维甲酸对鸡胚原始生殖细胞增殖和粘附的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为性腺发育研究的重要动物模型,家禽提供了更直观、方便的研究途径。其中,家禽原始生殖细胞(primordial germ cell, PGC)的体外培养和调控的成功,为胚胎生殖细胞系的建立和保存,以及转基因家禽的研究提供了坚实的基础。然而,家禽PGC外源性调控的稳定性和产量仍需提高,以保证相关研究的顺利进行。维甲酸(retinoic acid, RA)作为维生素A的代谢产物,在哺乳动物生殖发育中的作用被逐渐发现,对多种细胞的增殖和细胞间粘附有着重要的调节作用。本实验以艾维因鸡胚为材料,分离出胚胎期PGC,经过原代和传代培养,对不同生长状态的细胞进行多能性指标的检测和观察,探讨了RA对PGC体外增殖和细胞间粘附的影响,以及部分胞内信号转导的机制。
     1.鸡胚PGC原代和传代培养模型的建立
     取培养至4d的鸡胚,在体视显微镜下用玻璃针取其生殖嵴,用0.25%胰蛋白酶-0.02% EDTA消化组织,得到的细胞在含5%胎牛血清的DMEM培养液中进行原代培养。培养液中添加了10ng/ml干细胞生长因子、10ng/ml白血病抑制因子、10ng/ml碱性成纤维生长因子、0.1mmol/Lβ-巯基乙醇、0.1mmol/L MEM非必需氨基酸、2mmol/L L-谷氨酰胺、100IU/ml青霉素和100ug/ml链霉素。对原代和传代后形成的细胞集落进行过碘酸雪夫氏反应(PAS)、SSEA-1和SSEA-3免疫细胞化学检测,同时利用RT-PCR检测干细胞多能性基因PouV、Nanog和Sox2的表达,均证实所形成的细胞集落是PGC。上述实验结果表明:PGC-体细胞原代及传代于饲养层培养的模型可以作为PGC增殖活性调节的研究。
     2.鸡胚PGC在体内和体外培养时的形态
     取孵化至5d的鸡胚,在体视显微镜下取出生殖嵴,经4%多聚甲醛固定,经常规脱水浸蜡,石蜡包埋,切片烤片后,进行SSEA-1免疫组化荧光染色,定位PGC及其存在状态。经证实大量PGC存在于生殖嵴中,以单个或多个粘附的形式存在,同时证明了体内PGC的多能性。
     体外培养的PGC经定点观察其生长状况,确定PGC集落的形成过程。另外,在不同时间阶段经观察和SSEA-1免疫细胞荧光染色,以确定PGC集落生长的状况。结果显示:不同数量PGC的集落均有SSEA-1的表达。
     3.维甲酸对鸡胚PGC增殖的调控
     利用已建立的PGC培养模型,探讨了RA对体外培养的鸡胚PGC增殖的调节作用。在传代培养PGC的培养液中添加RA以及PKC信号途径的抑制剂H7分别或联合处理细胞,在不同时间点检测PGC的多能性基因的表达。通过PAS染色,观察并统计PGC集落的数量和面积的变化。同时,通过RT-PCR检测细胞周期蛋白基因CCND1和CCNE1、周期蛋白依赖性激酶CDK6和CDK2的表达,以确定RA相关通路对细胞增殖的影响。PAS染色统计,10-7-10-5mol/LRA对体外培养PGC的数量和集落面积有明显的提高效应(P<0.05);同时能显著促进相关检细胞周期调控基因的表达。其中,10-6mol/LRA的效果最为明显。而在与H7联合处理组中,RA的效应明显减弱。此结果表明,RA (10-7-10-5mol/L)可促进鸡胚PGC的增殖,其中10-6mol/L浓度的RA作用效果最为明显,此效应可被10-6mol/L的H7所抑制。
     4.RA对鸡胚PGC胞间粘附的影响
     利用已建立的PGC培养模型,探讨RA对体外培养的鸡胚PGC胞间粘附的调节作用。在传代培养PGC的培养液中添加RA以及PKC信号途径的抑制剂H7分别或联合处理细胞。通过特定浓度的消化液消化PGC细胞团,并统计其集落数与单个细胞数,以计算其粘附系数。通过RT-PCR检测不同处理条件下粘附蛋白钙粘蛋白(E-钙粘蛋白)和连锁蛋白(α-和β-连锁蛋白)mRNA表达的变化。粘附系数的统计结果显示:10-7-10-5mol/LRA明显降PGC间的粘附系数(P<0.05),表明PGC胞间粘附性增强;同时能够明显促进E-钙粘蛋白、α-连锁蛋白和β-连锁蛋白的表达。而在H7联合处理组中,RA的效应明显减弱。此结果表明:RA(10-7-10-5mol/L)可促进鸡胚PGC的胞间粘附,其中以10-6mol/L浓度RA的作用效果最为明显,此效应可被10-6mol/L的H7所抑制。
     以上实验结果表明:经SSEA-1鉴定,鸡胚生殖嵴内的PGC以单个或少量聚合的形式存在。从鸡胚生殖嵴分离的PGC原代和传代培养后,经PAS染色、SSEA-1和SSEA-3免疫细胞化学染色,及多能性基因PouV、Nanog和Sox2的RT-PCR检测,证实所培养的PGC具有干细胞的多能性。定点观察PGC的体外生长情况的结果证明,在培养的初期PGC集落的形成方式主要是聚集;之后主要是PGC集落细胞的自身分裂增殖。对体外培养不同时期PGC的SSEA-1染色说明多个PGC倾向以细胞间粘附的形式生长。在此模型的基础上,通过细胞集落数量和面积的统计,以及细胞周期调控基因CCND1/CDK6、CCNE1/CDK2 mRNA的表达变化结果说明,10-7-10-5mol/L的RA能促进鸡胚PGC的有丝分裂,从而促进其增殖。同时,PKC途径的抑制剂H7可减弱RA的促增殖作用。另外,通过粘附系数的统计,以及粘附蛋白基因表达变化检测表明,10-7-10-5mol/L的RA可增强PGC的胞间粘附。同时,PKC途径的抑制剂H7能够明显减弱RA的促粘附作用。以上结果提示,RA可能通过PKC信号途径促进鸡胚PGC的增殖和胞间粘附。这些结果有助于鸡胚PGC增殖调控的研究,并有利于PGC的体外大量扩增,为嵌合体和转基因家禽的制备提供实验平台。
PGCs, as precursor cells developing into ova and spermatozoa in embryonic stage, are model type cells for genome research and transgenic application in a variety of vertebrates. Recent years, the limit of great number and stability of cultured embryonic PGCs made the research of avian PGCs attenuated. Coordinating the proliferation and aggregation of cultured PGCs is a crucial method to get enough and survival cells for various studies.
     Intercellular connection plays an important role in male stem spermatogonium, spermatogonium, spermatocytes, and the female oogonia. In the mouse, PGCs connect to each other in the process of migrating to genital ridge until forming cell colonies. Proliferation and cellular aggregation were both crucial features on survival and self renewal of primordial germ cells (PGC). Adhesive proteins play pivotal roles in cell-cell adhesion and signal exchanges under the influence of many cytokines, growth factors and bioactive metabolites such as retinoic acid (RA). RA is a metabolite of vitamin A with essential biological activity. For many types of cells, RA plays an important role in regulating cell proliferation and differentiation. RA synthesis and signaling play an important role during early organogenesis.
     In this study, chicken PGC culture system was adopted to evaluate the effect of RA on germ cell aggregation by demonstration of the changes in expression of E-cadherin andα/βcatenins mRNAs. At the same time, the change in cell proliferation was also detected by the colony number and area of PGC aggregates. The results will facilitate to elucidate the regulation of PGCs proliferation by cell-cell adhesion.
     PGCs were isolated from the genital ridge of 4-day chicken embryos and cultured on chicken embryonic fibroblast feeder. Cells were primary seeded at 1×106/well in DMEM supplemented with 5% fetal calf serum (FCS) and 10 ng/ml LIF in 6-well culture plates. Cells were cultured at 39℃in a water-saturated atmosphere of 5% CO2. After 48h culture, PGC colonies were picked up and dispersed, and then subcultured on CEF in medium supplemented with 0.5% FCS. Subcultured PGCs were treated with RA (10-7-10"5 M) along and in combinations with PKC inhibitor H7 (10-7-10-5 M) for 24 h, respectively.
     After culture, the PGCs proliferated from single cells to double or more cells. These cells colonized together to become cell aggregates, finally form compact PGCs colonies. PGCs were detected by SSEA-1 immunofluorescence and the nuclei were stained with DAPI Cultured PGCs colonies were also identified by SSEA-1/3 immunocytochemical staining with brown color. Slices of genital ridge from 5.5d chicken embryo were stained by SSEA-1 immunofluorescence method, with significant cell-surface red fluorescence for chicken PGCs clusters. In addition, expression of several pluripotency-associated genes including POU5F1, NANOG and SOX2 mRNA in PGCs were examined in cultures PGCs after treatment with 10-6 M RA for 24h. There was no significant difference in the mRNA abundance between the treated cells and the control.
     Adhesion index and expression of E-cadherin, a-catenin andβ-catenin of PGCs were determined to detected impact of RA on PGC adhesion. RA (10-7 M) reduced the adhesion index from 0.67 to 0.60 with 10% decrease, while in 10-6 M RA-treated cells, the adhesion index was reduced to 0.37 with 45% decrease with significant difference. No further decrease in the adhesion index was achieved after higher RA treatment (10-5 M). At the same time, the mRNA expression of relative adhesion proteins was altered. Compared with the control group, after treatment with RA at 10-7,10-6 and 10-5 M, the increase of E-cadherin mRNA expression were increase at 5%(P> 0.05), 18% and 21%(P< 0.05). The a-catenin mRNA was increased at 8%,22% and 24%, andβ-catenin was increased at 7%,25% and 28.5%(P< 0.05).
     Though the PKC inhibitor H7 at 10-7 M imposed no significant effect on RA-stimulated reduction of adhesion index of PGCs, higher H7 at 10-6 and 10-5M significantly attenuated the RA-elicited PGC aggregation. Simultaneous treatment of H7 at 10-6 and 10"5M remarkably attenuated the effect of RA on mRNA expression of adhesive proteins E-cadherin,α-catenin andβ-catenin. After treatment with RA at 10-7-10-5M for 24 h, the number and area of PGCs colonies was increased in a dose-dependent manner. However, the RA-elicited PGC proliferation was reduced by the combined treatment of H7. Meanwhile, the three-dimensional cell morphology of PGC colonies was weakened by H7.
     To further confirm the effect of RA on PGC proliferation, we examined the effect of RA on mRNA expression of cyclins CCND1 and CCNE1, cyclin-dependent kinase 6 (CDK6), CDK2 which are considered to be critical factors in G1-S progression in cell cycle.. Treatment with RA at 10"6 M increased the mRNA expression of all four genes significantly. (P<0.05). This effect was hindered by combined H7 treatment.
     In conclusion, proliferating effect of RA was revealed in cultured chicken PGCs. This stimulating action involves the increased expression of the adhesive proteins E-cadherin andα/βcatenins. RA-elicited effect was attenuated by PKC inhibition. Increased cell proliferation is accompanied with elevated mRNA expression of cyclins CCND1 and CCNE1, CDKs 6 and 2. These results indicated that RA promoted PGCs proliferation and strengthened aggregation of PGCs via E-cadherin andα/βcatenins expression through PKC signaling pathway in chicken PGCs.
引文
Aflatoonian, B. and H. Moore (2005). Human primordial germ cells and embryonic germ cells, and their use in cell therapy. Curr Opin Biotechnol 16(5):530-5.
    Aggarwal, S., S. W. Kim, K. Cheon, F. H. Tabassam, J. H. Yoon and J. S. Koo (2006). Nonclassical action of retinoic acid on the activation of the cAMP response element-binding protein in normal human bronchial epithelial cells. Mol Biol Cell 17(2):566-75.
    Altucci, L., M. D. Leibowitz, K. M. Ogilvie, A. R. de Lera and H. Gronemeyer (2007). RAR and RXR modulation in cancer and metabolic disease. Nat Rev Drug Discov 6(10):793-810.
    Anstrom, K. K. and R. P. Tucker (1996). Tenascin-C lines the migratory pathways of avian primordial germ cells and hematopoietic progenitor cells. Dev Dyn 206(4):437-46.
    Bendel-Stenzel, M. R., M. Gomperts, R. Anderson, J. Heasman and C. Wylie (2000). The role of cadherins during primordial germ cell migration and early gonad formation in the mouse. Mech Dev 91(1-2):143-52.
    Berggren, K., P. McCaffery, U. Drager and C. J. Forehand (1999). Differential distribution of retinoic acid synthesis in the chicken embryo as determined by immunolocalization of the retinoic acid synthetic enzyme, RALDH-2. Dev Biol 210(2):288-304.
    Blomhoff, R. and H. K. Blomhoff (2006). Overview of retinoid metabolism and function. J Neurobiol 66(7):606-30.
    Canon, S., C. Herranz and M. Manzanares (2006). Germ cell restricted expression of chick Nanog. Dev Dyn 235(10):2889-94.
    Chang, H. and M. M. Matzuk (2001). Smad5 is required for mouse primordial germ cell development. Mech Dev 104(1-2):61-7.
    Chang, I. K., A. Tajima, T. Chikamune and T. Ohno (1995). Proliferation of chick primordial germ cells cultured on stroma cells from the germinal ridge. Cell Biol Int 19(2):143-9.
    Cho, Y., A. P. Tighe and D. A. Talmage (1997). Retinoic acid induced growth arrest of human breast carcinoma cells requires protein kinase C alpha expression and activity. J Cell Physiol 172(3): 306-13.
    Chuma, S. and N. Nakatsuji (2001). Autonomous transition into meiosis of mouse fetal germ cells in vitro and its inhibition by gp130-mediated signaling. Dev Biol 229(2):468-79.
    Chuva de Sousa Lopes, S. M., S. van den Driesche, R. L. Carvalho, J. Larsson, B. Eggen, M. A. Surani and C. L. Mummery (2005). Altered primordial germ cell migration in the absence of transforming growth factor beta signaling via ALK5. Dev Biol 284(1):194-203.
    De Felici, M. (1998). In vitro culture systems for germ cells from mouse embryo:primordial germ cells and oocytes. Adv Exp Med Biol 444:41-7; discussion 47-9.
    De Felici, M., S. Dolci and M. Pesce (1992). Cellular and molecular aspects of mouse primordial germ cell migration and proliferation in culture. Int J Dev Biol 36(2):205-13.
    De Felici, M. and G. Siracusa (1985). Adhesiveness of mouse primordial germ cells to follicular and Sertoli cell monolayers. J Embryol Exp Morphol 87:87-97.
    De Vries, W. N., A. V. Evsikov, B. E. Haac, K. S. Fancher,A. E. Holbrook, R. Kemler, D. Solter and B. B. Knowles (2004). Maternal beta-catenin and E-cadherin in mouse development. Development 131(18):4435-45.
    del Rincon, S. V, Q. Guo, C. Morelli, H. Y. Shiu, E. Surmacz and W. H. Miller (2004). Retinoic acid mediates degradation of IRS-1 by the ubiquitin-proteasome pathway, via a PKC-dependant mechanism. Oncogene 23(57):9269-79.
    Desai, D. S., S. Hirai, W. E. Karnes, Jr., R. M. Niles and S. Ohno (1999). Cloning and characterization of the murine PKC alpha promoter:identification of a retinoic acid response element. Biochem Biophys Res Commun 263(1):28-34.
    Di Carlo, A. and M. De Felici (2000). A role for E-cadherin in mouse primordial germ cell development. Dev Biol 226(2):209-19.
    Didier, E., P. Didier and N. Fargeix (1983). Distribution of polyanionic sites in the developing gonads and the dorsal mesentery of the chick embryo. Anat Rec 205(3):321-9.
    Dolci, S., M. Pesce and M. De Felici (1993). Combined action of stem cell factor, leukemia inhibitory factor, and cAMP on in vitro proliferation of mouse primordial germ cells. Mol Reprod Dev 35(2): 134-9.
    Dong, P., Y. Tao, Y. Yang and W. Wang (2009). Expression of retinoic acid receptors in intestinal mucosa and the effect of vitamin A on mucosal immunity. Nutrition.
    Donovan, P. J., M. de Miguel, L. Cheng and J. L. Resnick (1998). Primordial germ cells, stem cells and testicular cancer. Apmis 106(1):134-41.
    Duester, G. (2008). Retinoic acid synthesis and signaling during early organogenesis. Cell 134(6):
    921-31.
    Dumstrei, K., R. Mennecke and E. Raz (2004). Signaling pathways controlling primordial germ cell migration in zebrafish. J Cell Sci 117(Pt 20):4787-95.
    Eichele, G. (1989). Retinoic acid induces a pattern of digits in anterior half wing buds that lack the zone of polarizing activity. Development 107(4):863-7.
    Ertesvag, A., S. Naderi and H. K. Blomhoff (2009). Regulation of B cell proliferation and differentiation by retinoic acid. Semin Immunol 21(1):36-41.
    Fan, L., J. Moon, T. T. Wong, J. Crodian and P. Collodi (2008). Zebrafish primordial germ cell cultures derived from vasa::RFP transgenic embryos. Stem Cells Dev 17(3):585-97.
    Farini, D., M.L. Scaldaferri, S. Iona, G. La Sala and M. De Felici (2005). Growth factors sustain primordial germ cell survival, proliferation and entering into meiosis in the absence of somatic cells. Dev Biol 285(1):49-56.
    Gale, E., V. Prince, A. Lumsden, J. Clarke, N. Holder and M. Maden (1996). Late effects of retinoic acid on neural crest and aspects of rhombomere. Development 122(3):783-93.
    Gomperts, M., C. Wylie and J. Heasman (1994). Primordial germ cell migration. Ciba Found Symp 182: 121-34; discussion 134-9.
    Goossens, S. and F. van Roy (2005). Cadherin-mediated cell-cell adhesion in the testis. Front Biosci 10: 398-419.
    Grapin-Botton, A., M. A. Bonnin, L. A. McNaughton, R. Krumlauf and N. M. Le Douarin (1995). Plasticity of transposed rhombomeres:Hox gene induction is correlated with phenotypic modifications. Development 121(9):2707-21.
    Grapin-Botton, A., M. A. Bonnin, M. Sieweke and N. M. Le Douarin (1998). Defined concentrations of a posteriorizing signal are critical for MafB/Kreisler segmental expression in the hindbrain. Development 125(7):1173-81.
    Guo, X., Z. Y. Qi, J. Qin, G. H. Cui, Y. T. Gui and Z. M. Cai (2009). Extracellular matrix regulates expressions of germ cell differentiation associated genes in mouse embryonic stem cells. Zhonghua Nan Ke Xue 15(11):967-73.
    Holback, S., L. Adlerz, T. Gatsinzi, K. T. Jacobsen and K. Iverfeldt (2008). PI3-K-and PKC-dependent up-regulation of APP processing enzymes by retinoic acid. Biochem Biophys Res Commun 365(2):298-303.
    Honecker, F., A. M. Kersemaekers, M. Molier, P. C. Van Weeren, H. Stoop, R. R. De Krijger, K. P. Wolffenbuttel, W. Oosterhuis, C. Bokemeyer and L. H. Looijenga (2004). Involvement of E-cadherin and beta-catenin in germ cell tumours and in normal male fetal germ cell development. J Pathol 204(2):167-74.
    Horton, C. and M. Maden (1995). Endogenous distribution of retinoids during normal development and teratogenesis in the mouse embryo. Dev Dyn 202(3):312-23.
    Houston, D. W. and M. L. King (2000). A critical role for Xdazl, a germ-plasm-localized RNA, in the differentiation of primordial germ cells in Xenopus. Development 127(3):447-56.
    Hoyer, P. E., A. G. Byskov and K. Mollgard (2005). Stem cell factor and c-Kit in human primordial germ cells and fetal ovaries. Mol Cell Endocrinol 234(1-2):1-10.
    Hua, S., R. Kittler and K. P. White (2009). Genomic antagonism between retinoic acid and estrogen signaling in breast cancer. Cell 137(7):1259-71.
    Itasaki, N., J. Sharpe, A. Morrison and R. Krumlauf (1996). Reprogramming Hox expression in the vertebrate hindbrain:influence of paraxial mesoderm and rhombomere transposition. Neuron 16(3):487-500.
    Jenkins, A. B., J. M. McCaffery and M. Van Doren (2003). Drosophila E-cadherin is essential for proper germ cell-soma interaction during gonad morphogenesis. Development 130(18):4417-26.
    Jiang, E. P. and Y. Q. Zhang (2002). The role of transforming growth factor beta superfamily in male germ cell development. Zhonghua Nan Ke Xue 8(6):435-7.
    Johnson, A. D., R. F. Bachvarova, M. Drum and T. Masi (2001). Expression of axolotl DAZL RNA, a marker of germ plasm:widespread maternal RNA and onset of expression in germ cells approaching the gonad. Dev Biol 234(2):402-15.
    Jung, J. G., D. K. Kim, T. S. Park, S.D. Lee, J. M. Lim and J. Y. Han (2005). Development of novel markers for the characterization of chicken primordial germ cells. Stem Cells 23(5):689-98.
    Kambhampati, S., Y. Li, A. Verma, A. Sassano, B. Majchrzak, D. K. Deb, S. Parmar, N. Giafis, D. V. Kalvakolanu, A. Rahman, S. Uddin, S. Minucci, M. S. Tallman, E. N. Fish and L. C. Platanias (2003). Activation of protein kinase C delta by all-trans-retinoic acid. J Biol Chem 278(35): 32544-51.
    Kanatsu-Shinohara, M., K. Inoue, N. Ogonuki, H. Miki, S. Yoshida, S. Toyokuni, J. Lee, A. Ogura and T. Shinohara (2007). Leukemia inhibitory factor enhances formation of germ cell colonies in
    neonatal mouse testis culture. Biol Reprod 76(1):55-62.
    Kehler, J., E. Tolkunova, B. Koschorz, M. Pesce, L. Gentile, M. Boiani, H. Lomeli, A. Nagy, K. J. McLaughlin, H. R. Scholer and A. Tomilin (2004). Oct4 is required for primordial germ cell survival. EMBO Rep 5(11):1078-83.
    Kierszenbaum, A. L. and L. L. Tres (2001). Primordial germ cell-somatic cell partnership:a balancing cell signaling act. Mol Reprod Dev 60(3):277-80.
    Kim, J. N., M. A. Kim, T. S. Park, D. K. Kim, H. J. Park, T. Ono, J. M. Lim and J. Y.-Han-(2004). Enriched gonadal migration of donor-derived gonadal primordial germ cells by immunomagnetic cell sorting in birds. Mol Reprod Dev 68(1):81-7.
    Knirsh, R., I. Ben-Dror, B. Spangler, G. D. Matthews, S. Kuphal, A. K. Bosserhoff and L. Vardimon (2009). Loss of E-cadherin-mediated cell-cell contacts activates a novel mechanism for up-regulation of the proto-oncogene c-Jun. Mol Biol Cell 20(7):2121-9.
    Koistinen, P., A. Zheng, M. Saily, T. Siitonen, P. Mantymaa and E. R. Savolainen (2002). Superior effect of 9-cis retinoic acid (RA) compared with all-trans RA and 13-cis RA on the inhibition of clonogenic cell growth and the induction of apoptosis in OCI/AML-2 subclones:is the p53 pathway involved? Br J Haematol 118(2):401-10.
    Koryakina, A., J. Aeberhard, S. Kiefer, M. Hamburger and P. Kuenzi (2009). Regulation of secretases by all-trans-retinoic acid. Febs J 276(9):2645-55.
    Koshimizu, U., T. Taga, M. Watanabe, M. Saito, Y. Shirayoshi, T. Kishimoto and N. Nakatsuji (1996). Functional requirement of gpl30-mediated signaling for growth and survival of mouse primordial germ cells in vitro and derivation of embryonic germ (EG) cells. Development 122(4):1235-42.
    Kuphal, F. and J. Behrens (2006). E-cadherin modulates Wnt-dependent transcription in colorectal cancer cells but does not alter Wnt-independent gene expression in fibroblasts. Exp Cell Res 312(4):457-67.
    Kuwana, T. and T. Fujimoto (1984). Locomotion and scanning electron microscopic observations of primordial germ cells from the embryonic chick blood in vitro. Anat Rec 209(3):337-43.
    Lane, M. A. and S. J. Bailey (2005). Role of retinoid signalling in the adult brain. Prog Neurobiol 75(4): 275-93.
    Lee, K. H. and D. A. Cotanche (1996). Potential role of bFGF and retinoic acid in the regeneration of chicken cochlear hair cells. Hear Res 94(1-2):1-13.
    Lee, N. P., D. Mruk, W. M. Lee and C. Y. Cheng (2003). Is the cadherin/catenin complex a functional unit of cell-cell actin-based adherens junctions in the rat testis? Biol Reprod 68(2):489-508.
    Li, W. X. (2004). Receptor tyrosine kinase signaling and primordial germ cell development. Cell Cycle 3(3):249-51.
    Lohnes, D., M. Mark, C. Mendelsohn, P. Dolle, A. Dierich, P. Gorry, A. Gansmuller and P. Chambon (1994). Function of the retinoic acid receptors (RARs) during development (Ⅰ). Craniofacial and skeletal abnormalities in RAR double mutants. Development 120(10):2723-48.
    Maden, M. (2007). Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 8(10):755-65.
    Maden, M., E. Gale, I. Kostetskii and M. Zile (1996). Vitamin A-deficient quail embryos have half a hindbrain and other neural defects. Curr Biol 6(4):417-26.
    Maden, M., E. Sonneveld, P. T. van der Saag and E. Gale (1998). The distribution of endogenous retinoic acid in the chick embryo:implications for developmental mechanisms. Development 125(21):4133-44.
    Maeda, I. and Y. Matsui (2009). In vitro assay system for primordial germ cell development. Cell Res 19(10):1125-6.
    Mahabaleshwar, H., B. Boldajipour and E. Raz (2008). Killing the messenger:The role of CXCR7 in regulating primordial germ cell migration. Cell Adh Migr 2(2):69-70.
    Makkonen, K. M., M. Malinen, A. Ropponen, S. Vaisanen and C. Carlberg (2009). Cell cycle regulatory effects of retinoic Acid and forskolin are mediated by the cyclin C gene. J Mol Biol 393(2):261-71.
    Manglani, M. V. and P. Balamurugan (2009). All Trans Retinoic Acid (ATRA) induced myositis. Indian Pediatr 46(10):912-3.
    Mark, M., N. B. Ghyselinck and P. Chambon (2006). Function of retinoid nuclear receptors:lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol 46:451-80.
    Matsubara, N., Y. Takahashi, Y. Nishina, Y. Mukouyama, M. Yanagisawa, T. Watanabe, T. Nakano, K. Nomura, H. Arita, Y. Nishimune, M. Obinata and Y. Matsui (1996). A receptor tyrosine kinase, Sky, and its ligand Gas 6 are expressed in gonads and support primordial germ cell growth or survival in culture. Dev Biol 180(2):499-510.
    Mattiske, D., T. Kume and B. L. Hogan (2006). The mouse forkhead gene Foxcl is required for primordial germ cell migration and antral follicle development. Dev Biol 290(2):447-58.
    Mauduit, C., S. Hamamah and M. Benahmed (1999). Stem cell factor/c-kit system in spermatogenesis. Hum Reprod Update 5(5):535-45.
    McCaffery, P., M. O. Lee, M. A. Wagner, N. E. Sladek and U. C. Drager (1992). Asymmetrical retinoic acid synthesis in the dorsoventral axis of the retina. Development 115(2):371-82.
    McCaffrery, P., K. C. Posch, J. L. Napoli, L. Gudas and U. C. Drager (1993). Changing patterns of the retinoic acid system in the developing retina. Dev Biol 158(2):390-9.
    Medvedev, S. P., A. I. Shevchenko, N. A. Mazurok and S. M. Zakiian (2008). OCT4 and NANOG are the key genes in the system of pluripotency maintenance in mammalian cells. Genetika 44(12): 1589-608.
    Mita, K. and M. Yamashita (2000). Expression of Xenopus Daz-like protein during gametogenesis and embryogenesis. Mech Dev 94(1-2):251-5.
    Molyneaux, K. and C. Wylie (2004). Primordial germ cell migration. Int J Dev Biol 48(5-6):537-44.
    Molyneaux, K. A., K. Schaible and C. Wylie (2003). GP130, the shared receptor for the LIF/IL6 cytokine family in the mouse, is not required for early germ cell differentiation, but is required cell-autonomously in oocytes for ovulation. Development 130(18):4287-94.
    Moss, J. B, J. Xavier-Neto, M. D. Shapiro, S. M. Nayeem, P. McCaffery, U. C. Drager and N. Rosenthal (1998). Dynamic patterns of retinoic acid synthesis and response in the developing mammalian heart. Dev Biol 199(1):55-71.
    Motono, M., T. Ohashi, K. Nishijima and S. Iijima (2008). Analysis of chicken primordial germ cells. Cytotechnology 57(2):199-205.
    Mozdziak, P. E., J. Angerman-Stewart, B. Rushton, S. L. Pardue and J. N. Petitte (2005). Isolation of chicken primordial germ cells using fluorescence-activated cell sorting. Poult Sci 84(4):594-600.
    Naito, M., A. Tajima, Y. Yasuda and T. Kuwana (1998). Donor primordial germ cell-derived offspring from recipient germline chimaeric chickens:absence of long-term immune rejection and effects on sex ratios. Br Poult Sci 39(1):20-3.
    Napoli, J. L. (1996). Retinoic acid biosynthesis and metabolism. Faseb J 10(9):993-1001.
    Niederreither, K., P. McCaffery, U. C. Drager, P. Chambon and P. Dolle (1997). Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2)
    gene during mouse development. Mech Dev 62(1):67-78.
    Oakley, G. P., Jr. and J. D. Erickson (1995). Vitamin A and birth defects. Continuing caution is needed. N Engl J Med 333(21):1414-5.
    Ohkubo, T. and M. Ozawa (1999). p120(ctn) binds to the membrane-proximal region of the E-cadherin cytoplasmic domain and is involved in modulation of adhesion activity. J Biol Chem 274(30): 21409-15.
    Pain, B., M. E. Clark, M. Shen, H. Nakazawa, M. Sakurai, J. Samarut and R. J. Etches (1996). Long-term in vitro culture and characterisation of avian embryonic stem cells with multiple morphogenetic potentialities. Development 122(8):2339-48.
    Parker, C., R. S. Rampaul, S. E. Pinder, J. A. Bell, P. M. Wencyk, R. W. Blarney, R. I. Nicholson and J. F. Robertson (2001). E-cadherin as a prognostic indicator in primary breast cancer. Br J Cancer 85(12):1958-63.
    Pereda, J., T. M. Zorn, M. Soto and P. M. Motta (1998). Morphological and cytochemical study of extracellular matrix during the migratory phase of human and mouse primordial germ cells. Ital J Anat Embryol 103(4 Suppl 1):41-50.
    Pesce, M. and H. R. Scholer (2000). Oct-4:control of totipotency and germline determination. Mol Reprod Dev 55(4):452-7.
    Purohit, S., M. Brahmaraju, A. Palta, S. Shukla, M. Laloraya and P. G. Kumar (2004). Impaired E-cadherin expression in human spermatozoa in a male factor infertility subset signifies E-cadherin-mediated adhesion mechanisms operative in sperm-oolemma interactions. Biochem Biophys Res Commun 316(3):903-9.
    Radominska-Pandya, A., G. Chen, P. J. Czernik, J. M. Little, V. M. Samokyszyn, C. A. Carter and G. Nowak (2000). Direct interaction of all-trans-retinoic acid with protein kinase C (PKC). Implications for PKC signaling and cancer therapy. J Biol Chem 275(29):22324-30.
    Raz, E. (2003). Primordial germ-cell development:the zebrafish perspective. Nat Rev Genet 4(9): 690-700.
    Raz, E. (2004). Guidance of primordial germ cell migration. Curr Opin Cell Biol 16(2):169-73.
    Resnick, J. L., M. Ortiz, J. R. Keller and P. J. Donovan (1998). Role of fibroblast growth factors and their receptors in mouse primordial germ cell growth. Biol Reprod 59(5):1224-9.
    Richards, A. J., G. C. Enders and J. L. Resnick (1999). Activin and TGFbeta limit murine primordial
    germ cell proliferation. Dev Biol 207(2):470-5.
    Ross, S. A., P. J. McCaffery, U. C. Drager and L. M. De Luca (2000). Retinoids in embryonal development. Physiol Rev 80(3):1021-54.
    Rothman, K. J., L. L. Moore, M. R. Singer, U. S. Nguyen, S. Mannino and A. Milunsky (1995). Teratogenicity of high vitamin A intake. N Engl J Med 333(21):1369-73.
    Roura, S., S. Miravet, J. Piedra, A. Garcia de Herreros and M. Dunach (1999). Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem 274(51):36734-40.
    Saito, T., R. Goto-Kazeto, K. Arai and E. Yamaha (2008). Xenogenesis in teleost fish through generation of germ-line chimeras by single primordial germ cell transplantation. Biol Reprod 78(1):159-66.
    Saitou, M., B. Payer, U. C. Lange, S. Erhardt, S. C. Barton and M. A. Surani (2003). Specification of germ cell fate in mice. Philos Trans R Soc Lond B Biol Sci 358(1436):1363-70.
    Sette, C., S. Dolci, R. Geremia and P. Rossi (2000). The role of stem cell factor and of alternative c-kit gene products in the establishment, maintenance and function of germ cells. Int J Dev Biol 44(6): 599-608.
    Shevinsky, L. H., B. B. Knowles, I. Damjanov and D. Solter (1982). Monoclonal antibody to murine embryos defines a stage-specific embryonic antigen expressed on mouse embryos and human teratocarcinoma cells. Cell 30(3):697-705.
    Sloncova, E., P. Fric, D. Kucerova, Z. Lojda, Z. Tuhackova and V. Sovova (2001). Changes of E-cadherin and beta-catenin in human and mouse intestinal tumours. Histochem J 33(1):13-7.
    Soto-Suazo, M., S. San Martin and T. M. Zorn (2004). Collagen and tenascin-C expression along the migration pathway of mouse primordial germ cells. Histochem Cell Biol 121(2):149-53.
    Stebler, J., D. Spieler, K. Slanchev, K. A. Molyneaux, U. Richter, V. Cojocaru, V. Tarabykin, C. Wylie, M. Kessel and E. Raz (2004). Primordial germ cell migration in the chick and mouse embryo:the role of the chemokine SDF-1/CXCL12. Dev Biol 272(2):351-61.
    Stockinger, A., A. Eger, J. Wolf, H. Beug and R. Foisner (2001). E-cadherin regulates cell growth by modulating proliferation-dependent beta-catenin transcriptional activity. J Cell Biol 154(6): 1185-96.
    Stoop, H., F. Honecker, G. J. van de Geijn, A. J. Gillis, M. C. Cools, M. de Boer, C. Bokemeyer, K. P. Wolffenbuttel, S. L. Drop, R. R. de Krijger, N. Dennis, B. Summersgill, A. McIntyre, J. Shipley, J.
    W. Oosterhuis and L. H. Looijenga (2008). Stem cell factor as a novel diagnostic marker for early malignant germ cells. J Pathol 216(1):43-54.
    Tang, X. and C. Zhang (2007). Activation of protein kinases A and C promoted proliferation of chicken primordial germ cells. Anim Reprod Sci 101(3-4):295-303.
    Thaller, C. and G. Eichele (1987). Identification and spatial distribution of retinoids in the developing chick limb bud. Nature 327(6123):625-8.
    Tiedemann, H., M. Asashima, H. Grunz and W. Knochel (2001). Pluripotent cells (stem cells) and their determination and differentiation in early vertebrate embryogenesis. Dev Growth Differ 43(5): 469-502.
    Tolkunova, E. N., A. B. Malashicheva, E. V. Chikhirzhina, E. I. Kostyleva, W. Zeng, J. Luo, I. Dobrinskii, A. Hierholzer, R. Kemler and A. N. Tomilin (2009). E-cadherin as a novel surface marker of spermatogonial stem cells. Tsitologiia 51(3):212-8.
    Tunggal, J. A., I. Helfrich, A. Schmitz, H. Schwarz, D. Gunzel, M. Fromm, R. Kemler, T. Krieg and C. M. Niessen (2005). E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. Embo J 24(6):1146-56.
    Uemura, T., Y. M. Sagesaka, N. Oku and S. Okada (1995). Activation of retinoic acid (RA)-differentiated HL-60 cells by saponins. Yakugaku Zasshi 115(7):528-36.
    Urven, L. E., U. K. Abbott and C. A. Erickson (1989). Distribution of extracellular matrix in the-migratory pathway of avian primordial germ cells. Anat Rec 224(1):14-21.
    Vanier, M. C., D. Banerjee and B. B. Mukherjee (1988). Retinoic acid inhibits phospholipid turnover and protein kinase C activity in RA-sensitive but not in RA-resistant cells. FEBS Lett 241(1-2): 154-8.
    Vilhais-Neto, G. C. and O. Pourquie (2008). Retinoic acid. Curr Biol 18(5):R191-2.
    Wentworth, B. C., H. Tsai, J. H. Hallett, D. S.Gonzales and G. Rajcic-Spasojevic (1989). Manipulation of avian primordial germ cells and gonadal differentiation. Poult Sci 68(7): 999-1010.
    Wylie, C. C., D. Stott and P. J. Donovan (1986). Primordial germ cell migration. Dev Biol (N Y 1985) 2: 433-48.
    Yu, Z. L., J. X. Lin, Y. Xiao and J. Han (2005). Retinoic acid induced cell cycle arrest and apoptosis in mouse embryonic palatal mesenchymal cells. Wei Sheng Yan Jiu 34(5):566-9.
    Zhang, W., A. Alt-Holland, A. Margulis, Y. Shamis, N. E. Fusenig, U. Rodeck and J. A. Garlick (2006). E-cadherin loss promotes the initiation of squamous cell carcinoma invasion through modulation of integrin-mediated adhesion. J Cell Sci 119(Pt 2):283-91.
    Zhao, D., P. McCaffery, K. J. Ivins, R. L. Neve, P. Hogan, W. W. Chin and U. C. Drager (1996). Molecular identification of a major retinoic-acid-synthesizing enzyme, a retinaldehyde-specific dehydrogenase. Eur J Biochem 240(1):15-22.
    Zhao, Q. G., B. S. Lu and P. T. Huang (2005). Functions of FANCL in primordial germ cell formation and Fanconi anemia. Yi Chuan Xue Bao 32(9):993-1000.
    Zhao, Y., D. He, R. Stern, P. V. Usatyuk, E. W. Spannhake, R. Salgia and V. Natarajan (2007). Lysophosphatidic acid modulates c-Met redistribution and hepatocyte growth factor/c-Met signaling in human bronchial epithelial cells through PKC delta and E-cadherin. Cell Signal 19(11):2329-38.
    Zorn, N. E. and M D. Sauro (1995). Retinoic acid induces translocation of protein kinase C (PKC) and activation of nuclear PKC (nPKC) in rat splenocytes. Int J Immunopharmacol 17(4):303-11.
    崔银江,李少华.E-钙粘附素的研究进展.中国矫形外科杂志2009;17(13):1001-1003
    李碧春,陈国宏,赵东伟,王克华,钱菊汾.鸡胚PGC迁移与性腺发育关系的研究.扬州大学学报2002;23:18-26.
    李碧春,秦洁,肖小珺,陈国宏,吴信生,吴圣龙.鸡胚不同发育时期PGC的分离方法.动物学报2003;49:835-842.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.