HDAC6介导的自噬在α-synuclein降解中的作用及其调控机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分HDAC6介导了MPP~+诱导的α-synuclein聚集体的aggresome-大自噬降解途径
     目的:利用MPP~+处理过表达人类突变型(A53T)α-synuclein的PC12细胞株(α-SNA53T~+PC12)和SH-SY5Y细胞株,构建帕金森病细胞模型,探讨HDAC6对MPP~+诱导的α-synuclein聚集体的aggresome-大自噬降解途径的调控。
     方法:用1.5mM的MPP~+处理α-SNA53T~+PC12和SH-SY5Y细胞,通过免疫印迹法观察细胞内HDAC6蛋白水平的变化,并利用免疫荧光共聚焦技术观察HDAC6与γ-tubulin和LAMP-1的共定位情况;分别用自噬抑制剂3-MA、siRNA干扰HDAC6及HDAC6特异性抑制剂Tubacin和/或MPP~+共处理α-SNA53T~+PC12细胞后,利用免疫印迹法和免疫荧光共聚焦技术观察HDAC6、α-synuclein和LC3蛋白水平及其在细胞内定位的改变;并进一步通过提取细胞核蛋白观察HDAC6对α-synuclein亚细胞定位的影响。
     结果:(1)MPP~+诱导细胞内HDAC6表达明显增加并且定位发生改变,其与γ-tubulin、LAMP-1和α-synuclein共定位于细胞核周围形成aggresome样小体。(2)MPP~+诱导α-synuclein聚集体与LC3共定位于细胞核周围及细胞突起,抑制自噬导致α-synuclein增多。(3)敲减或抑制HDAC6导致MPP~+诱导的α-synuclein聚集体进一步在细胞内蓄积,且不能在核周形成aggresome样小体,并大量聚集于细胞核内。(4)进一步观察发现敲减或抑制HDAC6阻止了MPP~+诱导下LC3-Ⅱ蛋白表达的上调以及LC3荧光信号的增强。
     结论:HDAC6通过调控aggresome-大自噬途径参与了MPP~+诱导的异常聚集的α-synuclein的降解,缺乏HDAC6阻碍了MPP~+诱导的α-synuclein聚集体形成aggresome及自噬活性的反应性上调,导致大量α-synuclein蓄积于细胞核内。
     第二部分HDAC6调控了分子伴侣介导的自噬途径对MPP~+诱导的α-synuclein聚集体的降解
     目的:利用MPP~+处理过表达人类野生型(WT)和突变型(A30P)α-synuclein的PC12细胞株(α-SNWT~+PC12和α-SNA30P~+PC12),构建帕金森病细胞模型,探讨HDAC6对MPP~+诱导的α-synuclein聚集体的分子伴侣介导的自噬降解途径(CMA)的调控。
     方法:利用siRNA技术干扰α-SNWT~+PC12和α-SNA30P~+PC12细胞的HDAC6,并通过免疫印迹法鉴定干扰效率;用siRNA干扰和/或MPP~+共处理α-SNWT~+PC12和α-SNA30P~+PC12细胞后,利用免疫印迹法观察α-synuclein、LAMP-2a和HSC70蛋白水平的变化;并通过免疫荧光共聚焦技术观察α-SNWT~+PC12细胞内LAMP-2a和LAMP-1的共定位;同时,采用ELISA方法观察α-SNWT~+PC12细胞内RNase A的变化;并进一步通过免疫共沉淀方法观察HDAC6对α-SNWT~+PC12细胞内HSP90乙酰化及其与LAMP-2a和HSC70相互作用的影响。
     结果:(1)RNA干扰48小时,两株细胞中的HDAC6表达均明显降低,大约在60%左右;(2)MPP~+处理后突变型α-synuclein蛋白水平增加,野生型α-synuclein增加不明显,而缺乏HDAC6导致两株细胞中的α-synuclein均明显增加;(3)MPP~+诱导两株细胞LAMP-2a和HSC70表达增加,缺乏HDAC6致使野生型细胞内LAMP-2a进一步增加,而突变型LAMP-2a表达轻度下降,HSC70表达代偿性增加;(4)MPP~+减少了α-SNWT~+PC12细胞内的RNase A,缺乏HDAC6导致细胞内RNAse A明显增多;(5)MPP~+诱导α-SNWT~+PC12细胞的LAMP-2a荧光信号增强,缺乏HDAC6致使LAMP-2a荧光信号进一步增加,且LAMP-1荧光信号也相应增强;(6)MPP~+诱导α-SNWT~+PC12细胞内HSP90乙酰化水平下降,其与HSC70和LAMP-2a的相互作用增加,而缺乏HDAC6导致HSP90乙酰化水平增加,其与HSC70和LAMP-2a的结合下降。
     结论:MPP~+诱导了CMA活性的上调,且上调的CMA可代偿性降解MPP~+诱导的野生型α-synuclein;HDAC6参与了MPP~+诱导的CMA活性的反应性上调,并通过调节HSP90的乙酰化影响野生型α-synuclein的CMA降解途径。
     第三部分HDAC6对MPP~+诱导的α-synuclein聚集体所致的细胞损伤的拮抗作用
     目的:利用MPP~+处理PC12细胞株(PC12、α-SNWT~+PC12、α-SNA30P~+PC12和α-SNA53T~+PC12)和SH-SY5Y细胞株,构建帕金森病细胞模型,探讨HDAC6对MPP~+诱导的α-synuclein聚集体所致的细胞损伤的拮抗作用。
     方法:以siRNA干扰或Tubacin抑制HDAC6,并与MPP~+相结合的方法共处理各株细胞达12小时,然后通过MTT法检测细胞活力,LDH法评定细胞损伤,并通过流式细胞仪检测各组细胞凋亡率,光镜观察活细胞一般形态学变化,同时采用透射电镜方法观察细胞超微结构的改变。
     结果:(1)MPP~+处理12小时后各株细胞活力均降低,敲减HDAC6导致过表达WT、A30P、A53Tα-synuclein PC12细胞活力进一步降低;(2)暴露于MPP~+处理12小时致使各株细胞LDH释放量均增加,敲减HDAC6导致过表达WT、A30P、A53Tα-synuclein PC12细胞损伤进一步增加;(3)MPP~+作用12小时后细胞的早期凋亡显著增高,抑制HDAC6导致过表达WT、A30P、A53Tα-synuclein PC12细胞的早期凋亡进一步增加;(4)活细胞形态学观察MPP~+诱导细胞形态改变,缺乏HDAC6导致过表达WT、A30P、A53Tα-synuclein PC12细胞明显积聚,尤其是过表达A53T的PC12细胞;(5)细胞超微结构显示MPP~+处理后细胞内自噬结构增多,抑制HDAC6细胞内自噬囊泡减少,在过表达WT或A53Tα-synuclein PC12细胞内可见各种细胞凋亡改变。
     结论:HDAC6是一种细胞内主要的应对MPP~+毒性应激反应的调节因子,其极可能通过对易聚集α-synuclein清除过程的调控来抵抗MPP~+毒性,从而在一定程度上发挥保护功能。
PartⅠHDAC6 regulates aggresome-autophagy degradation pathway of alpha-synuclein in response to MPP~+-induced stress
     Objective: Increasing evidence suggests that the ubiquitin-binding histone deacetylase-6 (HDAC6) plays an important role in the clearance of misfolded proteins by autophagy. Here, we treated PC-12 cells overexpressing human mutant (A53T) alpha-synuclein (α-SN) and SH-SY5Y cells with MPP~+, and aimed to study wherther HDAC6 regulates aggresome-autophagy degradation pathway ofα-SN in response to MPP~+-induced stress
     Methods: In this study,α-SNA53T~+PC12 and SH-SY5Y cells were exposed to MPP~+ (1.5mM) for 12h. The cells were observed by immunoblotting in HDAC6 protein levels, and by confocal immunofluorescence were observed the co-localization of HDAC6 andγ-tubulin/LAMP-1. RNA interference or Tubacin were processed to inhibit the HDAC6, and using immunoblotting and immunofluorescence confocal technique to observe HDAC6,α-SN and LC3 protein levels and its localization in the cell; and further observation by extracting the nucleus protein to determine the subcellular localization ofα-SN.
     Results: It was found that HDAC6 expression significantly increased and mainly colocalized withα-SN in the perinuclear region to form aggresome-like bodies in response to MPP~+-induced stress. HDAC6 deficiency blocked the formation of aggresome-like bodies and interfered with the autophagy in response to MPP~+-induced stress. Moreover, misfoldedα-SN accumulated into the nuclei, resulting in its reduced clearance.
     Conclusion: Taken together, HDAC6 participated in the degradation of MPP~+-induced misfoldedα-SN aggregates by regulating the aggresome-autophagy pathway. Understanding the mechanism may disclose potential therapeutic targets for synucleinopathies such as Parkinson disease.
     PartⅡHDAC6 regulates chaperone-mediated autophagic clearance ofα-synuclein in response to MPP~+
     Objective: To study wherther HDAC6 regulates chaperone-mediated autophagic clearance ofα-SN in response to MPP~+,the PC12 cells overexpressing human wild-type (WT) or mutant (A30P) alpha-synuclein (α-SN) were exposed to MPP~+.
     Methods: siRNA technology was used to interfere the HDAC6 ofα-SNWT~+PC12 andα-SNA30P~+PC12 cells, and by western blot identification of interference efficiency; siRNA interference and / or MPP~+ were processed toα-SNWT~+PC12 andα-SNA30P~+PC12 cells. By western blot we observed the protein levels ofα-SN, LAMP-2a and HSC70, and through the confocal immunofluorescence technique to observe the co-location of LAMP-2a and LAMP-1 inα-SNWT~+PC12 cells. At the same time, we use of ELISA to observe the changes of RNase A inα-SNWT~+PC12 cells, and by immunoprecipitation further observed the role of HDAC6 on the acetylation of HSP90 and the interaction of HSP90 with LAMP-2a and HSC70.
     Results: It was found that the activity of chaperone-mediated autophagy (CMA) was increased and abnormal accumulated wild-typeα-SN was degraded in compensation, whilst mutantα-SN failed to be degraded by CMA. Inhibition of HDAC6 by RNAi resulted in different changing profiles of LAMP-2a and HSC70 in response to MPP~+, a slight decline in the former whereas an increase in the latter inα-SNA30P~+PC12 cells. Further studies revealed that the inhibition of HDAC6 interfered with the interaction of HSP90 with LAMP-2a and HSC70 by regulating the level of acetylated HSP90, resulting in the obstacles of chaperone-mediatedα-SN autophagic degradation pathway.
     Conclusions: These results demonstrate for the first time that by regulating HSP90 acetylation, HDAC6 disrupts the CMA-mediated removal of misfoldedα-SN aggregates induced by MPP~+. The findings may provide some clues to the potential therapeutic targets for synucleinopathies such as Parkinson disease.
     PartⅢThe role of HDAC6 on the cell injury resulted by MPP~+-inducedα-synuclein aggregates
     Objective: To study the role of HDAC6 on the cell injury resulted by MPP~+-induced alpha-synuclein (α-SN) aggregates, we treated PC-12 cells overexpressing human mutant (WT/A30P/A53T)α-SN and SH-SY5Y cells with MPP~+.
     Methods: At 12h after drug treatment, the cell viability was measured by means of MTT methods and LDH release assay. The apoptosis ratio was assessed by flow cytometry. The hallmarks of apoptosis and autophagy were assessed with transmission electron microscopy.
     Results: (1) Exposed to MPP~+ for 12 hours , the cell viability decreased, and lack of HDAC6 leads to the cell viability of overexpression of WT, A30P, A53Tα-SN PC12 further reduced; (2) Exposed to MPP~+ for 12 hours, cell injury increases, and lack of HDAC6 leads to the cell injury of over-expression WT, A30P, A53Tα-SN PC12 further increase; (3) Exposed to MPP~+ for 12 hours, the cells in early apoptosis significantly increase, inhibition of HDAC6 leads to the early apoptosis of overexpression of WT, A30P, A53Tα-SN PC12 cells further increase; (4) Live cell morphology and cell shape changes are induced by MPP~+, and the lack of HDAC6 leads to overexpression of WT, A30P, A53T α-SN PC12 cells accumulated, particularly in the cells overexpressing A53Tα-SN. (5) The cell autophagy increase in the ultrastructure of the cells treated with MPP~+; inhibition of HDAC6 leads to intracellular autophagic vesicles reduce, and different kinds of cells apoptosis changes were observed in theα-SNWT~+PC12 andα-SNA53T~+PC12 cells
     Conclusion: HDAC6 is a major factor to resist the MPP~+-induced toxicity stress. By regulating the degradation ofα-SN aggregates HDAC6 resists the MPP~+-induced toxicity stress.
引文
[1] Lau LM, and Breteler MM. Epidemiology of Parkinson's disease. Lancet Neurol, 2006, 5: 525-535.
    [2] Yacoubian TA, and Standaert DG. Targets for neuroprotection in Parkinson's disease. Biochim Biophys Acta. 2009. 1792: 676-87.
    [3] Uversky VN. Alpha-synuclein misfolding and neurodegenerative diseases. Curr Protein Pept Sci. 2008. 9: 507-40.
    [4] Cookson MR. alpha-Synuclein and neuronal cell death. Mol Neurodegener. 2009. 4: 9.
    [5] Mizuno Y, Hattori N, Kubo S, et al. Progress in the pathogenesis and genetics of Parkinson's disease. Philos Trans R Soc Lond B Biol Sci. 2008. 363: 2215-27.
    [6]张萍,刘康永,蔡增林,刘春风.α-突触核蛋白及其在帕金森病发病中的可能机制.中国临床神经科学. 2008. 16: 556-561.
    [7] Wu F, Poon WS, Lu G, et al. alpha-Synuclein knockdown attenuates MPP~+ induced mitochondrial dysfunction of SH-SY5Y cells. Brain Res. 2009. 8: 600-6
    [8] Wakabayashi K, Tanji K, Mori F, Takahashi H. The Lewy body in Parkinson's disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology. 2007. 27: 494-506.
    [9] Xu J, Kao SY, Lee FJ, et al. Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat Med. 2002. 8: 600-6.
    [10] Martinez-Vicente M, Talloczy Z, Kaushik S, et al. Dopamine-modified alpha- synuclein blocks chaperone-mediated autophagy. J Clin Invest. 2008. 118: 777-88.
    [11] Martinez-Vicente M, and Cuervo AM. Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol. 2007. 6: 352-61.
    [12] Webb JL, Ravikumar B, Atkins J, et al. Alpha-Synuclein is degraded by both autophagy and the proteasome. The Journal of biological chemistry, 2003.278: 25009-25013.
    [13] Xilouri M, Vogiatzi T, Vekrellis K, Stefanis L. alpha-synuclein degradation by autophagic pathways: a potential key to Parkinson's disease pathogenesis. Autophagy. 2008. 4: 917-9.
    [14] Rubinsztein DC. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature. 2006. 443: 780-6.
    [15]刘康永,刘春风,钱进军等.突变型α-核突触蛋白的自噬性降解途径及可能机制.中华神经科杂志. 2008. 41: 51-55.
    [16]杨昉,杨亚萍,曹碧茵等.自噬和蛋白酶体降解途径在突变型α-突触核蛋白PC12细胞凋亡中的作用.中华神经科杂志. 2009. 42: 258-262.
    [17] Yang F, Yang YP, Mao CJ, et al. Role of autophagy and proteasome degradation pathways in apoptosis of PC12 cells overexpressing human alpha-synuclein. Neurosci Lett. 2009. 454: 203-8.
    [18]石际俊,刘康永,杨亚萍,刘春风.自噬在帕金森病发病中的作用.生理科学进展. 2009. 1: 67-71.
    [19]马建芳,陈生弟.自噬在阿尔茨海默病发病机制中的作用.中国临床神经科学. 2008. 16: 208-210,216.
    [20] Liu KY, Yang YP, Yang F, et al. Therapeutic effect and probable mechanisim of Rapamycin on MPTP-induced parkinsonism in mice. Neurology. 2008. 70: A 421-A 422.
    [21] Settembre C, Fraldi A, Jahreiss L, et al. A block of autophagy in lysosomal storage disorders. Hum Mol Genet. 2008. 17: 119-29.
    [22] Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008. 132: 27-42.
    [23] Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008. 451: 1069-75.
    [24] Korolchuk VI, Menzies FM, Rubinsztein DC. A novel link between autophagy and the ubiquitin-proteasome system. Autophagy. 2009. 5: 862-3.
    [25] Kawaguchi Y, Kovacs JJ, McLaurin A, et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell. 2003. 115: 727-38.
    [26] Kimura S, Noda T, and Yoshimori T. Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct Funct. 2008. 33: 109-22.
    [27] Reed NA, Cai D, Blasius TL, et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol. 2006. 16: 2166-72.
    [28] Cai ZL, Shi JJ, Yang YP, et al. MPP~+ impairs autophagic clearance of alpha- synuclein by impairing the activity of dynein. Neuroreport. 2009. 20: 569-73.
    [29]石际俊,蔡增林,张萍等. 1-甲基-4-苯基吡啶离子诱导嗜铬细胞瘤细胞自噬应激并导致α-突触核蛋白的自噬性清除障碍.中华神经科杂志. 2009. 42: 625-630.
    [30] Matthias P, Yoshida M, Khochbin S. HDAC6 a new cellular stress surveillance factor. Cell Cycle. 2008. 7: 7-10.
    [31] Boyault C, Zhang Y, Fritah S, et al. HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev. 2007. 21: 2172-81.
    [32] Boyault C, Sadoul K, Pabion M, Khochbin S. HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination. Oncogene. 2007. 26: 5468-76.
    [33] Pandey UB, Batlevi Y, Baehrecke EH, Taylor JP. HDAC6 at the intersection of autophagy, the ubiquitin-proteasome system and neurodegeneration. Autophagy. 2007. 3: 643-5.
    [34] Pandey UB, Nie Z, Batlevi Y, et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature. 2007. 447: 859-63.
    [35] Lee JY, Koga H, Kawaguchi Y, et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 2010.26: 5468-76
    [36] Iwata A, Riley BE, Johnston JA, Kopito RR. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem. 2005. 280: 40282-92.
    [37] Perez M, Santa-Maria I, de Barreda EG, et al. Tau - an inhibitor of deacetylase HDAC6 function. J Neurochem. 2009.21: 2172-81.
    [38] Dompierre JP, Godin JD, Charrin BC, et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J Neurosci. 2007. 27: 3571-83.
    [1] Sherer TB, Betarbet R, Stout AK, et al. An in vitro model of Parkinson's disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J neurosci. 2002. 22: 7006-7015.
    [2] Iwatsubo T. Pathological biochemistry of alpha-synucleinopathy. Neuropathology. 2007.27: 474-478.
    [3] Gomez-Santos C, Ferrer I, Reiriz J, et al. MPP~+ increases alpha-synuclein expression and ERK/MAP-kinase phosphorylation in human neuroblastoma SH-SY5Y cells. Brain Res. 2002.935: 32-39.
    [4] Webb JL, Ravikumar B, Atkins J, et al. Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol chem.2003. 278: 25009-25013.
    [5] Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L. Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem. 2008. 283: 23542-56.
    [6] Levine B, and Kroemer G. Autophagy in the pathogenesis of disease. Cell.2008.132: 27-42.
    [7] Garcia-Arencibia M, Hochfeld WE, et al. Autophagy, a guardian against neurodegeneration. Seminars in cell & developmental biology.2010.21: 691-698.
    [8] Yang F, Yang YP, and Liu CF. Role of autophagy and proteasome degradation pathways in apoptosis of PC12 cells overexpressing human alpha-synuclein. Neuroscience letters. 2009. 454: 203-208.
    [9] Cai ZL, Shi JJ, and Liu CF. MPP~+ impairs autophagic clearance of alpha-synuclein by impairing the activity of dynein. Neuroreport. 2009. 20: 569-573.
    [10] Cherra SJ, Chu CT. Autophagy in neuroprotection and neurodegeneration: A question of balance. Future Neurol. 2008. 3: 309-323.
    [11] Madeo F, Eisenberg T, Kroemer G. Autophagy for the avoidance of neurodegeneration. Genes Dev. 2009. 23: 2253-9.
    [12] Kubota H. Quality control against misfolded proteins in the cytosol: a network for cell survival. J Bio chem. 2009. 146: 609-16.
    [13] Kawaguchi Y,Kovacs JJ, and Yao TP. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell. 2003.115: 727-738.
    [14] Iwata A, Riley BE, Johnston JA, and Kopito RR. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Bio chem. 2005.280:40282-40292.
    [15] Lee JY, Koga H, Kawaguchi Y, et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. The EMBO.2010.29: 969-980.
    [16] Boyault C, Zhang Y, Fritah S, et al. HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev.2007.21: 2172-2181.
    [17] Haggarty SJ, Koeller KM, and Schreiber SL. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proceedings of the National Academy of Sciences of the United States of America, 2003.100:4389-4394.
    [18] Qian JJ, Cheng YB, and Liu CF. Differential effects of overexpression of wild-type and mutant human alpha- synuclein on MPP~+-induced neurotoxicity in PC12 cells. Neuroscience letters. 2008.435: 142-146.
    [19] Frederick MA, Roger B, Robert EK, et al. Short protocols in molecular biology.3rd ed. Beijing: Scicencs Press. 1998.38: 17-24
    [20] Botella JA, Bayersdorfer F, and Schneuwly S. Superoxide dismutase overexpression protects dopaminergic neurons in a Drosophila model of Parkinson's disease. Neurobiology of disease. 2008. 30: 65-73.
    [21] Kalivendi SV, Cunningham S, Kotamraju S, et al. Alpha-synuclein up-regulation and aggregation during MPP~+-induced apoptosis in neuroblastoma cells: intermediacy of transferrin receptor iron and hydrogen peroxide. J Bio chem. 2004. 279: 15240-15247.
    [22] Li, W., West, N., Colla, E. et al. Aggregation promoting C-terminal truncation of alpha-synuclein is a normal cellular process and is enhanced by the familial Parkinson's disease-linked mutations. Proceedings of the National Academy of Sciences of the United States of America. 2005.102: 2162-2167.
    [23] Caron C, Boyault C, and Khochbin S. Regulatory cross-talk between lysine acetylation and ubiquitination: role in the control of protein stability. Bioessays.2005.27: 408-415.
    [24] Chu CT. Autophagic stress in neuronal injury and disease. J Neuropathol Exp Neurol, 2006. 65: 423-432.
    [25] Galluzzi L, Aaronson SA, Abrams J,et al. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell death and differentiation. 2009. 16: 1093-1107.
    [26] Giasson BI, Duda JE, and Lee VM. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science (New York, N.Y.). 2000.290: 985-989.
    [27] Haggarty SJ, Koeller KM, and Schreiber SL. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proceedings of the National Academy of Sciences of the United States of America. 2003. 100: 4389-4394.
    [28] Kontopoulos E, Parvin JD, and Feany MB. Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum Mol Genet. 2006. 15: 3012-3023.
    [29] Levine B. and Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell.2004. 6: 463-477.
    [30] Matthias P, Yoshida M, and Khochbin S. HDAC6 a new cellular stress surveillance factor. Cell cycle.2008. 7: 7-10.
    [31] Nawrocki ST, Carew JS, and McConkey DJ. Myc regulates aggresome formation, the induction of Noxa, and apoptosis in response to the combination of bortezomib and SAHA. Blood.2008.112: 2917-2926.
    [32] Pandey UB, Batlevi Y, Baehrecke EH, and Taylor JP. HDAC6 at the intersection of autophagy, the ubiquitin-proteasome system and neurodegeneration. Autophagy.2007. 3: 643-645.
    [33] Rodriguez-Gonzalez A, Lin T, and Sakamoto KM. Role of the aggresome pathway in cancer: targeting histone deacetylase 6-dependent protein degradation.Cancerresearch. 2008.68: 2557-2560.
    [34] Saito Y, Suzuki K, Hulette CM, and Murayama S. Aberrant phosphorylation of alpha-synuclein in human Niemann-Pick type C1 disease. J Neuropathol Exp Neurol.2004.63: 323-328.
    [35] Uversky VN. Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. J Neurochem. 2007. 103: 17-37.
    [36] Wersinger C, Prou D, Vernier P, and Sidhu A. Modulation of dopamine transporter function by alpha-synuclein is altered by impairment of cell adhesion and by induction of oxidative stress. FASEB J. 2003. 17: 2151-2153.
    [37] Winklhofer KF, Tatzelt J, and Haass C. The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases. The EMBO.2008.27: 336-349.
    [38] Xilouri M, Vogiatzi T, Vekrellis K, and Stefanis L. alpha-synuclein degradation by autophagic pathways: a potential key to Parkinson's disease pathogenesis. Autophagy. 2008. 4: 917-919.
    [39] Zhang YL, Cao Y J, Zhang X, and Liu CF. The autophagy-lysosome pathway: a novel mechanism involved in the processing of oxidized LDL in human vascular endothelial cells. Biochem Biophys Res Commun. 2010. 394: 377-382.
    [40] Zou H, Wu Y, Navre M, and Sang BC. Characterization of the two catalytic domains in histone deacetylase 6. Biochem Biophys Res Commun. 2006. 341: 45-50.
    [41] Huang JZ, Chen YZ, Su M,et al. DL-3-n- butylphthalide prevents oxidative, nitrosative damage and mitochondrial dysfunction in a MPP~+-induced cellular model of Parkinson's disease. Neurosci Lett. 2010. 475: 89-94.
    [42] Cao BY, Yang YP, and Liu CF. Paeoniflorin, a potent natural compound, protects PC12 cells from MPP(+) and acidic damage via autophagic pathway. J Ethnopharmacol. 2010.131: 122-9.
    [43] Lee JY, Koga H, Kawaguchi Y, et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 2010. 29: 969-80.
    [44] Kekatpure VD, Dannenberg AJ, and Subbaramaiah K. HDAC6 modulates Hsp90 chaperone activity and regulates activation of aryl hydrocarbon receptor signaling. J Biol Chem. 2009. 284: 7436-45.
    [45] Yang Y, Rao R, Shen J, et al. Role of acetylation and extracellular location of heat shock protein 90alpha in tumor cell invasion. Cancer Res. 2008. 68: 4833-42.
    [46] Vousden KH, Ryan KM. p53 and metabolism. Nat Rev Cancer. 2009. 9: 691-700.
    [47] Nawrocki ST, Carew JS, Maclean KH, et al. Myc regulates aggresome formation, the induction of Noxa, and apoptosis in response to the combination of bortezomib and SAHA. Blood. 2008. 112: 2917-26.
    [48] Barre B, and Perkins ND. The Skp2 promoter integrates signaling through the NF-kappaB, p53, and Akt/GSK3beta pathways to regulate autophagy and apoptosis. Mol Cell. 2010. 38: 524-38.
    [1] Zhang Y, Kwon S, Yamaguchi T, et al. Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol Cell Biol. 2008. 28: 1688-701.
    [2] Aoyagi S, and Archer TK.Modulating molecular chaperone Hsp90 functions through reversible acetylation. Trends in cell biology. 2005.15: 565-567.
    [3] Bali P, Pranpat M, Bradner J, et al. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol chem. 2005. 280: 26729-26734..
    [4] Bandyopadhyay U, and Cuervo AM. Entering the lysosome through a transient gate by chaperone-mediated autophagy. Autophagy. 2008. 4:1101-1103.
    [5] Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM.The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Molecular and cellular biology.2008. 28: 5747-5763.
    [6] Cai ZL, Shi JJ,and Liu CF. MPP~+ impairs autophagic clearance of alpha-synuclein byimpairing the activity of dynein. Neuroreport. 2009. 20: 569-573.
    [7] Caron C, Boyault C, Khochbin S.Regulatory cross-talk between lysine acetylation and ubiquitination: role in the control of protein stability. Bioessays. 2005. 27: 408- 415.
    [8] Ciechanover A. Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Cell death and differentiation.2005. 12: 1178-1190.
    [9] Cuervo AM. Chaperone-mediated autophagy: selectivity pays off. Trends in endocrinology and metabolism: TEM. 2010. 21: 142-150.
    [10] Cuervo AM, and Dice JF. A receptor for the selective uptake and degradation of proteins by lysosomes. Science. 1996. 273: 501-503.
    [11] Cuervo AM, and Dice JF. Regulation of lamp2a levels in the lysosomal membrane. Traffic.2000. 1: 570-583.
    [12] Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D.Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science. 2004.305: 1292-1295.
    [13] Dauer W, Kholodilov N, Vila M,et al. Resistance of alpha -synuclein null mice to the parkinsonian neurotoxin MPTP. Proceedings of the National Academy of Sciences of the United States of America. 2002. 99: 14524-14529.
    [14] Dice JF .Chaperone-mediated autophagy. Autophagy. 2007. 3: 295-299.
    [15] Giasson BI, Duda JE, Murray IV,et al. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science. 2000. 290: 985-989.
    [16] Iwata A, Riley BE, Johnston JA, Kopito RR. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol chem. 2005. 280: 40282-40292.
    [17] Iwatsubo T. Pathological biochemistry of alpha-synucleinopathy. Neuropathology: official journal of the Japanese Society of Neuropathology. 2007. 27: 474-478.).
    [18] Kaul S, Anantharam V, Kanthasamy A, Kanthasamy AG. Wild-type alpha-synuclein interacts with pro-apoptotic proteins PKCdelta and BAD to protect dopaminergicneuronal cells against MPP+-induced apoptotic cell death. Brain Res Mol Brain Res 2005.139: 137-152.
    [19] Kaushik S, Kiffin R, and Cuervo AM.Chaperone-mediated autophagy and aging: a novel regulatory role of lipids revealed. Autophagy.2007. 3: 387-389.
    [20] Kaushik S, Massey AC, Cuervo AM.Lysosome membrane lipid microdomains: novel regulators of chaperone-mediated autophagy. The EMBO. 2006. 25: 3921- 3933.
    [21] Knecht E, Aguado C, Carcel J,et al. Intracellular protein degradation in mammalian cells: recent developments. Cellular and molecular life sciences: CMLS 2009. 66: 2427-2443.
    [22] Kontopoulos E, Parvin JD, and Feany MB. Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum Mol Genet. 2006.15: 3012-3023.
    [23] Kovacs JJ, Murphy PJ, Gaillard S,et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Molecular cell. 2005. 18: 601-607.
    [24] Lee JY, Koga H, Kawaguchi Y, et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. The EMBO journal. 2010. 29: 969-980.
    [25] Lee M, Hyun D, Halliwell B, and Jenner P. Effect of the overexpression of wild-type or mutant alpha-synuclein on cell susceptibility to insult. J Neurochem. 2001. 76: 998-1009.
    [26] LothariusJ, Dugan LL, and O'Malley KL. Distinct mechanisms underlie neurotoxin- mediated cell death in cultured dopaminergic neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience.1999. 19: 1284-1293.
    [27] Mak SK, McCormack AL, Manning-Bog AB, et al. Lysosomal degradation of alpha-synuclein in vivo. J Biol chem.2010. 285: 13621-13629.
    [28] Martinez-Vicente M, Talloczy Z, Kaushik S, et al.Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. The Journal of clinical investigation. 2008. 118: 777-788.
    [29] Massey AC, Kaushik S, Sovak G,et al. Consequences of the selective blockage ofchaperone-mediated autophagy. Proceedings of the National Academy of Sciences of the United States of America. 2006. 103: 5805-5810.
    [30] Orenstein SJ, and Cuervo AM. Chaperone-mediated autophagy: Molecular mechanisms and physiological relevance. Seminars in cell & developmental biology. 2010. 101: 123-145.
    [31] Pandey UB, Batlevi Y, Baehrecke EH, Taylor JP .HDAC6 at the intersection of autophagy, the ubiquitin-proteasome system and neurodegeneration. Autophagy. 2007. 3: 643-645.
    [32] Parmigiani RB, Xu WS, Venta-Perez G, et al.HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation. Proceedings of the National Academy of Sciences of the United States of America. 2008. 105: 9633-9638.
    [33] Qian JJ, Cheng YB, and Liu CF. Differential effects of overexpression of wild-type and mutant human alpha-synuclein on MPP+-induced neurotoxicity in PC12 cells. Neuroscience letters. 2008. 435: 142-146.
    [34] Saito Y, Suzuki K, Hulette CM, Murayama S.Aberrant phosphorylation of alpha- synuclein in human Niemann-Pick type C1 disease. J Neuropathol Exp Neurol. 2004. 63: 323-328.
    [35] Sharp S, and Workman P. Inhibitors of the HSP90 molecular chaperone: current status. Advances in cancer research. 2006. 95: 323-348.
    [36] Shen S, Zhang P, Lovchik MA,et al.Cyclodepsipeptide toxin promotes the degradation of Hsp90 client proteins through chaperone-mediated autophagy. The Journal of cell biology. 2009. 185: 629-639.
    [37] Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L.Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol chem. 2008. 283: 23542-23556.
    [38] Webb JL, Ravikumar B, Atkins J, et al. Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol chemi. 2003. 278: 25009-25013.
    [39] Wersinger C, Prou D, Vernier P, Sidhu A. Modulation of dopamine transporter function by alpha-synuclein is altered by impairment of cell adhesion and by induction of oxidative stress. FASEB J. 2003. 17: 2151-2153.
    [40] Whitesell L, and Lindquist SL. HSP90 and the chaperoning of cancer. Nature reviews Cancer. 2005. 5: 761-772.
    [41] Winklhofer KF, Tatzelt J, Haass C. The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases. The EMBO. 2008. 27: 336- 349.
    [42] Xilouri M, Vogiatzi T, Vekrellis K, et al. Abberant alpha-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy. PloS one. 2009. 4: e5515.
    [43] Xilouri M, Vogiatzi T, Vekrellis K, Stefanis L.alpha-synuclein degradation by autophagic pathways: a potential key to Parkinson's disease pathogenesis. Autophagy. 2008. 4: 917-919.
    [44] Yang Q, She H, Gearing M, et al. Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy. Science. 2009. 323: 124-127.
    [45] Yang Y, Rao R, Shen J, et al. Role of acetylation and extracellular location of heat shock protein 90alpha in tumor cell invasion. Cancer research.2008. 68: 4833-4842.
    [1] Uversky VN. Alpha-synuclein misfolding and neurodegenerative diseases. Curr Protein Pept Sci. 2008. 9: 507-40.
    [2] Martinez-Vicente M, and Cuervo AM. Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol. 2007. 6: 352-61.
    [3] Levine B, and Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008. 132: 27-42.
    [4] Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008. 451: 1069-75.
    [5] Matthias P, Yoshida M, and Khochbin S. HDAC6 a new cellular stress surveillance factor. Cell Cycle. 2008. 7: 7-10.
    [6] Boyault C, Zhang Y, Fritah S, et al. HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev. 2007. 21: 2172-81.
    [7] Boyault C, Sadoul K, Pabion M, Khochbin S. HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination. Oncogene. 2007. 26: 5468-76.
    [8] Pandey UB, Batlevi Y, Baehrecke EH, Taylor JP. HDAC6 at the intersection of autophagy, the ubiquitin-proteasome system and neurodegeneration. Autophagy. 2007. 3: 643-5.
    [9] Pandey UB, Nie Z, Batlevi Y, et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature. 2007. 447: 859-63.
    [10] Xilouri M, Vogiatzi T, Vekrellis K, Stefanis L. alpha-synuclein degradation by autophagic pathways: a potential key to Parkinson's disease pathogenesis. Autophagy. 2008. 4: 917-9.
    [11] Cookson MR. alpha-Synuclein and neuronal cell death. Mol Neurodegener. 2009. 4: 9.
    [12] Mizuno Y, Hattori N, Kubo S, et al. Progress in the pathogenesis and genetics ofParkinson's disease. Philos Trans R Soc Lond B Biol Sci. 2008. 363: 2215-27.
    [13] Wakabayashi K, Tanji K, Mori F, Takahashi H. The Lewy body in Parkinson's disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology. 2007. 27: 494-506.
    [14] Xu J, Kao SY, Lee FJ, et al. Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat Med. 2002. 8: 600-6.
    [15] Martinez-Vicente M, Talloczy Z, Kaushik S, et al. Dopamine-modified alpha- synuclein blocks chaperone-mediated autophagy. J Clin Invest. 2008. 118: 777-88.
    [16] Yacoubian TA, Standaert DG. Targets for neuroprotection in Parkinson's disease. Biochim Biophys Acta. 2009. 1792: 676-87.
    [17] Liu KY, Yang YP, Yang F, et al. Therapeutic effect and probable mechanisim of Rapamycin on MPTP-induced Parkinsonism in mice. Neurology. 2008. 70 (11Suppl.1): A 421-A 422.
    [18] Settembre C, Fraldi A, Jahreiss L, et al. A block of autophagy in lysosomal storage disorders. Hum Mol Genet. 2008. 17: 119-29.
    [19] Ramirez A, Heimbach A, Grundemann J, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet. 2006. 38: 1184-91.
    [20] Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L. Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem. 2008. 283: 23542-56.
    [21] Rubinsztein DC. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature. 2006. 443: 780-6.
    [22] Massey AC, Kaushik S, Sovak G, Kiffin R, Cuervo AM. Consequences of the selective blockage of chaperone-mediated autophagy. Proc Natl Acad Sci U S A. 2006. 103: 5805-10.
    [23] Korolchuk VI, Menzies FM, Rubinsztein DC. A novel link between autophagy andthe ubiquitin-proteasome system. Autophagy. 2009. 5: 862-3.
    [24] Cherra SJ, Chu CT. Autophagy in neuroprotection and neurodegeneration: A question of balance. Future Neurol. 2008. 3: 309-323.
    [25] Malagelada C, Jin ZH, Jackson-Lewis V, Przedborski S, Greene LA. Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson's disease. J Neurosci. 2010. 30: 1166-75.
    [26] Madeo F, Eisenberg T, Kroemer G. Autophagy for the avoidance of neurodegeneration. Genes Dev. 2009. 23: 2253-9.
    [27] Kimura S, Noda T, Yoshimori T. Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct Funct. 2008. 33: 109-22.
    [28] Valenzuela-Fernandez A, Cabrero JR, Serrador JM, Sanchez-Madrid F. HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions. Trends Cell Biol. 2008. 18: 291-7.
    [29] Iwata A, Riley BE, Johnston JA, Kopito RR. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem. 2005. 280: 40282-92.
    [30] Kubota H. Quality control against misfolded proteins in the cytosol: a network for cell survival. J Biochem. 2009. 146: 609-16.
    [31] Perez M, Santa-Maria I, de Barreda EG, et al. Tau - an inhibitor of deacetylase HDAC6 function. J Neurochem. 2009. 123: 1688-701.
    [32] Jeong H, Then F, Melia TJ Jr, et al. Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell. 2009. 137: 60-72.
    [33] Zhang Y, Kwon S, Yamaguchi T, et al. Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol Cell Biol. 2008. 28: 1688-701.
    [34] Reed NA, Cai D, Blasius TL, et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol. 2006. 16: 2166-72.
    [35] Dompierre JP, Godin JD, Charrin BC, et al. Histone deacetylase 6 inhibitioncompensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J Neurosci. 2007. 27: 3571-83.
    [36] Rivieccio MA, Brochier C, Willis DE, et al.HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc Natl Acad Sci U S A. 2009. 106: 19599-604.
    [37] Wickstrom SA, Masoumi KC, Khochbin S, Fassler R, Massoumi R. CYLD negatively regulates cell-cycle progression by inactivating HDAC6 and increasing the levels of acetylated tubulin. EMBO J. 2010. 29: 131-44.
    [38] Lee YS, Lim KH, Guo X, et al.. The cytoplasmic deacetylase HDAC6 is required for efficient oncogenic tumorigenesis. Cancer Res. 2008. 68: 7561-9.
    [39] Vaughan EE, Geiger RC, Miller AM, et al.. Microtubule acetylation through HDAC6 inhibition results in increased transfection efficiency. Mol Ther. 2008. 16: 1841-7.
    [40] Kekatpure VD, Dannenberg AJ, Subbaramaiah K. HDAC6 modulates Hsp90 chaperone activity and regulates activation of aryl hydrocarbon receptor signaling. J Biol Chem. 2009. 284: 7436-45.
    [1] Rubinsztein DC. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature. 2006. 443: 780-786.
    [2] Ding WX, Yin XM. Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome. Autophagy. 2008. 4: 141-50.
    [3] Pandey UB, Nie Z, Batlevi Y,et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature Letters. 2007. 447: 859-863.
    [4] Agust?′n VF, Roma′n C, Juan MS, et al. HDAC6: a key regulator of cytoskeleton, cell migration and cell–cell interactions. Cell Biol. 2008. 18: 291-297
    [5] Han Y, Jeong HM, Jin YH, et al. Acetylation of histone deacetylase 6 by p300 attenuates its deacetylase activity. Biochem Biophys Res Commun. 2009. 383: 88-92.
    [6] Mosley AJ, Meekings KN, McCarthy C, et al.. Histone deacetylase inhibitors increase virus gene expression but decrease CD8+ cell antiviral function in HTLV-1 infection. Blood. 2006. 108: 3801-7.
    [7] Boyault C, Zhang Y, Fritah S,et al. HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev. 2007. 21: 2172-81.
    [8] Dhakal BK, Mulvey MA. Uropathogenic Escherichia coli invades host cells via an HDAC6-modulated microtubule-dependent pathway. J Biol Chem. 2009. 284: 446- 454.
    [9] Parmigiani RB, Xu WS, Venta-Perez G, et al.. HDAC6 is a specific deacetylase ofperoxiredoxins and is involved in redox regulation. Proc Natl Acad Sci U S A. 2008. 105: 9633-8.
    [10] Fiskus W, Rao R, Fernandez P,et al. Molecular and biologic characterization and drug sensitivity of pan-histone deacetylase inhibitor-resistant acute myeloid leukemia cells. Blood. 2008. 112:2896-905.
    [11] Pan T, Kondo S, Le W, Jankovic J. The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease. Brain. 2008. 131: 1969-78.
    [12] Rao R, Fiskus W, Yang Y, et al. HDAC6 inhibition enhances 17-AAG--mediated abrogation of hsp90 chaperone function in human leukemia cells. Blood. 2008. 112: 1886-93.
    [13] Tannous P, Zhu H, Nemchenko A, et al. Intracellular protein aggregation is a proximal trigger of cardiomyocyte autophagy. Circulation. 2008. 117: 3070-8.
    [14] Deretic V. A Master Conductor for Aggregate Clearance by Autophagy. Dev Cell. 2010. 18: 694-696.
    [15] Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008. 132: 27-42.
    [16] Levine B, Ranganathan R. Autophagy: Snapshot of the network. Nature. 2010. 466: 38-40.
    [17] Jiang Q, Ren Y, Feng J. Direct binding with histone deacetylase 6 mediates the recruitment of parkin to the centrosome. J Neurosci. 2008. 28: 12993-13002.
    [18] Boyault C, Gilquin B, Zhang Y, et al. HDAC6-p97/VCPcontrolledpolyubiquitin chain turnover. EMBO J. 2006.25: 3357-3366.
    [19] Simms-Waldrip T, Rodriguez-Gonzalez A, Lin T, et al.The aggresome pathway as a target for therapy in hematologic malignancies. Mol Genes Metabol. 2008. 94: 283-286.
    [20] Kwon S, Zhang Y, and Matthias P. The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. Genes Dev. 2007. 21: 3381-3394.
    [21] Olzmann JA, Li L, Chudaev MV, et al.. Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. JCell Biol. 2007. 178: 1025-38.
    [22] Reed NA, Cai D, Blasius TL, et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol. 2006. 16: 2166-2172.
    [23] Ding H, Philip JD, Gail VW. Histone deacetylase interacts with the microtubule-associated protein tau. J Neurochem. 2008.106: 2119-2130.
    [24] Cabrero JR, Serrador JM, Barreiro O, et al.. Lymphocyte chemotaxis is regulated by histone deacetylase 6, independently of its deacetylase activity. Mol Biol Cell. 2006. 17: 3435-45.
    [25] Carta S, Tassi S, Semino C, et al. Histone deacetylase inhibitors prevent exocytosis of interleukin-1beta-containing secretory lysosomes: role of microtubules. Blood. 2006. 108: 1618-1626.
    [26] Lee JY, Nagano Y, Taylor JP, Lim KL, Yao TP. Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J Cell Biol. 2010. 189: 671-9.
    [27] Wickstrom SA, Masoumi KC, Khochbin S, Fassler R, Massoumi R. CYLD negatively regulates cell-cycle progression by inactivating HDAC6 and increasing the levels of acetylated tubulin. EMBO J. 2010. 29: 131-44.
    [28] Milani M, Rzymski T, Mellor HR, et al. The role of ATF4 stabilization and autophagy in resistance of breast cancer cells treated with Bortezomib. Cancer Res. 2009. 69: 4415-23.
    [29] Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci U S A. 2003. 100: 4389-94.
    [30] Dompierre JP, Godin JD, Charrin BC, et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J Neurosci. 2007. 27: 3571-83.
    [31] Scroggins BT, Robzyk K, Wang D, et al. An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol Cell. 2007. 25: 151-159.
    [32] Yang Y, Rao R, Shen J, et al. Role of acetylation and extracellular location of heat shock protein 90 alpha in tumor cell invasion. Cancer Rec. 2008. 68: 4833-4842.
    [33] Bandyopadhyay U, Kaushik S, Varticovski L, et al. The Chaperone-mediatedautophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol cell bio. 2008. 28: 5747-5763.
    [34] Kovacs JJ, Murphy PJ, Gaillard S, et al.. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell. 2005. 18: 601-7.
    [35] Nawrocki ST, Carew JS, Maclean KH, et al. Myc regulates aggresome formation, the induction of Noxa, and apoptosis in response to the combination of bortezomib and SAHA. Blood. 2008. 112: 2917-26.
    [36] Vousden KH, Ryan KM. p53 and metabolism. Nat Rev Cancer. 2009. 9: 691-700.
    [37] Maclean KH, Dorsey FC, Cleveland JL, Kastan MB. Targeting lysosomal degradation induces p53-dependent cell death and prevents cancer in mouse models of lymphomagenesis. J Clin Invest. 2008. 118: 79-88.
    [38] Vaughan EE, Geiger RC, Miller AM, et al.. Microtubule acetylation through HDAC6 inhibition results in increased transfection efficiency. Mol Ther. 2008. 16: 1841-7.
    [39] Perez M, Santa-Maria I, Gomez BE,et al. Tau-an inhibitor of deacetylase HDAC6 function. Neurochem. 2009.109: 1756-66.
    [40] Jim P, Juliette D, Bénédicte C, et al. Neurobiology of Disease Histone Deacetylase 6 Inhibition Compensates for the Transport Deficit in Huntington's Disease by Increasing Tubulin Acetylation. J Neuroscience. 2007. 27: 3571-3583.
    [41] Du G, Liu X, Chen X, et al.. Drosophila histone deacetylase 6 protects dopaminergic neurons against {alpha}-synuclein toxicity by promoting inclusion formation. Mol Biol Cell. 2010. 21: 2128-37.
    [42] Svetec N, Pavlidis P, Stephan W. Recent strong positive selection on Drosophila melanogaster HDAC6, a gene encoding a stress surveillance factor, as revealed by population genomic analysis. Mol Biol Evol. 2009. 26: 1549-56.
    [43] Zhang Y,Kwon S,YamaguchiT,et al.Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally.Mol Cell Biol. 2008. 28: 1688-1701.
    [44] Nawrocki ST, Carew JS, Maclean KH, et al. Myc regulates aggresome formation, the induction of Noxa, and apoptosis in response to the combination of bortezomib andSAHA. Blood. 2008. 112: 2917-26.
    [45] Parmigiani RB, Xu WS, Venta-Perez G, et al.. HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation. Proc Natl Acad Sci U S A. 2008. 105: 9633-8.
    [46] Rivieccio MA, Brochier C, Willis DE, et al.. HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc Natl Acad Sci U S A. 2009. 106: 19599-604.
    [47] Lee JY, Koga H, Kawaguchi Y, et al.. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 2010. 29: 969-80.
    [48] Lee YS, Lim KH, Guo X, et al. The cytoplasmic deacetylase HDAC6 is required for efficient oncogenic tumorigenesis. Cancer Res. 2008. 68: 7561-9.
    [49] Lee JY, Yao TP. Quality control autophagy: A joint effort of ubiquitin, protein deacetylase and actin cytoskeleton. Autophagy. 2010. 6: 969-80.
    [50] Pandey UB, Batlevi Y, Baehrecke EH, Taylor JP. HDAC6 at the intersection of autophagy, the ubiquitin-proteasome system and neurodegeneration. Autophagy. 2007. 3: 643-5.
    [51] Bazzaro M, Lin Z, Santillan A, et al.. Ubiquitin proteasome system stress underlies synergistic killing of ovarian cancer cells by bortezomib and a novel HDAC6 inhibitor. Clin Cancer Res. 2008. 14: 7340-7.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.