男性血清骨钙素水平与代谢综合征及冠脉病变的相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     1.探讨男性血清骨钙素水平与代谢综合征及组分的关系。
     2.研究骨钙素与冠状动脉粥样硬化病变程度的关系。
     方法
     1.选择2008.7—2009.10上海交通大学附属第六人民医院心内科入院行冠状动脉造影检查(Coronary angiography, CAG)的男性受试者187例作为研究对象,平均年龄64.9±10.7岁。测量简易体脂参数,包括体重、腰围(W)、体重指数(BMI),测定空腹血糖(FPG)、餐后2h血糖(2hPG)、甘油三酯(TG)、总胆固醇(TC)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)、糖化血红蛋白(HbA1c)、糖化血清白蛋白(GA)、空腹胰岛素(FINS)、碱性磷酸酶(ALP)、骨钙素和脂联素水平。以稳态模式评估法的胰岛素抵抗指数(HOMA-IR)评价患者的胰岛素敏感性,以稳态模式评估法的β细胞功能指数(HOMA-%B)评价基础胰岛素分泌功能。将受试者按照是否存在代谢综合征(MS)分为MS组与非MS(Non-MS)组,比较两组间临床特征及血清骨钙素水平,分析MS组分数增加与骨钙素水平的变化趋势。探讨血清骨钙素水平与糖、脂代谢等临床生化指标的相关性,并进一步分析骨钙素与MS的关联。
     2.在上述受试者中进一步探讨血清骨钙素水平与冠脉病变程度的关系,并对其中60例正常糖耐量(NGT)者进行亚组分析,其中包括冠状动脉粥样硬化性心脏病(冠心病,CAD)患者48例(稳定型心绞痛20例,不稳定型心绞痛28例),非冠心病(Non-CAD)受试者12例。根据CAG结果采用冠状动脉粥样硬化指数(CAI)对主要冠状动脉内径的狭窄程度进行定量评定,比较CAD与Non-CAD组血清骨钙素水平,分析病变血管数目与血清骨钙素水平的关系,及血清骨钙素与CAI的相关性。
     结果
     1. MS组较Non-MS组BMI、W、血压(BP)、FPG、FINS、HbA1c、GA、TG及HOMA-IR明显升高(P<0.05-0.001)。而HDL-C、脂联素及骨钙素水平在MS组显著降低(P值均<0.001)。年龄、TC、LDL-C、HOMA-%B、ALP及吸烟史的比例在两组间没有明显差异(P>0.05)。
     2.在所有受试者血清骨钙素水平波动于5.34-53.67ng/mL。MS组血清骨钙素水平明显低于Non-MS组[5.61ng/mL(11.93- 20.56) vs. 17.95ng/mL(15.12-24.44),P<0.001]。进一步按照MS的组分数分组后发现:同1-2项代谢异常组相比[21.21ng/mL(16.08-26.47)],3项[16.93ng/mL(12.00-24.11)]、4项[15.36ng/mL(12.81-18.01)]及5项代谢异常组[14.74ng/mL ( 10.78-18.64 ) ]血清骨钙素水平显著降低(P<0.05-0.001),5项代谢异常组血清骨钙素水平也显著低于3项代谢异常组(P<0.05)。将血清骨钙素值按三分位点分层后分析可见,随着骨钙素水平的上升,MS发生频率及除高血压外MS各组分的患病率均显著降低(P<0.05-0.001)。
     3.简单相关分析显示:血清骨钙素水平与BMI(r=-0.185,P=0.015)、W(r=-0.310,P<0.001)、FPG(r=-0.318,P<0.001)、HbA1c(r=-0.211,P=0.006)及HOMA-IR(r=-0.181,P=0.017)呈负相关,与LDL-C(r=0.172,P=0.025)及ALP(r=0.279,P<0.001)呈正相关。进一步校正年龄和BMI后发现,血清骨钙素水平与W、FPG、HbA1c、HOMA-IR及ALP的相关关系依然明显,此外,还与HOMA-%B(r=0.182,P=0.022)呈显著正相关。多元逐步回归分析显示W和高血糖是血清骨钙素水平的独立影响因素。除W、HbA1c与HOMA-IR独立相关外,血清骨钙素水平也是HOMA-IR的独立影响因素。
     4.以MS为应变量进行多元Logistic回归分析,结果显示BMI、HOMA-IR、HbA1c及血清骨钙素水平是MS的独立影响因素,且骨钙素水平位于上1/3位点者较下1/3位点者及中1/3位点者有显著低的发生MS的风险(OR值分别为0.216和0.401)。
     5.按照CAG结果,将受试者分为冠心病(CAD)组和非冠心病组(Non-CAD)。CAD组年龄、HbA1c显著高于Non-CAD组(P<0.05),而骨钙素等指标在两组间无显著差异。在CAD患者,除高血压外MS各组分的患病率均随血清骨钙素水平的升高而下降(P<0.05-0.001),但冠脉病变支数及狭窄程度无明显差异。
     进一步对60例NGT受试者进行亚组分析后显示:血清骨钙素水平在CAD组显著低于Non-CAD组[20.52ng/mL (16.53-25.33) vs. 24.04ng/mL (17.58-33.64),P<0.05],而其他临床指标在两组间无明显差异。将受试者按照血管病变数进行分组后显示,随病变血管数目的增加,骨钙素水平呈逐渐降低趋势,同0支病变组相比,多支病变组血清骨钙素水平显著降低(P<0.05)。
     6.简单相关分析显示血清骨钙素水平与CAI呈显著负相关(r=-0.440,P=0.003)。以CAI为应变量进行多元逐步回归分析显示血清骨钙素是CAI的独立影响因素(β=-0.868,P=0.003)。
     结论
     1.血清骨钙素与糖脂代谢相关,MS组份的数目随着血清骨钙素水平增高而减少;血清骨钙素水平升高的个体,MS的患病风险明显降低。
     2.在CAD人群中,血清骨钙素水平相对低的个体其MS及除高血压外的MS各组分的发生频率显著升高。
     3.糖耐量正常的受试者中,冠脉病变程度相对重的个体其血清骨钙素水平较低。血清骨钙素水平是冠脉病变程度的独立影响因素。
Objectives
     1. To investigate the relationship of serum osteocalcin with metabolic syndrome and its components in men.
     2. To explore the association of serum osteocalcin with the severity of coronary atherosclerosis.
     Methods
     1. We recruited 187 men who were admitted to the Department of Cardiology of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital to undergo coronary angiography (CAG) between July 2008 and October 2009, their mean age was 64.94±10.66 years. Anthropometric parameters including weight, waist circumference (W) and body mass index (BMI) was measured and biochemical parameters including fasting plasma glucose (FPG), 2-h post-load plasma glucose (2hPG), total cholesterol (TC), triglyceride (TG), high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C), glycated hemoglobin A1c (HbA1c), glycated albumin (GA), fasting insulin (FINS), alkaline phosphatase (ALP), serum osteocalcin and adiponectin were analyzed. Insulin sensitivity and insulin secretion were estimated by homeostasis model assessment-insulin resistance (HOMA-IR) and homeostasis model assessment of beta cell function (HOMA-%B). Serum osteocalcin concentrations were compared between metabolic syndrome (MS) group and non-metabolic syndrome (Non-MS) group. The changing of serum osteocalcin along with the increasing of the components of MS was analyzed. In addition, multiple stepwise regression analysis was used to determine the association of serum osteocalcin with parameters related to glucose metabolism, fat metabolism and lipid profile, and multiple logistic regression analysis was used to determine the influence of serum osteocalcin on MS.
     2. We further investigated the association of serum osteocalcin with the severity of coronary atherosclerosis. A subgroup analysis was performed in 60 subjects with normal glucose tolerance (NGT) from the above population. They were divided into coronary artery disease (CAD) group (n=48) and non-coronary artery disease (Non-CAD) group (n=12). The severity of CAD was accessed by the coronary atherosclerosis index (CAI). Serum osteocalcin concentrations were compared between CAD group and Non-CAD group. The differences of serum osteocalcin concentrations were further compared among subjects with different number of vessel lesions. Moreover, the relationship between serum osteocalcin and CAI was also analyzed.
     Results
     1. Compared with Non-MS group, subjects in MS group had significantly higher BMI, W, blood pressure (BP), FPG, FINS, HbA1c、GA、TG and HOMA-IR (P<0.05). However, age, TC、LDL-C、HOMA-%B、ALP and percentage of subjects with a cigarette history were not different between the two groups (P>0.05).
     2. Serum osteocalcin concentrations ranged from 5.34 ng/mL to 53.67 ng/mL. As compared with Non-MS group, serum osteocalcin concentrations were significantly lower in MS group. When subjects were further divided into different groups according to the components of metabolic disorders, serum osteocalcin concentrations were decreased with the incement of the components of metabolic disorders. Significant lower serum osteocalcin concentrations were found in 3, 4 and 5 components metabolic disorder group compared with 1-2 components metabolic disorder group (P<0.05-0.001), and similar difference was found in subjects with 5 components compared with those with 3 components (P<0.05). The frequency of MS and its components except for hypertension were decreased with the increment of serum osteocalcin after stratified by tertile (P<0.05-0.001).
     3. In whole participants the correlation analysis showed that serum osteocalcin was inversely correlated with BMI (r=-0.185, P=0.015), W (r=-0.310, P<0.001), FPG (r=-0.318, P<0.001), HbA1c (r=-0.211, P=0.006) and HOMA-IR (r=-0.181, P=0.017), and positively correlated with LDL-C (r=0.172, P=0.025) and ALP (r=0.279, P<0.001). After further adjusted for age and BMI, serum osteocalcin was still negatively correlated with W, FPG, HbA1c and HOMA-IR, and positively correlated with HOMA-%B (r=0.182, P=0.022) and ALP (r=0.290, P<0.001). Multivariate stepwise regression analysis showed that W and hyperglycemia were independent factors significantly influencing serum osteocalcin. Moreover, serum osteocalcin was an independent factor for HOMA-IR.
     4. Multiple logistic regression analysis was performed using the presence of MS as a dependent variable. As a result, BMI, HOMA-IR, HbA1c and serum osteocalcin were independent predictors for the development of MS. Subjects with the highest tertile of serum osteocalcin had an increased risk of developing MS compared with those with osteocalcin in the middle and lowest tertile (OR, 0.216 and 0.401).
     5. Total subjects were divided into CAD group and Non-CAD group according to CAG. Age and HbA1c were significantly higher in CAD group, however, osteocalcin was not significantly different between the two groups. In CAD patients, the frequency of MS and its components except for hypertension were decreased with the increment of serum osteocalcin (P<0.05-0.001), however, the severity of CAD showed no significant difference.
     Subgroup analysis in 60 subjects with NGT showed that age, BP, parameters related to glucose, fat and lipid metabolism, FINS, HOMA-IR, HOMA-%B, ALP and adiponectin had no significant differences between CAD group and Non-CAD group, while serum osteocalcin concentrations were significantly lower in Non-CAD group compared with CAD group [20.52ng/mL (16.53-25.33), p<0.05 vs. 24.04ng/mL (17.58-33.64)]. As compared with 0 vessel disease group, multiple vessels disease group had significantly lower serum osteocalcin concentrations (P<0.05).
     6. Serum osteocalcin was significantly correlated with CAI (r=-0.440, P=0.003). Multivariate stepwise regression analysis showed that serum osteocalcin was the independent factor significantly influencing CAI (β=-0.868, P=0.003).
     Conclusions
     1. Serum osteocalcin was important for glucose and fat metabolism. The risk of MS and the number of its components were decreased with the increment of serum osteocalcin.
     2. In CAD patients, the frequency of MS and its components except for hypertension increased with the decreasing of serum osteocalcin.
     3. In NGT subjects, serum osteocalcin concentrations decreased with the aggravating of coronary atherosclerosis. Osteocalcin was the only independent factor significantly influencing CAI.
引文
1. Ducy P, Amling M, Takeda S, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell, 2000, 100: 197-207.
    2. Elefteriou F, Takeda S, Ebihara K, et al. Serum leptin level is a regulator of bone mass. Proc. Natl. Acad. Sci. U. S. A. 2004, 101: 3258-3263.
    3. Elefteriou F, Ahn JD, Takeda S. et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature, 2005, 434: 514-520.
    4. Karsenty G.. Convergence between bone and energy homeostases: leptin regulation of bone mass. Cell Metab, 2006, 4: 341-348.
    5. Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton. Cell, 2007, 130:456-469.
    6. Lian J, Stewart C, Puchacz E, et al. Structure of the rat osteocalcin gene and regulation of vitamin D-dependent expression. Proc Natl Acad Sci U S A, 1989, 86:1143-1147.
    7. Hauschka PV, Lian JB, Cole DE, et al. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev, 1989, 69(3):990-1047.
    8. Price PA. Gla-containing proteins of bone. Connect Tissue Res, 1989, 21:51-60.
    9. Ferron M, Hinoi E, Karsenty G, et al. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA, 2008, 105:5266-5270.
    10. Im JA, Yu BP, Jeon JY, et al. Relationship between osteocalcin and glucose metabolism in postmenopausal women. Clin Chim Acta, 2008, 396:66-69.
    11. Kanazawa I, Yamaguchi T, Yamamoto M, et al. Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab, 2009, 94:45-49.
    12. Fernández-Real JM, Izquierdo M, Ortega F, et al. The relationship of serum osteocalcin concentration to insulin secretion, sensitivity, and disposal with hypocaloric diet and resistance training. J Clin Endocrinol Metab, 2009, 94:237-245.
    13. Ducy P, Zhang R, Geoffroy V. et al. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell, 1997, 89: 747-754.
    14. Yang X, Matsuda K, Bialek P. et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry syndrome. Cell, 2004,117: 387-398
    15. Hauschka PV, Lian JB, Cole DE. et al. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev, 1989, 69: 990-1047.
    16. Gundberg, C.M. et al. Osteocalcin in human serum: a circadian rhythm. J. Clin. Endocrinol Metab, 1985, 60: 736-739.
    17.中国成人血脂异常防治指南制订联合委员会。中国成人血脂异常防治指南。中华心血管病杂志,2007,35(5):390-419.
    18. Lkka HM,Laaksonen DE,Lakka TA,et al. The metabolic syndrome and total cardiovascular disease mortality in middle aged men. JAMA, 2002, 288: 2709-16.
    19. IsomaIsomaa B, Almgren P, Tuomi T, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care, 2001, 24(4): 683-689.
    20. Resnick HE,Jones K,Ruotolo G,at a1.Insulin resistance,the metabolic syndrome,and the risk of incident cardiovascular disease in nondiabetic American Indians. Diabetes Care, 2003, 26: 861-867.
    21. Lamarche B, St-Pierre AC. Features of the metabolic syndrome and the risk of cardiovascular disease. Biomarkers. 2005, Suppl 1: S37-43.
    22. International Diabetes Federation(IDF). The IDF consensus worldwide definition of the metabolic syndrome. http://www.idf.org/webdata/oca/ Meta_syndrome definition. pdf
    23.中华医学会糖尿病学分会代谢综合征研究协作组.中华医学会糖尿病学分会关于代谢综合征的建议.中华糖尿病杂志,2004.12(3):156-161.
    24. World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications: Report of a WHO Consultation. Part 1: Diagnosis and classification of diabetes mellitus. World Health Organization, Geneva 1999.
    25. Tang YJ, Sheu WH, Liu PH, et al. Positive associations of bone mineral density with body mass index, physical activity, and blood triglyceride level in men over 70 years old: a TCVGHAGE study. J Bone Miner Metab, 2007, 25: 54-59.
    26. Bagger YZ, Rasmussen HB, Alexandersen P, et al; PERF study group. Links between cardiovascular disease and osteoporosis in postmenopausal women: serum lipids or atherosclerosis per se? Osteoporos Int, 2007, 18: 505-512.
    27. Yamaguchi T, Sugimoto T, Yano S, et al. Plasma lipids and osteoporosis in postmenopausal women. Endocr J, 2002, 49: 211-217.
    28. Lee NK, Karsenty G. Reciprocal regulation of bone and energy metabolism. Trends Endocrinol Metab, 2008, 19(5):161-166.
    29. Zhou M, Ma X, Li H, et al. Serum osteocalcin concentrations in relation to glucose and lipid metabolism in Chinese individuals. Eur J Endocrinol, 2009, 161(5):723-729.
    30. Ducy P, Desbois C, Boyce B, et al. Increased bone formation in osteocalcin-deficient mice. Nature, 1996, 382:448-452.
    31. Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 1999, 98:115-124.
    32. Lowell BB, S-Susulic V, Hamann A, et al.. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature, 1993, 366:740-742.
    33. Enerb?ck S, Jacobsson A, Simpson EM, et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature, 1997, 387:90-94.
    34. Pittas AG, Harris SS, Eliades M, et al. Association between serum osteocalcin and markers of metabolic phenotype. J Clin Endocrinol Metab, 2009, 94: 827-832.
    35. Pietschmann P, Schernthaner G, Woloszczuk W. Serum osteocalcin levels in diabetes mellitus: analysis of the type of diabetes and microvascular complication. Diabetologia, 1988, 31:892-895.
    36. Rosato MT, Schneider SH, Shapses SA. Bone turnover and insulin-like growth factor I levels increase after improved glycemic control in noninsulin-dependent diabetes mellitus. Calcif Tissue Int, 1998, 63:107-111.
    37. Verhaeghe J, Suiker AMH, Visser WJ, et al. The effects of systemic insulin, insulin like growth factor-1 and growth hormone on bone growth and turnover in spontaneously diabetic BB rats. J Endocrinol, 1992, 134:485-492.
    38. Krakauer JC, McKenna MJ, Buderer NF, et al. Bone loss and bone turnover in diabetes. Diabetes, 1995, 44:775-782.
    39. Verhaeghe J, Suiker AM, Nyomba BL, et al. Bone mineral homeostasis in spontaneously diabetic BB rats. II. Impaired bone turnover and decreased osteocalcin synthesis. Endocrinology, 1989, 124:573-582.
    40. Gerdhem P, Isaksson A, Akesson K, et al. Increased bone density and decreased bone turnover, but no evident alteration of fracture susceptibility in elderly women with diabetes mellitus. Osteoporos Int, 2005, 16:1506-1512.
    41. Rico H, Hernandez ER, Cabranes JA, et al. Suggestion of a deficient osteoblastic function in diabetes mellitus: the possible cause of osteoblastic function in diabetes mellitus: the possible cause of osteopenia in diabetics. Calcif Tissue Int, 1989, 45: 71-73.
    1.中华人民共和国卫生部.2006中国卫生统计年鉴.北京:中国协和医科大学出版社,2006.
    2.陶寿淇,武阳丰,主编.医疗卫生人员心血管病防治知识.北京:中国友谊出版公司,2000.
    3. Zhou B, Zhang H, Wu Y, et a1. Ecological analysis of the association between incidence and risk factors of coronary heart disease an d stroke in Chinese populations. CVD Prevention, 1998, l(3): 207-216.
    4. Wu Z, Yao C, Zhao D, et a1. A collaborative study on trend and determinan ts in cardiovascular diseases in China. Part I: morbidity and mortality monitoring Circulation, 2001, 103(3): 462-468.
    5. He J, Gu DF, wu XG, et a1. Major Causes of Death among Men and Women in China. N Engl J Med, 2005, 353(11): 1124-1134.
    6. Grundy SM,Balady GJ,Criqui MH,et al. Primary prevention of coronary heart disease:guidance from Framingham:A statement for healthcare professionals from the AHA task force on risk reduction. American Heart Association. Circulation, 1998, 97: 1876-1887.
    7. Neaton JD, Wentworth D. Arch Intern Med. Serum cholesterol, blood pressure, cigarette smoking, and death from coronary heart disease. Overall findings and differences by age for 316,099 white men. Multiple Risk Factor Intervention Trial Research Group. Arch Intern Med. 1992, 152(1):56-64.
    8. Assmann G .Lipid Metabolism Disorders and Coronary Heart Disease:primary prevention,diagnosis,and therapy guidelines or general practice. Munich: MMV Medizin Verlag, 1993.35
    9. Hauschka PV, Lian JB, Cole DE, et al. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev, 1989, 69(3):990-1047.
    10. Price PA. Gla-containing proteins of bone. Connect Tissue Res, 1989, 21:51-60.
    11. Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton. Cell, 2007, 130:456-469.
    12. Im JA, Yu BP, Jeon JY, et al. Relationship between osteocalcin and glucose metabolismin postmenopausal women. Clin Chim Acta, 2008, 396:66-69.
    13. Fernández-Real JM, Izquierdo M, Ortega F, et al. The relationship of serum osteocalcin concentration to insulin secretion, sensitivity, and disposal with hypocaloric diet and resistance training. J Clin Endocrinol Metab, 2009, 94:237-245.
    14. Pittas AG, Harris SS, Eliades M, et al. Association between serum osteocalcin and markers of metabolic phenotype. J Clin Endocrinol Metab, 2009, 94: 827-832.
    15. Zhou M, Ma X, Li H, et al. Serum osteocalcin concentrations in relation to glucose and lipid metabolism in Chinese individuals. Eur J Endocrinol, 2009, 161(5):723-729.
    16. Pennisi P, Signorelli SS, Riccobene S, et al. Low bone density and abnormal bone turnover in patients with atherosclerosis of peripheral vessels. Osteoporos Int, 2004, 15:389-395.
    17. Kanazawa I, Yamaguchi T, Yamamoto M, et al. Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab, 2009, 94:45-49.
    18. Watson KE, Bostr?m K, Ravindranath R, et al. TGF-beta 1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify. J Clin Invest, 1994, 93:2106-2113.
    19. Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol. 33(1):87-94.
    20. Nomenclature and criteria for diagnosis of ischemic heart disease. Report of the Joint International Society and Federation of Cardiology/World Health Organization task force on standardization of clinical nomenclature. Circulation, 1979, 59(3): 607-609.
    21.黄浙勇,江时森,汤沂冠状动脉病变程度对左心室舒张末压的影响.医学研究生学报,2004,17(11):998一1001.
    22. Tatami R, Mabuchi H, Ueda K. Intermediate-density lipoprotein and cholesterol-rich very low density lipoprotein in angiographically determined coronary artery disease. Circulation, 1981, 64(6):1174-1184.
    23. Kareinen A, Viitanen L, Halonen P, et a1. Cardiovascular risk factor associated with insulin resistance cluster in families with early-onset coronary heart disease.Arteriescler Thromb Vasc Biol, 2001, 21(5): 1346-1352.
    24. Pyorala M, Miettinen H, Halonen P, et a1. Insulin resistance syndrome predicts the risk of coronary heart disease and stroke in healthy middle-aged men; the 22-year follow up.result of the Helsinki Policemen Study. Arteriescler Thromb Vasc Biol, 2000, 20(1): 538-54.
    25. Després JP, Lamarche B, Mauriège P, et al. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl J Med. 1996, 334(15):952-7.
    26. NordT, Sawa H, Fujii S, et a1. Induction of plasminogen activator inhibitor type-1(PAI-1)by proinsulin and insulin in vivo.Circulation, 1995, 91(1): 764.
    27. Rifdind BM.High density lipoprotein cholesterol and coronary artery-disease;survey of the evidence. Am J Cordial, 2001, 66 (4): 3.
    28. Yudkin JS, Stehouwer CDA, Emeis JJ, et al. C-reactive protein in healthy subjects: association with obesity, insulin resistance, and endothelial dysfunction. Arterioseler Thromb Vase Biol, 1999, 19(5): 972-978.
    29. Arcaro G, Cretti A, Balzano S, et al. Insulin causes endothelial dysfunction in humans: sites and mechanisms. Circulation. 2002, 105(5):576-82.
    30. Ferron M, Hinoi E, Karsenty G, et al. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA, 2008, 105:5266-5270.
    31. Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 1999, 98:115-124.
    32. Lowell BB, S-Susulic V, Hamann A, Lawitts JA, et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature, 1993, 366:740-742.
    33. Enerb?ck S, Jacobsson A, Simpson EM, et al.Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature, 1997, 387:90-94.
    34. Luo G, Ducy P, McKee MD, et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature, 1997, 386:78-81.
    35. Price PA, Faus SA, Williamson MK. Warfarin causes rapid calcification of the elastic lamellae in rat arteries and heart valves. Arterioscler Thromb Vasc Biol
    36. McFarlane SI, Muniyappa R, Shin JJ, et al. Osteoporosis and cardiovascular disease: brittle bones and boned arteries, is there a link? Endocrine, 2004, 23:1-10.
    37. Browner WS, Pressman AR, Nevitt MC, et al. Association between low bone density and stroke in elderly women. Stroke, 1993, 24:940-946.
    38. Tanko LB, Christiansen C, Cox DA, et al. Relationship between osteoporosis and cardiovascular disease in postmenopausal women. J Bone Miner Res, 2005, 20:1912-1920.
    39. Vogt MT, San Valentin R, Forrest KY, et al. Bone mineral density and aortic calcification: the Study of Osteoporotic Fractures. J Am Geriatr Soc, 1997, 45:140-145.
    40. Von der Recke P, Hansen MA, Hassager C. The association between low bone mass at the menopause and cardiovascular mortality. Am J Med, 1999, 106:273-278.
    41. O’Brien KD, Kuusisto J, Reichenbach DD, et al. Osteopontin is expressed in human aortic valvular lesions. Circulation, 1995, 92:2163-2168.
    42. Shanahan CM, Cary NR, Metcalfe JC, et al. High expression of genes for calcification-regulating protein in human atherosclerotic plaques. J Clin Invest, 1994, 93: 2393-2402.
    43. Bini A, Mann KG, Kudryk BJ, et al. Noncollagenous bone matrix proteins, calcification, and thrombosis in carotid artery atherosclerosis. Arterioscler Thromb Vasc Biol, 1999, 19:1852-1861.
    44. G?ssl M, M?dder UI, Atkinson EJ, et al. Osteocalcin expression by circulating endothelial progenitor cells in patients with coronary atherosclerosis. J Am Coll Cardiol, 2008, 52(16):1314-1325.
    1. Lian J, Stewart C, Puchacz E, et al. Structure of the rat osteocalcin gene and regulation of vitamin D-dependent expression. Proc Natl Acad Sci U S A, 1989, 86:1143-1147.
    2. Hauschka PV, Lian JB, Cole DE, et al. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev, 1989, 69(3):990-1047.
    3. Price PA. Gla-containing proteins of bone. Connect Tissue Res, 1989, 21:51-60.
    4. Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton. Cell, 2007, 130:456-469.
    5. Mauro LJ, Olmsted EA, Skrobacz BM, et al. Identification of a hormonally regulated protein tyrosine phosphatase associated with bone and testicular differentiation. J Biol Chem, 1994, 269:30659-30667.
    6. Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 1999, 98:115-124.
    7. Lowell BB, S-Susulic V, Hamann A, Lawitts JA, et al.. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature, 1993, 366:740-742.
    8. Enerb?ck S, Jacobsson A, Simpson EM, et al.Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature, 1997, 387:90-94.
    9. Ducy P, Desbois C, Boyce B, et al. Increased bone formation in osteocalcin-deficient mice. Nature, 1996, 382:448-452.
    10. Ferron M, Hinoi E, Karsenty G, et al. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA, 2008, 105:5266-5270.
    11. Im JA, Yu BP, Jeon JY, et al. Relationship between osteocalcin and glucose metabolism in postmenopausal women. Clin Chim Acta, 2008, 396:66-69.
    12. Kanazawa I, Yamaguchi T, Yamamoto M, et al. Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab, 2009, 94:45-49.
    13. Pittas AG, Harris SS, Eliades M, et al. Association between serum osteocalcin and markers of metabolic phenotype. J Clin Endocrinol Metab, 2009, 94:827-832.
    14. Pietschmann P, Schernthaner G, Woloszczuk W. Serum osteocalcin levels in diabetes mellitus: analysis of the type of diabetes and microvascular complication. Diabetologia, 1988, 31:892-895.
    15. Rosato MT, Schneider SH, Shapses SA. Bone turnover and insulin-like growth factor I levels increase after improved glycemic control in noninsulin-dependent diabetes mellitus. Calcif Tissue Int, 1998, 63:107-111.
    16. Verhaeghe J, Suiker AMH, Visser WJ, et al. The effects of systemic insulin, insulin like growth factor-1 and growth hormone on bone growth and turnover in spontaneously diabetic BB rats. J Endocrinol, 1992, 134:485-492.
    17. Krakauer JC, McKenna MJ, Buderer NF, et al. Bone loss and bone turnover in diabetes. Diabetes, 1995, 44:775-782.
    18. Verhaeghe J, Suiker AM, Nyomba BL, et al. Bone mineral homeostasis in spontaneously diabetic BB rats. II. Impaired bone turnover and decreased osteocalcin synthesis. Endocrinology, 1989, 124:573-582.
    19. Gerdhem P, Isaksson A, Akesson K, et al. Increased bone density and decreased bone turnover, but no evident alteration of fracture susceptibility in elderly women with diabetes mellitus. Osteoporos Int, 2005, 16:1506-1512.
    20. Rico H, Hernandez ER, Cabranes JA, et al. Suggestion of a deficient osteoblastic function in diabetes mellitus: the possible cause of osteoblastic function in diabetes mellitus: the possible cause of osteopenia in diabetics. Calcif Tissue Int, 1989, 45:71-73.
    21. Fernández-Real JM, Izquierdo M, Ortega F, et al. The relationship of serum osteocalcin concentration to insulin secretion, sensitivity, and disposal with hypocaloric diet and resistance training. J Clin Endocrinol Metab, 2009, 94:237-245.
    22. Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med, 2001, 7:941-946.
    23. McFarlane SI, Muniyappa R, Shin JJ, et al. Osteoporosis and cardiovascular disease: brittle bones and boned arteries, is there a link? Endocrine, 2004, 23:1-10.
    24. Browner WS, Pressman AR, Nevitt MC, et al. Association between low bone density and stroke in elderly women. The study of osteoporotic fractures. Stroke, 1993, 24:940-946.
    25. Pennisi P, Signorelli SS, Riccobene S, et al. Low bone density and abnormal bone turnover in patients with atherosclerosis of peripheral vessels. Osteoporos Int, 2004, 15:389-395.
    26. Watson KE, Bostr?m K, Ravindranath R, et al. TGF-beta 1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify. J Clin Invest, 1994, 93:2106-2113.
    27. Luo G, Ducy P, McKee MD, et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature, 1997, 386:78-81.
    28. Price PA, Faus SA, Williamson MK. Warfarin causes rapid calcification of the elastic lamellae in rat arteries and heart valves. Arterioscler Thromb Vasc Biol.
    1. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM & Karsenty G. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 2000 100 197-207.
    2. Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards WG, Bannon TW, Noda M, Clement K, Vaisse C & Karsenty G. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 2005 434 514-520.
    3. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P & Karsenty G. Endocrine regulation of energy metabolism by the skeleton. Cell 2007 130 456-469.
    4. Ferron M, Hinoi E, Karsenty G & Ducy P. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA 2008 105 5266-5270.
    5. Fernández-Real JM, Izquierdo M, Ortega F, Gorostiaga E, Gómez-Ambrosi J, Moreno-Navarrete JM, Frühbeck G, Martínez C, Idoate F, Salvador J, Forga L, Ricart W & Iba?ez J. The relationship of serum osteocalcin concentration to insulin secretion, sensitivity, and disposal with hypocaloric diet and resistance training. J Clin Endocrinol Metab 2009 94 237-245.
    6. Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Kurioka S, Yano S & Sugimoto T. Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab 2009 94 45-49.
    7. World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications: Report of a WHO Consultation. Part 1: Diagnosis and classification of diabetes mellitus. World Health Organization, Geneva 1999.
    8. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diagnosis and classification of diabetes mellitus. Diabetes Care 2004 27 S5–S10.
    9. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF & Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985 28 412–419.
    10. Hauschka, PV, Lian JB, Cole DE & Gundberg CM. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev 1989 69 990–1047.
    11. Price PA, Williamson MK & Lothringer JW. Origin of the vitamin K-dependent bone protein found in plasma and its clearance by kidney and bone. J Biol Chem 1981 256 12760-12766.
    12. Verhaeghe J, Van Herck E, Visser WJ, Suiker AM, Thomasset M, Einhorn TA, Faierman E & Bouillon R. Bone and mineral metabolism in BB rats with long-term diabetes. Decreased bone turnover and osteoporosis. Diabetes 1990 39 477-482.
    13. Epstein S. Serum and urinary markers of bone remodeling: assessment of bone turnover. Endocr Rev 1988 9 437-449.
    14. Pietschmann P, Schernthaner G & Woloszczuk W. Serum osteocalcin concentrations in diabetes mellitus: analysis of the type of diabetes and microvascular complication. Diabetologia 1988 31 892-895.
    15. Rosato MT, Schneider SH & Shapses SA. Bone turnover and insulin-like growth factor I levels increase after improved glycemic control in noninsulin-dependent diabetes mellitus. Calcif Tissue Int 1998 63 107–111.
    16. Verhaeghe J, Suiker AM, Visser WJ, Van Herck E, Van Bree R & Bouillon R. The effects of systemic insulin, insulin-like growth factor-1 and growth hormone on bone growth and turnover in spontaneously diabetic BB rats. J Endocrinol 1992 134 485-492.
    17. Krakauer JC, McKenna MJ, Buderer NF, Rao DS, Whitehouse FW & Parfitt AM. Bone loss and bone turnover in diabetes. Diabetes 1995 44 775-782.
    18. Verhaeghe J, Suiker AM, Nyomba BL, Visser WJ, Einhorn TA, Dequeker J & Bouillon R. Bone mineral homeostasis in spontaneously diabetic BB rats. II. Impaired bone turnover and decreased osteocalcin synthesis. Endocrinology 1989 124 573-582.
    19. Gerdhem P, Isaksson A, Akesson K & Obrant KJ. Increased bone density and decreased bone turnover, but no evident alteration of fracture susceptibility in elderly women with diabetes mellitus. Osteoporos Int 2005 16 1506-1512.
    20. Rico H, Hernandez ER, Cabranes JA & Gomez-Castresana F. Suggestion of a deficient osteoblastic function in diabetes mellitus: the possible cause of osteopenia in diabetics. Calcif Tissue Int 1989 45 71-73.
    21. Im JA, Yu BP, Jeon JY & Kim SH. Relationship between osteocalcin and glucose metabolism in postmenopausal women. Clin Chim Acta 2008 396 66-69.
    22. Tang YJ, Sheu WH, Liu PH, Lee WJ & Chen YT. Positive associations of bone mineral density with body mass index, physical activity, and blood triglyceride level in men over 70 years old: a TCVGHAGE study. J Bone Miner Metab 2007 25 54-59.
    23. Bagger YZ, Rasmussen HB, Alexandersen P, Werge T, Christiansen C & TankóLB; PERF study group. Links between cardiovascular disease and osteoporosis in postmenopausal women: serum lipids or atherosclerosis per se? Osteoporos Int 2007 18 505-512.
    24. Yamaguchi T, Sugimoto T, Yano S, Yamauchi M, Sowa H, Chen Q & Chihara K. Plasma lipids and osteoporosis in postmenopausal women. Endocr J 2002 49 211-217.
    25. Adami S, Braga V & Gatti D. Association between bone mineral density and serum lipids in men. JAMA 2001 286 791–792.
    26. Dennison EM, Syddall HE, Aihie Sayer A, Martin HJ & Cooper C; Hertfordshire Cohort Study Group. Lipid profile, obesity and bone mineral density: the Hertfordshire Cohort Study. QJM 2007 100 297-303.
    27. Adami S, Braga V, Zamboni M, Gatti D, Rossini M, Bakri J & Battaglia E. Relationship between lipids and bone mass in 2 cohorts of healthy women and men. Calcif Tissue Int 2004 74 136-142.
    28. Kha HT, Basseri B, Shouhed D, Richardson J, Tetradis S, Hahn TJ & Parhami F. Oxysterols regulate differentiation of mesenchymal stem cells: pro-bone and anti-fat. JBone Miner Res 2004 19 830-840.
    29. Pittas AG, Harris SS, Eliades M, Stark P & Dawson-Hughes B. Association between serum osteocalcin and markers of metabolic phenotype. J Clin Endocrinol Metab 2009 94 827-832.
    30. Torréns JI, Skurnick J, Davidow AL, Korenman SG, Santoro N, Soto-Greene M, Lasser N & Weiss G; Study of Women's Health Across the Nation (SWAN). Ethnic differences in insulin sensitivity and beta-cell function in premenopausal or early perimenopausal women without diabetes: the Study of Women's Health Across the Nation (SWAN). Diabetes Care 2004 27 354-361.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.