boussinesq ocean. J. Phys. Oceanogr., 28, 669-678.
    55. Huang, R. X., 1999: Mixing and energetics of the oceanic the thermohaline circulation. J. Phys. Oceanogr., 29, 727-746.
    56. Huang, R. X., 2004: Ocean, energy flows in. Encyclopedia of Energy, Vol. 3, NRGY: 00053, Elsevier.
    57. Huang, R. X., and Q. Wang, 2001: Interior communication from the subtropical to the tropical oceans. J. Phys. Oceanogr., 31, 3538-3550.
    58. Huang, R. X., W. Wang, and L. L. Liu, 2006: Decadal variability of wind energy input to the world ocean. Deep Sea Res. II, 53, 31-41.
    59. Jackett, D. R., and T. J. McDougall, 1995: Minimal adjustment of hydrographic profiles to achieve static stability. J. Atmos. Oceanic. Tech., 12, 381-389.
    60. Jeffreys, H., 1925: On fluid motions produced by differences of temperature and humidity. Q. J. R. Meteor. Soc., 51, 347-356.
    61. Jiang, J., Y. Lu, and W. Perrie, 2005: Estimating the energy flux from the wind to ocean inertial motions: The sensitivity to surface wind fields. Geophys. Res. Lett., 32, L15610, doi: 10.1029/2005GL023289.
    62. Kagan, B. A., 1997: Earth-Moon tidal evolution: model results and observational evidence. Prog. Oceanogr., 40, 109-124.
    63. Kalnay, E. M., et al., 1996: The NCEP NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437-471.
    64. Karspeck, A. R., and M. A. Cane, 2002: Tropical Pacific 1976-77 climate shift in a linear, wind-driven model. J. Phys. Oceanogr., 32, 2350-2360.
    65. Keeling, C. D., and T. P. Whorf, 1997: Possible forcing of global temperature by oceanic tides. Proc. Natl. Acad. Sci., 94, 8321-8328.
    66. Keeling, C. D., and T. P. Whorf, 2000: The 1800-year oceanic tidal cycle: A possible cause of rapid climate change. Proc. Natl. Acad. Sci., 97, 3814-3819.
    67. Knutson, T. R., and S. Manabe, 1998: Model assessment of decadal variability and trends in the tropical Pacific Ocean. J. Climate, 11, 2273-2296.
    68. Knutti, R., T. F. Stocker, and D. Wright, 2000: The effects of subgrid-scale parameterizations in a zonally averaged ocean model. J. Phys. Oceanogr., 30, 2738-2752.
    69. Kraus, E. B., and J. S. Turner, 1967: A one-dimensional model of the seasonal thermocline: II. The general theory and its consequences. Tellus, 19, 98-106.
    70. Kunze, E., and T. B. Sanford, 1996: Abyssal mixing: Where it is not. J. Phys. Oceanogr., 26, 2286-2296.
    71. Ladd, C., and L. Thompson, 2001: Water mass formation in an isopycnal model of the North Pacific. J. Phys. Oceanogr., 31, 1517-1537.
    72. Large, W. G., G. Danabasoglu, and S. C. Doney, 1997: Sensitivity to surface forcing andboundary layer mixing in a global ocean model: Annual-mean climatology. J. Phys. Oceanogr., 27, 2418-2447.
    73. Large, W. G., and P. R. Gent, 1999: Validation of vertical mixing in an equatorial ocean model using large eddy simulations and observations. J. Phys. Oceanogr., 29, 449-464.
    74. Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32(4), 363-403.
    75. Latif M., et al., 2001: ENSIP: the El Nino simulation intercomparison project. Climate Dynamics, 18, 255-276.
    76. Ledwell, J. R., A. J. Watson, and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364, 701-703.
    77. Ledwell, J. R., A. J. Watson, and C. S. Law, 1998: Mixing of a tracer in the pycnocline. J. Geophys. Res., 103(C10), 21499-21529.
    78. Ledwell, J. R., E. T. Montgomery, K. L. Polzin, L. C. St. Laurent, R. W. Schmitt, and J. M. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179-182.
    79. Legler, D. M., and J. J. O’Brien, 1988: Tropical Pacific wind stress analysis for TOGA, IOC series of ocean measurements. ICO Technical Series 33, Vol. 4, UNESCO.
    80. Levitus, S., and T. P. Boyer, 1994: World Ocean Atlas 1994 Volume 4: Temperature. NOAA Atlas NESDIS 4, U. S. Department of Commerce, Washington, D.C., 117pp.
    81. Levitus, S., R. Burgett, and T. P. Boyer, 1994: World Ocean Atlas 1994 Volume 3: Salinity. NOAA Atlas NESDIS 3, U. S. Department of Commerce, Washington, D.C., 99pp.
    82. Li, X. J., Y. Chao, J. C. McWilliams, and L. L. Fu, 2001: A comparison of two vertical-mixing schemes in a Pacific Ocean general circulation model. J. Climate, 14, 1377-1398.
    83. Lien, R. C., and M. C. Gregg, 2001: Observations of turbulence in a tidal beam and a coastal ridge. J. Geophys. Res., 106, 4575-4592.
    84. Loder, J. W., and C. Garrett, 1978: The 18.6-year cycle of sea surface temperature in shallow seas due to variations in tidal mixing. J. Geophys. Res., 83(C4), 1967-1970.
    85. Ma, C. C., C. R. Mechoso, A. Arakawa, and J. D. Farrara, 1994: Sensitivity of a coupled ocean-atmosphere model to physical parameterizations. J. Climate, 7, 1883-1896.
    86. Maes, C., G. Mades, and P. Delecluse, 1997: Sensitivity of an equatorial Pacific OGCM to thelateral diffusion. Mon. Wea. Rev., 125, 958-971.
    87. Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 1069-1079.
    88. Marotzke, J., 1997: Boundary mixing and the dynamics of three-dimensional thermohaline circulation. J. Phys. Oceanogr., 27, 1713-1728.
    89. Marotzke, J., and J. Willebrand, 1991: Multiple equilibria of the global thermohaline circulation. J. Phys. Oceanogr., 21, 1372-1385.
    90. Matsuno, T., 1966: A finite difference scheme for time integrations of oscillatory equations with second order accuracy and sharp cut-off for high frequencies. J. Meteor. Soc. Japan, 44, 85-88.
    91. Macdonald, A., and C. Wunsch, 1996: The global ocean circulation and heat flux. Nature, 382, 436-439.
    92. McCreary, J. P., 1981: A linear stratified ocean model of the equatorial undercurrent. Philos. Trans. R. Soc. London, Ser. A, 298, 603-635.
    93. McDougall, T. J., and W. K. Dewar, 1998: Vertical mixing, cabbeling and thermobaricity in layered models. J. Phys. Oceanogr., 11, 1458-1480.
    94. McPhaden, M. J., et al., 1998: The tropical ocean-global atmosphere observing system: A decade of program. J. Geophys. Res., 103(C7), 14169-14240.
    95. McPhaden, M. J., and D. Zhang, 2002: Slowdown of the meridional overturning circulation in the upper Pacific ocean. Nature, 415, 603-608.
    96. Meehl, G.. A., P. R. Gent, J. M. Arblaster, B. L. Otto-Bliesner, E. C. Brady, and A. Craig, 2001: Factors that affect the amplitude of El Nino in global coupled climate models. Climate Dyn., 17, 515-526.
    97. Meinen, C. S., and M. J. McPhaden, 2000: Observation of warm water volume changes in the equatorial Pacific and their relationship to El Nino and La Nina. J. Climate, 13, 3551-3559.
    98. Mellor, G. L. and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851-875.
    99. Moum, J. N., and T. R. Osborn, 1986: Mixing in the main thermocline. J. Phys. Oceanogr., 16, 1250-1259.
    100. Moum, J. N., D. R. Caldwell, and C. A. Paulson, 1989: Mixing in the equatorial surface layer and thermocline. J. Geophys. Res., 94(C2), 2005-2021.
    101. Müller, P., and M. G.. Briscoe, 2000: Diapycnal mixing and internal waves. Oceanography, 13, 98-103.
    102. Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res., 13, 707-730.
    103. Munk, W., and C. Wunsch, 1998: Abyssal recipes II: energetics of tidal and wind mixing. Deep-sea Res., 45, 1977-2010.
    104. Munk, W., M. Dzieciuch, and S. Jayne, 2002: Millennial climate variability: Is there a tidal connection? J. Climate, 15, 370-385.
    105. Nagai, T., Y. Kitamura, M. Endoh, and T. Tokioka, 1995: Coupled atmosphere-ocean model simulations of El Nino/Southern Oscillation with and without an active Indian Ocean. J. Climate, 8, 3-14.
    106. Nagasawa, M, Y. Niwa, and T. Hibiya, 2000: Spatial and temporal distribution of the wind-induced internal wave energy available for deep water mixing in the North Pacific. J. Geophys. Res., 105(C6), 13933-13943.
    107. Nechaev, D., and M. Yaremchuk, 2004: On the approximation of the Coriolis terms in C-grid models. Mon. Wea. Rev., 132, 2283-2289.
    108. Oberhuber, J. M., 1993: Simulation of the Atlantic circulation with a coupled sea ice-mixed layer-isopycnal general circulation model. Part I: Model description. J. Phys.Oceanogr., 23, 808-829.
    109. Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 83-89.
    110. Pacanowski, R. C., and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11, 1443-1451.
    111. Papadakis, M., 2001: Numerical simulations of the Mediterranean sea outflow: Impact of the entrainment parameterization in an isopycnic coordinate ocean model. A Master Thesis of the University of Miami, 103pp.
    112. Park, Y. G.., and K. Bryan, 2000: Comparison of thermally driven circulations from a depth-coordinate mode and an isopycnal-layer model. Part I: Scaling-law sensitivity to vertical diffusivity. J. Phys. Oceanogr., 30, 590-605.
    113. Peters, H., M. C. Gregg, and J. M. Toole, 1988: On the parameterization of equatorialturbulence. J. Geophys. Res., 93, 1199-1218.
    114. Philander, S. G.. H., and R. C. Pacanowski, 1980: The generation of equatorial currents. J. Geophys. Res., 85, 1123-1136.
    115. Philander, S. G.. H., W. J. Hurlin, and R. C. Pacanowski, 1987: Initial conditions for a general model of tropical oceans. J. Phys. Oceanogr., 17, 147-157.
    116. Pierce, D. W., T. P. Barnett, and M. Latif, 2000: Connections between the Pacific Ocean Tropics and midlatitudes an decadal time-scales. J. Climate, 13, 1173-1194.
    117. Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 93-96.
    118. Price, J. F., 1981:Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153-175.
    119. Price, J. F., 1983: Internal wave wake of a moving storm, Part I: Scales, energy budget and observations. J. Phys. Oceanogr., 13(6), 949-965.
    120. Pugh, D., 2004: Changing sea level: Effects of tides, weather and climate. Cambridge University Press, Cambridge, 265pp.
    121. Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 1154-1158.
    122. Royer, T. C., 1993: High-latitude oceanic variability associated with the 18.6-year nodal tide. J. Geophys. Res., 98(C3), 4639-4644.
    123. Sadourny, R., 1975: The dynamics of finite-difference models of the shallow-water equations. J. Atmos. Sci., 32, 680-689.
    124. Scott, J. R., and J. Marotzke, 2002: The location of diapycnal mixing and the meridional overturning circulation. J. Phys. Oceanogr., 32, 3578-3595.
    125. Schneider, N., A. J. Miller, M. A. Alexander, and C. Deser, 1999: Subduction of decadal North Pacific temperature anomalies: Observations and dynamics. J. Phys. Oceanogr., 29, 1056-1070.
    126. Simmons, H. L., S. R. Jayne, L. C. St. Laurent, and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modelling, 6, 245-263.
    127. Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev., 91, 99-164.
    128. Smolarkiewicz, P. K., 1984: A fully multidimensional positive definite advection transport algorithm with small implicit diffusion. J. Comput. Phys., 54, 325-362.
    129. Smolarkiewicz, P. K., and T. L. Clark, 1986: A multidimensional positive definite advection transport algorithm: Further development and applications. J. Comput. Phys., 67, 396-438.
    130. Smith, N. R., and G.. D. Hess, 1993: A comparison of vertical eddy mixing parameterizations for equatorial ocean models. J. Phys. Oceanogr., 23, 1823-1830.
    131. St. Laurent, L. C., H. L. Simmons, and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29(23), 2106, doi: 10.1029/2002GL015633.
    132. Stockdale, T. N., A. J. Busalacchi, D. E. Harrison, and R. Seager, 1998: Ocean modeling for ENSO. J. Geophys. Res., 103, 14325-14355.
    133. Sun, S., R. Bleck, C. Rooth, J. Dukowicz, E. Chassignet, and P. D. Killworth, 1999: Inclusion of thermobaricity in isopycnic-coordinate ocean models. J. Phys. Oceanogr., 29, 2719-2729.
    134. Thompson, L, K. A. Kelly, D. Darr, and R. Hallberg, 2002: Buoyancy and mixed layer effects on the sea surface height response in an isopycnal model of the north Pacific. J. Phys. Oceanogr., 32, 3657-3670.
    135. Toole, J. M., K. L. Polzin, and R. W. Schmitt, 1994: Estimates of diapycnal mixing in the abyssal ocean. Science, 264, 1120-1123.
    136. Toole, J. M., R. W. Schmitt, K. L. Polzin, and E. Kunze, 1997: Near-boundary mixing above the flanks of a midlatitude seamount. J. Geophys. Res., 102, 947-959.
    137. Tourre, Y. M., B. Rajagopalan, Y. Kushnir, M. Barlow, and W. B. White, 2001: Patterns of coherent decadal and interdecadal climate signals in the Pacific basin during the 20 thcentury, Geophys. Res. Lett., 28(10), 2069-2072.
    138. Trenberth, K. E., 1997: The definition of El Nino. Bull. Amer. Meteor. Soc., 78(12), 2771-2777.
    139. Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14(16), 3433-3443.
    140. Wang, C., and J. Picaut, 2004: Understanding ENSO physical –A review. Earth’s climate: the ocean-atmosphere interaction, C. Wang, S.-P. Xie, and J. A. Carton, Eds., Geophys. Monogr.
    147, Amer. Geophys. Union, 21-48.
    141. Wang, W., and R. X. Huang, 2004a: Wind energy input to the Ekman layer. J. Phys.Oceanogr., 34, 1267-1275.
    142. Wang, W., and R. X. Huang, 2004b: Wind energy input to the surface waves. J. Phys. Oceanogr., 34, 1276-1280.
    143. Wang, W., and M. J. McPhaden, 2000: The surface-layer heat balance in the equatorial Pacific Ocean. Part II: Interannual variability. J. Phys. Oceanogr., 30, 2989-3008
    144. Watanabe, M., and T. Hibiya, 2002: Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett., 29(8), 1239, doi: 10.1029/2001GL014422.
    145. Wilson, S. G.., 2000: How ocean vertical mixing and accumulation of warm surface water influence the “sharpness” of the equatorial thermocline. J. Climate, 13, 3638-3656.
    146. Wilson, S. G.., 2002: Evaluation of various vertical mixing parameterizations in a tropical Pacific Ocean GCM. Ocean Modelling, 4, 291-311.
    147. Winton, M., 1996: The role of horizontal boundaries in parameter sensitivity and decadal-scale variability of coarse-resolution ocean general circulation models. J. Phys. Oceanogr., 26, 289-304.
    148. Winton, M., 2003: On the climatic impact of ocean circulation. J. Climate, 16, 2875-2889.
    149. Wittenberg, A. T., 2004: Extended wind stress analyses for ENSO. J. Climate, 17, 2526-2540.
    150. Wright, D. G., 1997: An equation of state for use in ocean models: Eckart’s formula revisited. J. Atmos. Oceanic Technol., 14, 735-740.
    151. Wright, D. G., and T. F. Stocker, 1992: Sensitivities of a zonally averaged global ocean circulation model. J. Geophys. Res., 97, 12707-12730.
    152. Wunsch, W., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28, 2332-2340.
    153. Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281-314.
    154. Wyrtki, K., and G. Meyers, 1976: The trade wind field over the Pacific Ocean. J. Appl. Meteor., 15, 698-704.
    155. Yeh, S.-W., J.-G. Jhun, I.-S. Kang, and B. P. Kirtman, 2004: The Decadal ENSO variability in a hybrid coupled model. J. Climate, 17, 1225-1238.
    156. Yu, Z., and P. S. Schopf, 1997: Vertical eddy mixing in the tropical upper: its influence on zonal currents. J. Phys. Oceanogr., 27, 1447-1458.
    157. Zhai, X., R. J. Greatbatch, and J. Sheng, 2004: Advective spreading of storm-induced inertial oscillations in a model of the northwest Atlantic Ocean. Geophys. Res. Lett., 31, L14315, doi:10.1029/2004GL020084.
    158. Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900-93. J. Climate, 10, 1004-1020.
    1. Alford, M. H., 2003a: Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett., 30, 1424, doi: 10.1029/2002GL016614.
    2. Alford, M. H., 2003b: Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423, 159-162.
    3. Alford, M. H., 2005: Reply to comment by M. Watanabe et al. on “Improved global maps and 54-year history of wind-work on ocean inertial motions”: Time aliasing in estimating the wind-induced inertial energy. Geophys. Res. Lett., 32, L08604, doi: 10.1029/ 2005GL022630.
    4. Goldenberg, S. B., and J. J. O’Brien, 1981: Time and space variability of tropical Pacific wind stress. Mon. Wea. Rev., 109, 1190-1207.
    5. Hallberg, R. and P. Rhines, 1996: Buoyancy-driven circulation in an ocean basin with isopycnals intersecting the sloping boundary. J. phys. Oceanogr., 26, 913-940.
    6. Huang, R. X., 1998: Mixing and available potential energy in a Boussinesq ocean. J. Phys. Oceanogr., 28, 669-678.
    7. Huang, R. X., 1999: Mixing and energetics of the oceanic the thermohaline circulation. J. Phys. Oceanogr., 29, 727-746.
    8. Huang, R. X., W. Wang, and L. L. Liu, 2006: Decadal variability of wind energy input to the world ocean. Deep Sea Res. II, 53, 31-41.
    9. Jiang, J., Y. Lu, and W. Perrie, 2005: Estimating the energy flux from the wind to ocean inertial motions: The sensitivity to surface wind fields. Geophys. Res. Lett., 32, L15610, doi: 10.1029/2005GL023289.
    10. Kagan, B. A., 1997: Earth-Moon tidal evolution: model results and observational evidence. Prog. Oceanogr., 40, 109-124.
    11. Kalnay, E. M., et al., 1996: The NCEP NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437-471.
    12. Kraus, E. B., and J. S. Turner, 1967: A one-dimensional model of the seasonal thermocline: II. The general theory and its consequences. Tellus, 19, 98-106.
    13. Nagasawa, M, Y. Niwa, and T. Hibiya, 2000: Spatial and temporal distribution of the wind-induced internal wave energy available for deep water mixing in the North Pacific. J. Geophys. Res., 105(C6), 13933-13943.
    14. Wang, W., and R. X. Huang, 2004a: Wind energy input to the Ekman layer. J. Phys. Oceanogr., 34, 1267-1275.
    15. Wang, W., and R. X. Huang, 2004b: Wind energy input to the surface waves. J. Phys. Oceanogr., 34, 1276-1280.
    16. Watanabe, M., and T. Hibiya, 2002: Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett., 29(8), 1239, doi: 10.1029/2001GL014422.
    17. Watanabe M., T. Hibiya, and T. Enomota, 2005: Comment on “Improved global maps and 54-year history of wind-work on ocean inertial motions” by Matthew H. Alford: Time aliasing in estimating the wind-induced inertial energy. Geophys. Res. Lett., 32, L08603, doi: 10.1029/2005GL022367.
    18. Wunsch, W., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28, 2332-2340.
    19. Wyrtki, K., and G. Meyers, 1976: The trade wind field over the Pacific Ocean. J. Appl. Meteor., 15, 698-704.
    20. Zhai, X., R. J. Greatbatch, and J. Sheng, 2004: Advective spreading of storm-induced inertial oscillations in a model of the northwest Atlantic Ocean. Geophys. Res. Lett., 31, L14315, doi:10.1029/2004GL020084.
    1. Behringer, D. W., M. Ji, and A. Leetmaa, 1998: An Improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon. Wea. Rev., 126, 1013-1021.
    2. Boos, W. R., J. Y. Scott, and K. A. Emanuel, 2004: Transient diapycnal mixing and the meridional overturning circulation. J. Phys. Oceanogr., 34, 334-341.
    3. Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 2996-3006.
    4. Chan, J. C. L., 2000: Tropical cyclone activity over the western North Pacific associated with El Nino and La Nino events. J. Climate, 13, 2960-2972.
    5. Chan, J. C. L., and K. S. Liu, 2000: Global warming and western North Pacific typhoon activity from an observational perspective. J. Climate, 17, 4590-4602.
    6. Chan, J. C. L., and J. Shi, 1996: Long-term trends and interannual variability in tropical cyclone activity over the western North Pacific. Geophys. Res. Lett., 23(20), 2765-2767.
    7. Conkright, M. E., et al., 2002: World Ocean Atlas 2001: Objective Analyses, Data Statistics, and Figures, CD-ROM Documentation. National Oceanographic Data Center, Silver Spring, MD, 17 pp.
    8. da Silva,A., A. C. Young, and S. Levitus, Atlas of Surface Marine Data 1994, Volume 1: Algorithms and Procedures. NOAA Atlas NESDIS 6, U.S. Department of Commerce, Washington, D.C., 1994.
    9. Emanuel, K., 2001: Contribution of tropical cyclones to meridional heat transport by the oceans. J. Geophys. Res., 106(D14), 14771-14781.
    10. Emanuel, K., 2003: Tropical Cyclones. Annu. Rev. Earth Planet. Sci., 31, 75-104.
    11. Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686-688, doi: 10.1038/nature03906.
    12. Gao, S., J. Wang, and Y. Ding, 1988: The triggering effect of near-equatorial cyclones on El Nino. Adv. Atmos. Sci., 5, 87-95.
    13. Hallberg, R. and P. Rhines, 1996: Buoyancy-driven circulation in an ocean basin with isopycnals intersecting the sloping boundary. J. phys. Oceanogr., 26, 913-940.
    14. Macdonald, A., and C. Wunsch, 1996: The global ocean circulation and heat flux. Nature, 382, 436-439.
    15. McPhaden, M. J., et al., 1998: The tropical ocean-global atmosphere observing system: A decade of program. J. Geophys. Res., 103(C7), 14169-14240.
    16. Meinen, C. S., and M. J. McPhaden, 2000: Observation of warm water volume changes in the equatorial Pacific and their relationship to El Nino and La Nina. J. Climate, 13, 3551-3559.
    17. Philander, S. G.. H., and R. C. Pacanowski, 1980: The generation of equatorial currents. J. Geophys. Res., 85, 1123-1136.
    18. Price, J. F., 1981:Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153-175.
    19. Price, J. F., 1983: Internal wave wake of a moving storm. Part I: Scales, energy budget and observations. J. Phys. Oceanogr., 13, 949-965.
    20. Sobel, A. H., and S. J. Camargo, 2005: Influence of western North pacific tropical cyclones on their large-scale environment. J. Atmos. Sci., 62, 3396-3407.
    21. Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14(16), 3433-3443.
    22. Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 1643-1658.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.