浮游植物瑞利散射光谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用荧光技术研究浮游植物主要基于色素的荧光光谱,Rayleigh(瑞利)散射、二次散射等光散射一直被做为干扰因素而加以降低、排除或避开。事实上,光散射光谱,尤其是Rayleigh散射光谱中蕴藏着关于藻细胞结构与数量的信息,将其与色素的荧光光谱相结合,获取更为全面的活体浮游植物光谱信息,这对于进行浮游植物识别和数量估计具有重要的意义。
     本文选取了东海赤潮多发区的11种浮游植物进行研究,共计甲藻3种,硅藻6种,绿藻1种,金藻1种,包括:塔玛亚历山大藻(Alexandrium tamarense)、等鞭金藻(Isochrysis galbana 3012)、岛国大扁藻(Platymonas helgolanidica)、东海原甲藻(Prorocentrum micans)、中肋骨条藻(Skeletonema costatuma)、尖刺拟菱形藻(Pseudo-nitzschia pungens (PS0201-01))、新月菱形藻(Nitzschia closterium)、旋链角毛藻(Chaetoceros Curvisetus)、纤细角毛藻(Chaetoceros Debilis)、双突角毛藻(Chaetoceros Didymus)和裸甲藻(Gymnodinium sp)。通过对3个温度水平(15℃、20℃、25℃)、3个光照水平(7000 lux、4100 lux、1180 lux)、一个生长周期(1-8天)的活体荧光光谱和Rayleigh散射光谱进行了研究。本论文的主要研究成果如下:
     1.光谱特征的研究.对11种浮游植物的全波段三维荧光光谱进行了研究,共得到了3类谱:原始Rayleigh散射谱、组合谱和重构Rayleigh散射谱。其中,组合谱是色素荧光特征谱char_Dv1与原始Rayleigh散射谱首尾相连组成( char_Dv1是去除Rayleigh散射后,取λem在670-690nm之间的三维光谱进行奇异值分解,取出的相应于激发光谱的第一主成分);重构Rayleigh散射谱是指取主成分分析中,取70%贡献率的前n个主成分重构所得的光谱。分别对三者进行了Bayesian判别分析,结果表明重构Rayleigh散射谱的判别分析效果最佳,组合谱次之,原始Rayleigh散射谱最差。
     2.浮游植物的光谱相似性的比较.分别用平均相对误差和平均相关系数两种指标考察了上述3类谱的相似性。结果表明:两种指标衡量三类谱的相似性基本一致。Rayleigh散射光谱的相似性Pl、Sk和Cu最好,Ps、Cl、Di的最差;重构Rayleigh散射光谱的相似性Is、Pl、Sk和Cu的最好,Ps的最差;组合谱Is、Pl、Sk和Cu相似性依然是最好,Ps相似性最差;本文选取组合谱进行浮游植物种类识别和数量估计。
     3.混合光谱的定性定量分析.首先,寻找浮游植物数量与Rayleigh散射谱的最高峰的定量关系。对原始Rayleigh散射谱进行主成分分析,得到11种浮游植物的标准谱,找出各自的最高散射峰λmax。取20℃,7000 lux培养条件下、生长状态良好、处于指数生长期的11种浮游植物,进行不同浓度层次的梯度实验,发现对实验选用的11种浮游植物,细胞密度与其各自的最高散射峰λmax强度和活体叶绿素荧光强度均呈较好的线性关系。其次,依据组合谱,采用遍历非负最小二乘法,对实验设计的59个浮游植物混合样品进行了定性定量分析。进而讨论了物种数的确定与定性正确率的规定,选定拆分系数阈值为0.25。在属的层次上拆分,拆分正确率为76%,在纲的层次上拆分,正确率为90%;2物种混合样品有46个,在属的层次上拆分,拆分正确率为76%,在纲的层次上拆分,正确率为91%;甲藻硅藻混合样品有28个,在属的层次上拆分正确率为78%,在纲的层次上拆分,正确率为93%。最后,根据拆分系数、混合样品Rayleigh散射峰λmax的强度,以及不同培养条件下细胞密度与散射峰λmax强度的线性方程,估计混合样品中不同浮游植物的细胞密度。
     4.对经lugol染色固定浮游植物的Rayleigh散射光谱进行初步研究,通过主成分分析得到各浮游植物的标准谱各一条,发现其强度与活体Rayleigh散射光谱相比,强度增大很多、且谱型差异很大,但是随存放时间的增长强度迅速下降。考察染色后Rayleigh散射光谱的相似性,发现与活体光谱的相似性相当。
     总之,本文对活体浮游植物的Rayleigh散射光谱进行了研究,将其与活体色素荧光特征相结合,得到了具有定性定量区分能力的组合谱。在本实验条件下,浮游植物数量与其荧光强度及Rayleigh散射强度三者具有良好的相关性,运用遍历非负最小二乘法定性定量识别实验设计的混合样品正确率较单独使用浮游植物的色素荧光光谱有所提高。
Three dimensional fluorescence spectrum is used for monitoring phytoplankton classes and their abundance in previous study. Avoiding or eliminating Rayleigh scatter signals is often a key procedure for improving detection sensitivity in phytoplankton fluorescence analysis in the previous study. However, it is found that there are much useful information of cell contents and abundance in the scattering signals. As a result, Rayleigh scatter spectra of phytoplankton were studied in this paper. It was predicted that by combining both Rayleigh scatter spectra and three dimensional fluorescence spectra, more information could be provided for better identification of phytoplankton classes and assessment of their abundance. This paper aims to study the characteristics of both Rayleigh scatter spectra and three dimensional fluorescence spectra of phytoplankton in order to obtain better combined spectra for identification of phytoplankton. Eleven red-tide blooming algae and dominant phytoplankton species in the East China Sea, including Alexandrium tamarense, Isochrysis galbana 3012,Platymonas helgolanidica, Prorocentrum micans, Pseudo-nitzschia pungen (PS0201-01), Skeletonema costatuma, Nitzschia closterium, Chaetoceros curvisetus, Chaetoceros gracilis, Chaetoceros didymus and Gymnodinium sp, which belong to five divisions of phytoplankton, were chosen and cultivated in lab cultures under different temperatures and illumination intensities.
     The main research work is as follow:
     1 Three kinds of spectra were studied: the Rayleigh scatter spectrum, the combined spectrum and the restructured Rayleigh scatter spectrum. The combined spectrum refers to the Rayleigh scatter spectrum combined with the pigment characteristic spectrum char_Dv1, while the restructured Rayleigh scatter spectrum refers to the spectrum of 70% of principle components. The discriminant analysis results show that the restructured Rayleigh scatter spectrum has best discriminant ability, then it is the combined spectrum.
     2 The similarity of the above three kinds of spectra of living phytoplankton was studied. Two indicators including the average relative error and the average correlation coefficient were used to evaluate the similarity of the above three kinds of spectra. For the combined spectrum, Is, Pl, Sk and Cu have better similarity than the others, Ps has the worst. Similar results were obtained by the other two kinds of spectra. The results indicate that the similarity of the three kinds of spectra of the eleven phytoplankton species is good enough for analysis. In this paper, the combined spectra were chosen for qualitative and quantitative analysis.
     3 Qualitative and quantitative analysis. Firstly, for each phytoplankton, highest peak of Rayleigh spectra were found and the linearity between cell density and peak value was studied in the cultivating condition. Then, qualitative and quantitative analysis of 59 mixtures of phytoplankton was carried out using the non-negative least square method (NNLS). The recognition rate for all the sample was 90% in class, 76% in genus. At last, cell density for each phytoplankton was estimated by the linearity equation and the result of NNLS.
     4 Rayleigh spectra of lugol staining phytoplankton were primarily studied. Hierarchical clustering was processed to classify the Rayleigh scatter spectrum of each phytoplankton. Each species have one standard fluorescence spectrum. The measuring precision of the spectra was studied.
     In summary, according to our knowledge this paper takes the lead in studying the Rayleigh spectrum of in vivo phytoplankton combined with the pigment characteristic spectrum char_Dv1. Using the combined spectra and NNLS method, dinoflagellates and diatoms can be distinguished from each other in laboratory cultures, and their abundance was estimated.
引文
[1] Babichenko S, Kaitala S, Leeben A, Poryvkina L, Sepp?l? J. Pygoplankton pigments and dissolved organic matter distribution in the Gulf of Riga. Journal of Marine Systems 1999, 23: 69-82
    [2]Bauer D R,Hudson B,Pecora R.J. Resonance enhanced depolarized Rayleigh Scattering from dishenylpolyenes. chem Phys, 1975, 63:588-589
    [3] Bennett H E, Porteous J O, J O S A,1961, 51(2):123-134
    [4] Beutler M, Wiltshire K H, Meyer B. A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynthesis Research, 2002, 72:39–53
    [5] Beutler M,Wiltshire K H, Arp M,Kruse J, Reineke C, Moldaenke C, Hansen U P. A reduced model of the fluorescence from the cyanobacterial photosynthetic apparatus designed for the in situ detection of cyanobacteria. Biochimica et Biophysica Acta, 2003, 1604:33– 46
    [6] Boddy L, Morris C W, Wilkins M F, Al-Haddad L, Tarran G A, Jonker R R, Burkill P H. Identification of 72 phytoplankton species by radial basis function neural network analysis of flow cytometric data. Marine Ecology Progress Series, 2000, 195:47-59
    [7] Bohren C F, Huffman D R. Absorbtion and Scattering of Light by Small Particles. New York, Wiley, 1983,2-6
    [8] Brown L M, Hargrave B T, MacKinnon M D. Analysis of chlorophyll a in sediments by high pressure liquid chromatography . Canad J Fish Aquat Sci, 1981, 38:205-214
    [9] HBi SH P, HTao XH C, HWang YH Z, HZhao HH . Resonance Rayleigh scattering study of the reaction of nucleic acids with thionine and its analytical application. Spectrochimica acta Part A, Molecular and biomolecular spectroscopy, 2004, 60(1-2):455-462
    [10] HCao Q EH, HDing ZH, HFang RH, HZhao XH. A sensitive and rapid method for the determination of protein by the resonance Rayleigh light-scattering technique with Pyrogallol Red. The Analyst, 2001, 126(8):1444-1448
    [11] Cowles T J, Desiderio R A, Neuer S. In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra. Marine Biology, 1993, 115:217-222
    [12] Debye P. Light Scattering in Solutions[J]. J Appl Phys, 1944,15:338.
    [13] Debye, Pand B , A M.Light Scattering by coned Polymer Solns, Appt Phys, 1949,20:518-525
    [14] Falkowski P G. Light-shade adaptation in marine phytoplankton . Falkowski P G (ed) PrimaryProductivity in the Sea, New York, lenum Press, 1980, 99-119
    [15] Hongsuk H K. New Algae Mapping Technique by the Use of an Airborne Laser Fluorescence. Applied Optics, 1973, 12(7):1454-1459
    [16] Halldal P. The Photosynthetic apparatus of microalgae and its adaptation to environmental factors. Halldal P(ed) Photobiology of Microorganisms ,London, Wiley Press, 1970, 17-55
    [17] Hewes C D, Mitchell B G, Moisan T A, Vernet M, Reid F M H. The phycobilin signatures of chloroplasts from three Dinoflagellate species:A microanalytical study of Dinophysis Caudata, D Fortii and D acuminata (Dinophysiales, Dinophycere). J Phycll, 1998, 34:945-951
    [18] Hoge F E. Asymmetrical spectral curvature algorithms:oceanic-constituents sensitivities. Applied Optics, 1994, 33(33):7764-7769
    [19] Hoge F E, Wright C W, Kana T M, Swift R N, Yungel J K. Spacial variability of oceanic phycoerythrin spectral types derived from airborne laser-induced fluorescence emissions. Applied Optics, 1998, 37(21):4744-4749
    [20] Kaitala S, Babichenko S, Poryvkina L, Leebea A. Fluorescent analysis of pigment composition of natural phytoplankton. Mar technol Soc J, 1994, 28, 50-58
    [21] Kaitala S, Babichenko S, Poryvkina L, Leebea A. Fluorescent analysis of pigment composition of natural phytoplankton. Oceanographic Literature Review, 1995, 42 (9):47-53
    [22] HKam Z,H HShore,H BH, HFeher G.H On the crystallization of proteins. Journal of molecular biology, 1978,4:539-555
    [23] HKamentsky L AH,HMelamed M RH, HDerman HH.Spectrophotometer: new instrument for ultrarapid cell analysis. Science, 1965,150(696):630-631
    [24] Kerker M. The Scattering of Light and Other Electromagnetic Radiation. New York, Academic, 1969,1-3
    [25] Knoll D A,Bloomfield V.Biochem.1984, 23:3358 -3359
    [26] HKruskopf, MikaelaH, HFlynn, Kevin JH. Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New Phytol, 2006, 169(3):525-36
    [27] Lazzara L, Bricaud A, Claustre H. Spectral absorption and fluorescence excitation properties of phytoplanktonic populations at a mesotrophic and an oligotrophic site in the tropical North Atlantic (EUMELI program ). Deep-Sea Research, 1996, 43(8):1215-1240
    [28] Lorenzen C J. A method for the continuous measurement of in vivo chlorophyll concentrations. Deep-Sea Research, 1966, 13:223-227
    [29] Lutz V A, Sathyendaranath S, Head E JH, Li W K W. Differences between in vivo absorption and fluorescence excitation spectra in natural samples of phytoplankton. J Phycol, 1998, 34:214-227
    [30] Mackey M D, Mackey D J, Higgins H W, et al. CHEMTAX-a program for estimating classa bundances from chemicalmarkers: application to HPLC measurements of phytoplankton [J]. Mar Ecol Prog Ser, 1996, 144 :265-283
    [31] Mie G. Annalen der Physik.1908,4 (25):377-445
    [32] Perry M J, Talbot M C, Alberte R S. Photoadaptation in marine phytoplankton: Response of the photosynthetic unit. Mar Biol, 1981, 62 :91-101
    [33] Plazcek G. In Rayleigh and Raman Scattering (UCRL Trans. No. 526L) from Handbuch der Radiologie; Marx, E, Ed; Akademische Verlagsgesellschaft, Leipzig; 1934, 6( 2):209-374
    [34] Prezelin B B. Light Reactions in Photosynthesis . Platt T (ed) Proceedings of NATO Advance Study Institute on Physiological Ecology of Phytoplankton , nandian Bulletin of Fisheries and Aquatic Science, 1981,210:1-43
    [35] Renee D, JiJi, Karl S, Booksh. Mitigation of Rayleigh and Raman Spectral Interferences in Multiway Calibration of Excitation-Emission Matrix Fluorescence Spectra. Anal Chem, 2000, 72:718-725
    [36] Richard G Z, Wade M S, Mary Ann Moran. Dissolved organic fluorophores in southeastern US coastal waters: correction method for eliminating Rayleigh and Raman scattering peaks in excitation–emission matrices. Marine Chemistry, 2004, 89:15– 36
    [37] Silva R M, Spie,1984,511:38-43
    [17] SooHoo J B, Kiefer D A, Collins D J, et al. In vivo Fluorescence Excitation and Absorption Spectra of Marine Phytoplankton: I. Taxonomic Characteristics and Responses to Photoadaptation. J Plankton Res, 1986, 8:197-214
    [38] Sorokin C. Dry weigh, packed cell volume and optical density. Stein J R (ed) Handbook of Phycological Methods and Growth Measurements, Cambridge University Press, 1973, 321-343
    [39] Swithenbank J. A laser diagnositic technique for the measurement of droplet and particle size distribution. AIAA Paper, 1976, (76):69-76
    [40] Tanaka T, Hocker L O, Benedek G B.J Chem Phys,1973,59:5151-5159
    [41] Van de Hulst H C. Light Scattering by Small Particles. New York, Wiley, 1957, 2-5
    [42] Wang X M, SUN Y, Cao H B .Fluorescence-assisted Image Analysis of Harmful Microalgae. Marine Science Bulletin, 2006, 8 (1 ):75-82
    [43] Yentsch C S, Menzel D W. A method for determination of phytoplankton chlorophyll and pheophytin by fluorescence .Deep-Sea Res, 1963, 10 : 221-231
    [44] Yentsch C S, Yentsch C M. Fluorescent spectral signatures:The characterization of phytoplankton populations by the use of excitation and emission spectra. J Mar Res, 1979, 37:471-483
    [45] Yentsch C S. Light attenuation and phytoplankton photosynthesis. MorrisI(ed) The Physiological Ecology of Phytoplankton ,Oxford, ackwell, 980:5-127
    [46] Yentsch C S, Phinney D A. Spectral Fluorescence:an ataxonomic tool for the structure of phytoplankton populations. J Plankton Res, 1985, 7(5):617-632
    [47]陈国珍.《荧光分折法》.北京:科学出版社, 1990
    [48]曹红宝.基于双光谱有毒赤潮优势藻图像分析的研究. 2005,天津大学,硕士学位论文,导师:王学民
    [49]杜晓燕,郑晶.生物大分子的共振光散射光谱.光谱实验室, 2004, 21(4):821-825
    [50]高洪峰,焦念志.通过藻类色素分析估测海洋浮游植物生物量和群落组成的研究进展.海洋科学, 1997(3):51-54
    [51]郭沛涌,沈焕庭,张利华.淡水微型浮游植物的FCM研究.中国环境科学, 2002, 22(2):101-104
    [52]韩博平,韩志国,付翔.藻类光合作用机理与模型.北京:科学出版社, 2003
    [53]韩笑天.中国近海几种重要赤潮甲藻分类学及其系统发育学研究. 2004,中国科学院研究生院,硕士学位论文,导师:俞志明,邹景忠
    [54]黄承志,李克安,童沈阳.水溶性游离阴离子卟啉与核酸作用的光谱研究[J ] .高等学校化学学报, 1997, 18 (4):525 - 529.
    [55]黄承志,李原芳,奉萍.共振光散射光谱的校正.分析化学, 2001, 29(7):832-835
    [56]焦念志,杨燕辉.中国海原绿藻研究.科学通报, 2002, 47(7):485-491
    [57]金海龙,王玉田.基于荧光发射光谱的活体海藻识别方法研究.传感技术学报, 2006, 1(1):97-100
    [58]朗庆勇,李连仲.非离子表面活性剂存在下痕量铼的瑞利光测定[J ].岩矿测试, 1987, 6 (4):257 - 263
    [59]李芳,蒋治良,谌斌.淀粉的共振散射光谱研究. 2001, 19(3):60-63
    [60]李原芳,黄承志,胡小莉.共振光散射技术的原理及其在生化研究和分析中的应用(评述与进展).分析化学, 1998, 26(12):1508-1541
    [61]廖栩泓.共振光散射技术在核酸分析中的研究及其应用(硕士论文).汕头大学, 2004,导师:陈展光
    [62]廖祖荷,罗杨合,蒋治良,谢济运.大肠杆菌的共振散射光谱研究. 2003, 9(2):65-69
    [63]刘凤军,曹红宝,王学民,王明时.荧光法在赤潮图像分析中的应用.天津大学学报, 2005, 38(12):1073-1077
    [64]陆斗定,齐雨藻, Jeanette Goebel,邹景忠,高亚辉.东海原甲藻修订及与相关原甲藻的分类学比较.应用生态学报, 2003, 14(7):1060-1064
    [65]马春琪,刘瑛,李克安,童沈阳.瑞利散射及其在生物化学分析中的应用研究.科学通报, 1999, 44(7):682-690
    [66]彭一兵,谢济运,蒋治良.人红细胞的共振散射光谱分析.广西科学, 2001, 8(3):197-198, 209
    [67]唐晓静.活体浮游植物同步荧光光谱方法分析研究.中国海洋大学, 2006,硕士学位论文导师:张前前
    [68]汪翔.基于荧光法海藻种类识别的理论及应用研究.燕山大学, 2004,工学硕士学位论文导师:王玉田
    [69]王学民,曹红宝,孙勇.荧光法在赤潮图像分析中应用.海洋工程, 2005, 23(3):110-114
    [70]杨明媚.红细胞与银纳米粒子的共振散射光谱研究. 2001,广西师范大学,硕士研究生学位论文,导师:蒋治良
    [71]晁敏,张利华,张经.流式细胞计在海洋浮游植物研究中的应用.海洋科学, 2003, 27(4):18-23
    [72]姚鹏,于志刚,米铁柱.海洋浮游藻类的化学分类法.海洋环境科学, 2003, 22(1):75-80
    [73]姚炜民,李超,郜钧璋.浙南海域的赤潮生物.海洋通报, 2006, 25(3):87-91
    [74]尹平河,王梅,赵玲,齐雨藻.球形棕囊藻的荧光光谱特征及定量测定.分析测试学报, 2006, 25(2):56-59
    [75]张利华.流式细胞术在微型浮游植物研究中的应用.华东师范大学学报(自然科学版),2000, 3:85-89
    [76]张利华,张经.流式细胞术对微微型浮游植物识别初探.海洋科学, 2002, 26(3):60-65
    [77]张前前.东海典型赤潮藻检测的荧光光谱特征研究.2005,博士毕业论文,中国海洋大学,导师:王修林
    [78]张前前,类淑河,王修林,于萍,王磊,祝陈坚.浮游植物活体三维荧光光谱特征提取. 2005,高技术通讯, 15(4):75-78
    [79]张前前,类淑河,王修林,王磊,于萍.浮游植物活体三维荧光光谱分类判别方法研究. 2004,光谱学与光谱分析, 24(10):1227-1229
    [80]张前前,王修林,祝陈坚.赤潮浮游植物种类和数量分析的研究进展. 2004,海洋环境科学, 23(1):73-76
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.