氨基卟啉荧光探针的合成与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光分析法具有较高的灵敏度,一般比分光光度法高2-3个数量级,且具有选择性高,方法简便,取样量少等优点,近年来得到迅速发展。卟啉是一类具有刚性的共轭大环类化合物,在光的照射下,易被激发,产生强荧光。卟啉能与周期表中几乎所有的金属离子和大部分非金属离子配合,可用于测定多种金属离子及生化反应和医学研究工作。
     本论文的主要工作是设计、合成新型的不仅检测简便,而且灵敏度、选择性、稳定性等方面均有突出优点的卟啉类分子荧光探针,研究其用于水中的双氧水和重金属离子的检测并考察其各项性能。又对pH及重金属离子的测定提出了新的思路,制备了相关的荧光传感器。具体包括以下三个方面:
     (1)根据荧光分子探针设计原理,结合本组的相关研究经验,合成了一种稳定性好、灵敏度高、安全方便的荧光分子探针四(4-氨基苯基)卟啉TAPP,对其在水中的荧光光学性质进行了研究,研究了溶液pH值及表面活性剂对荧光强度的影响,并用于识别水中的钴离子和镍离子。实验发现当离子浓度为2.0×10-7-1.0×10-5 mol/L范围内,Co(Ⅱ)及Ni(Ⅱ)的浓度和荧光强度之间存在着线性关系。Ni(Ⅱ)的检测限为4.0×10-8 mol/L,Co(Ⅱ)的检测限为2.0×10-8 mol/L。这个传感体系具有令人满意的灵敏度,这种方法可以用于自然水体和污水中Co(Ⅱ)和Ni(Ⅱ)的测定。
     (2)利用卟啉类荧光探针TAPP来检测环境中H202含量。实验发现当H202含量在2.0×10-6-1.0×10-4%范围内,H202的含量和荧光强度存在着线性关系。H202的检测限为6.0×10-7%,这个传感体系具有令人满意的灵敏度,这种方法可以用于自然水体和雨水中H2O2的测定。
     (3)同时实验还将TAPP制备为荧光传感器,有望用于对pH值和重金属离子的检测。虽然结果不令人满意,但合成产物,及传感器制备方法以后还值得研究与改进,并将其应用于pH值和重金属离子的测定中。
Fluorescence analytical method has been rapidly developed for its high selectivity, easy to operate, small sample quantity, and other advantages. It has a higher sensitivity, which is about 2-3 orders of magnitude higher than spectrophotometry. Porphyrins are a class of macrocyclic compounds with rigid conjugate structure, it can easily emit strong fluorescence under irradiation. Porphyrin can chelated with most metal and non-metallic ions in the Periodic Table, and can be used for detections of varieties of metal ions for the research works of biochemical reaction and medical science.
     In this paper, the main task is to design and synthesize new types of Porphyrin probes, which have the excellent performances of easy to detect, high sensitivity, selectivity, and stability. Study the properties of fluorescent probes and their applications in the detection of heavy metal ions and H2O2 in water. Furthermore, to propose a new thinking of detection of pH and heavy metals using such fluorescent dye based fluorescence sensor. The details including three aspects are as follows:
     (1) A fluorescent dye,5,10,15,20-tetra(4-aminophenyl)-porphyrin (TAPP) with good stability, high sensitivity was synthesized by simple steps. The fluorescence properties of TAPP, and the effects of pH and surfactant on the fluorescence intensity were investigated. Results showed that it can be used for selectively sensing Ni(Ⅱ) and Co(Ⅱ) through complexation-induced fluorescence quenching. Additionally, the TAPP probe showed linear response toward Ni(Ⅱ) and Co(Ⅱ) in the concentration range of 2.0×10-7-1.0×10-5 mol/L. The prepared sensing system presented satisfactory sensitivity, and the detection limits could be as low as 4.0×10-8 mol/L for Ni(Ⅱ) and 2.0×10-8 mol/L for Co(Ⅱ). The developed method was successfully employed for preliminary application in natural water and domestic sewage.
     (2) The fluorescence probe of TAPP was used to determine the content of H2O2 in envrionment. In the concentration range of 2.0×10-6-1.0×10-4%, the fluorescence intensity of TAPP changed as linear function of H2O2 content. The prepared sensing system presented satisfactory sensitivity, and the detection limit could be as low as 6.0×10-7% for H2O2. The developed method was successfully employed for preliminary application in natural water and rain water.
     (3) The author tried to prepare new pH or heavy metal fluorescence sensors based on such fluorescence indicator of TAPP. Although the results are not satisfactory, the synthetic products, and sensors is still worth studying after improvement, and will be applied to the determination of pH and heavy metal ions.
引文
[1]Rothemund P. Formation of Porphyrins from Pyrrols and Aldehy-des. J. Am. Chem. Soc.,1935,57:2010.
    [2]Addler A D. A Simplified Synthesis for meso-Tetralhenyl-porphrins. J. Org. Chem.,1967,32(2):467.
    [3]Lindsey J S. Synthesis of Trtraporphrins under Equilibrium Conditions. J. Org. Chem.,1987,52(5):827.
    [4]郭灿城,何兴涛,邹纲要.合成四苯基卟啉及其衍生物的新方法.有机化学,1991,11(11):416-419.
    [5]杨彪,刘云,肖德宝.四苯基卟啉及金属卟啉的制备.精细化工,1998,15(1):53-55.
    [6]Petit A, Loupy A. Microware Irradation in Dry Media. A New and Easy Method for Synthesis of Tetrapyrrolic Compounds. Synthetic Comm.,1992,22(8):1137.
    [7]胡希明,梅治乾,刘海洋,等.四苯基卟啉的微波诱导合成研究.华南理工大学学报(自然科学版),1999,27(10):11-15.
    [8]Benjamin J L, Yangzhen Ciringh, Jonathary S Lindsey. Investigation of Conditions Giving Minimal Scrambling in the Synthesis oftrans-porphrins from Dipyrromethanes and Aldehydes. J. Org. Chem.,1999,64:2864-2872.
    [9]Polisetti O R, Benjamin J L. Efficient Synthesis of Monoacyl Di-phyrromethanes and Their Use in the Preparation of Sterically Un-hindered trans-Porphyrins. J. Org. Chem.,2000,65:1084-1092.
    [10]王莉红,汤福隆.卟啉类试剂合成的发展.化学试剂,1999,21(5):273-289.
    [11]Justin W Youngblood, Daniel T Gryko, Robin K Lammi, et al. Glaser-Mediatec Syntheses and Photophysical Characterization of Diphemy butadiyne-Linked Prophyrin Dyads. J. Org. Chem.,2002,67:2111-2117.
    [12]Knciauskas D, Liddell P A. An Atrificial Photosynthetic Anten-na-Reaction Center Complex. J. Am. Chem. Soc.,1999,21:8604-8614.
    [13]Wanger R W, Johnson T E. Synthesis of Ethyne Linked or Bu-tadiyne Linked Porphyrin Arrays Using Mild Copper-Free, Pd-Mediated Coupling Reaction. J. Org. Chem. Soc.,1995,360:6266-6273.
    [14]Naoki Aratani, Atsuhiro Osuka. Synthesis of meso-meso Linked Hybrid Porphyrin Arrays by Pd-Catalyzed Cross-Coupling Reaction. Organic Letters, 2001,3(26):213-216.
    [15]Ogawa T, Nishimoto Y. Competely Regioselective Synthesis of Dirctly Linked meso-meso β Porphyrins Dincers by One-Pot Electrochemical Oxidation of Metal oprophyrins. Angew. Chem. Int. Ed. Eng.1,1999,38:176-179.
    [16]Graca M, Vicarite H, Laurent Jaquinod, et al. Oligomeric Porphyrinarrays. Chem. Commu.,1999,18:1771-1782.
    [17]Mathias O Senge, Feng Xiangdong. Synthesis of Directly meso-meso Linked Bisprophyrins Using Organolithium Reagents. Tetrahedron Lett.,1999,40(22): 4165-4168.
    [18]Shi Xinglin, Liebeskind L S.3-Cyclobutenyl-1,2-dione Substituted Porphyrins. A simple and general Entry to Quinone-Porphyrin-Porphyrin-Quinone Tetrads and Related Molecules. J. Org. Chem. Soc.,2000,65:1665-1671.
    [19]郑维忠,曾庆平,王先元.高分子卟啉化合物的制备及应用研究.有机化学,1995,15(5):520-524.
    [20]陈国珍,黄贤智,许金钩,等.荧光分析法,科学出版社,1990.
    [21]Sands T J, Cardwell T J, Cattrall R W, et al. A highly versatile stable optical sensor based on 4-ecyloxy-2-(2-pyridylazo)-1-aphthol in Nation for the determination of copper. Sensor Aetuat. B,2002,85:33-41.
    [22]Mendra N, Gangaiya P, Sotheeswaran S, et al. Investigation of a fibre optic copper sensor based on immobilised-benzoinoxime(eupron). Sensor Actuat. B, 2003,90:118-123.
    [23]Jeronimo P C A, Araujo A N, Conceicao M, et al. Direct determination of copper in urine using a sol-gel optical sensor coupled to a muhicommutated flow system. Anal. Bioanal. Chem.,2004,380:108-114.
    [24]Safari A, Bagheri M. Design of a copper(Ⅱ) optode based Oilimmobilization of dithizone on a triaeetylcellulose membrane. Sensor Actuat. B,2005,107:53-58.
    [25]Gholivand M B, Niroomandi P, Yari A, et al. Charaeterization of an optical copper sensor based on N, N'-bis(salycilidene)-1,2-phenylenediamine. Anal. Chim. Acta.,2005,538:225-231.
    [26]Pina F, Bernardo M A, Garcia-Espafia E. luorescent hemosensors Containing Polyamine Receptors. Eur. J. Inorg. Chem.,2000:2143-2157.
    [27]Xu Z, Xiao Y, Qian X, et al. Ratiometrie and SelectiveFluorescent Sensor for Cu(Ⅱ) Based on Internal Charge Transfer(ICT). Org. Lett.,2005,7:889-892.
    [28]Zheng Y, Cao X, Orbulescu J, et al. Peptidy Fluorescent Chemosensors for the Detection of Divalent Coppe. Anal. Chem.,2003,75:1706-1712.
    [29]Amendola V, Fabbrizzi L, Mangano C, et al. SignalAmplification by a Fluorescent Indicator of a pH-Driven tramoleeular Translocation of a Copper(Ⅱ) on. Angew. Chem. Int. Ed.,2002,41:2553-2556.
    [30]Wolf C, Mei X. Synthesis of Conformationally Stable 1, 8-Diarylnaphthalenes: Development of New Photoluminescent Sensors for Ion-Selective Recognition. J. Am. Chem. Soc.,2003,125:10651-10658.
    [31]Meallet-Renault R, Pansu R, Amigoni-Gerbier S, et al. Metal-chelating nanoparticles as selective fluoreseent sensor for Cu2+. Chem. Commun.,2004: 2344-2345.
    [32]Wu Q, Anslyn E V. Catalytic Signal Amplification Using a Heek Reaction. An Example in the Fluorescence Sensing of Cu(Ⅱ). J. Am. Chem. Soc.,2004,126: 14682-14683.
    [33]Royzen M, Dai Z, Canary J W. Ratiometric Displacement Approach to Cu(Ⅱ) Sensing by Fluorescence. J. Am. Chem. Soc.,2005,127:1612-1613.
    [34]M H Arbab-Zavar, M Chamsaz, A Youssefi, et al. Electrochemical hydride generation atomic absorption spectrometry for determination of cadmium. Analytica Chimica Acta,2005,546:126-132.
    [35]Luciana Melo Coelho, Marco Aurelio Zezzi Arruda. Preconeentration procedure using cloud point extraction in the presence of electrolyte for cadmium deter-ruination by flame atomic absorption spectrometry. Spectrochimica Acta Part B,2005,60:743-748.
    [36]Bareeloux D G. Copper. J. Toxicol. Clin. Toxicol.,1999,37:217.
    [37]Vuori E, Huunan-Seppala A, Kilpi O. The efect of age and sex on the concentration of copper in aorta, heart, kidney, liver, lung, pancreas and skeletal muscle, Scand. J. Work. Environ. Health.,1978,4:167.
    [38]Radisky D. Kaplan J-Regulation of transition metal transport across the yeast plasma membrane. J. Biol. Chem.,1999,274:4481.
    [39]Rode B M, Suwannachot Y. The possible role of Cu(Ⅱ) for the origin of life. Coord. Chem. Rev.,1999,190-192:1085.
    [40]Mahendra N, Gangaiya P, Sotheeswaran S, et al. Investigation of a fiber optic copper sensor based on immobilized α-benzoinoxime(cupron). Sens. Actuators B, 2003,90:118.
    [41]Gabrielsson A, Hartl F, Zhang H, et al. Uhrafast charge reparation in a photoreactive rhenium-appended poprhyrin assembly monitored by picosecond transient infrared spectroscopy. J. Am. Chem. Soc.,2006,45:108.
    [42]Zhang X B, Guo C C, Li Z Z, et al. An optical fiber chemical sensor for mercury ions based on a porphyrin dimmer. Anal. Chem.,2002,74:821.
    [43]Liu W H, Wang Y, Tang J H, et al. An optical fiber sensor for berberine based on immobilized 1,4-bis(naphtha[2,1-d] oxazole-2-yl) benzeneinanew copolymer. Talanta,1998,46:679.
    [44]Real B D, Ortiz M C, Sarabia L A. Analysis of interferents by means a D-optimal screening design and calibration using partial least squares regression in the spectrophotometric determination of Cr(Ⅵ). Talanta,2007,71:1599-1609.
    [45]Jing Nan, Xiu-Ping Yan. On-line dynamic two-di-mensional admieelles solvent extraction coupled to eleet rothermal atomic absorption spectrometry for determination of chromium Ⅵ in drinking water. Anal. Chim. Acta.,2005, 536:207-212.
    [46]WEI Qin, DUAN Caihong, WANG Jin. Studies and application of catalytic kinetic spectrophotomctric determination of trace chromium Ⅵ sensitized by microemulsion medium. Annalidi Chimica,2006,96:451-461.
    [47]Sirajuddin, Abdul Rauf Khaskheli, Afzal Shah, et al. Simpler spectrophotometric assay of paracetamol in tablets and urine samples. Spectrochimica Acta Part A.2007,68:747-751.
    [48]Kanchana Watla-iad, Tadao Sakai, Norio Teshima, et al. Successive determination of urinary protein and glucose using spectrophotometric sequentialin jectionmethod. Analytica Chimica Acta,2007,604(1):139-146.
    [49]Ying Zibang, WangChu Xiang, RongHua Yang, et al. Highly selective sensing of lead ion based on α-, β-, γ- and δ-tetrakis(3,5-dibromo-2-hydroxylphenyl)porphyrin/β-CD inclusion complex. Journal of Photochemistry and Photobiology A:Chemistry,2005,173:264-270.
    [50]Hong-Yuan Luo, Jian-Hui Jiang, Xiao-Bing Zhang, et al. Synthesis of porphyrin-appcnded terpyridine as a chemosensor for cadmium based on fluorescent enhancement. Talanta,.2007,72:575-581.
    [51]Juan F Garcfa-Reyes, Pilar Ortega-Barrales, Antonio Molina-Dfaz. Sensing of t race amounts of cadmium in drinking water using a single fluorescence-based opto-ensor.Microchemical, Journal,2006,82:94.
    [52]Radka V. hlorophyll a self-assembly in polar solvent-watermixtures. Photochem istry and photobiology,2000,71(1):712-831.
    [53]Koti A S, Periasamy N. Self-assembly of template-directed J-aggregates of porphyrin. Chem. Mater.,2003,15(2):3692-3711.
    [54]Tsuda A, Sakamoto S, Yamaguchi K, et al. A Novel Sup-ramolecular Multicolor Thermometer by Self-Assembly of a e-Extended Zinc Porphyrin Complex. J. Am. Chem. Soc.,2003,125:15722-15723.
    [55]Wang M M, Silva G L, Armitage B A. DNA-templated formation of a helical cyanine dye J-aggregate. J. Am. Chem. Soc.,2000,122:9977-9986.
    [56]Massimo D N, Sara M, Roberto P M, et al. Hierarchical porphyrin self-assembly in aqueous solution. J. Am. Chem. Soc.,2004,126:5934-5935.
    [57]Chan W H, Yang R H, Wang K M. Development of a mercury ion-selective optical sensor based on fluorescence quenching of 5,10,15, 20-tetraphenylporphyrin. Anal. Chim. Acta.,2001,444:261-269.
    [58]祝大昌,陈剑,朱世盛译.分子发光分析法(荧光法和磷光法).复旦大学出版社,1985.
    [59]Dolphin D. The Porphins, Vol1-7, AeademicPress, New York:1978.
    [60]刘长松,晋卫军,张淑珍,魏雁声,董川.分析化学新进展.太原:山西科学技术出版社,1997:54-55.
    [61]张佩英,岳保珍,等.生物有机化学.北京:北京医科大学和中国协和医科大学联合出版社,第一版,1992.
    [62]Falk J E. Porphyrins and Metalloporphyrins. New York:Elsevier,1975.
    [63]Huseyin Bag, A. Rehber Turker, Mustafa Lale. Determination of Cu, Zn, Fe, Ni and Cd by flame atomic absorption spectrophotometry after preconcentration by Escherichia coli immobilized on sepiolite. Talanta,2000,51:1035-1043.
    [64]黄青瑜,廖晓军.钴镍——水杨基荧光酮双波长光度法.的研究.冶金分析,1991,11(4):55-56.
    [65]Fabbrizzi L, Licchelli M, Pallavicini P. A Zinc(Ⅱ)-driven intramolecular photoinduced electron transfer. Inorganic Chemistry,1996,35:1733-1736.
    [66]Alain Manceau, Martine Lanson, Nicolas Geoffroy. Natural speciation of Ni, Zn, Ba, and As in ferromanganese coatings on quartz using X-ray fluorescence, absorption, and diffraction. Geochimica et Cosmochimica Acta,2007,71: 95-128.
    [67]C. Kilbride, J. Poole, T. R. Hutchings. A comparison of Cu, Pb, As, Cd, Zn, Fe, Ni and Mn determined by acid extraction/ICP-OES and ex situ field portable X-ray fluorescence analyses. Environmental Pollution,2006,143:16-23.
    [68]V. P. Gordeeva, M. A. Statkus, G. I. Tsysin, et al. X-ray fluorescence determination of As, Bi, Co, Cu, Fe, Ni, Pb, Se, V and Zn in natural water and soil extracts after preconcentration of their pyrrolidinedithiocarbamates on cellulose filters. Talanta,2003,61:315-329.
    [69]K. N. Belikova, A. B. Blanka, N. I. Shevtsova, et al. X-ray fluorescence determination of mobile forms of Cu, Zn and Co in soils with preconcentration on silica gel modified by didecylaminoethyl-β-tridecylammonium iodide. Analytica Chimica Acta,1999,383:277-281.
    [70]Richard B. Thompson, Zhengfang Ge, Marcia Patchan, et al. Fiber optic biosensor for Co(Ⅱ) and Cu(Ⅱ) based on fluorescence energy transfer with an enzyme transducer. Biosensors and Bioelectronics,1996,11:557-564.
    [71]朱宝库,徐志康,徐又一.四(4-硝基苯基)卟啉和四(4-氨基苯基)卟啉的合成.应用化学,1999,16(1):68-70.
    [72]吴迪,吴健.卟啉的分子自组装.化学世界,2004,10:551-555.
    [73]胡敏学,王夺元.Meso-苯基四苯并卟啉的合成和光谱性能研究(Ⅱ).感光科学与光化学,1996,14(3):237-243.
    [74]庞战军,周玫,陈瑗,自由基医学研究方法,人民卫生出版社,北京,2000:18.
    [75]刘昱,赵慧春,易琳.H2O2的KMnO4-Luminol化学发光体系测定.分析测试学报,2003,22(4):91-93.
    [76]瞿鹏,李保新,章竹君.流通式化学发光植物组织传感器测定过氧化氢.分析化学,2003,31(10):1240-1243.
    [77]张震宇,梁维安.铬-二苯卡巴肼体系间接光度法测定过氧化氢.理化检验(化学分册),2000,36(5):2000-2002.
    [78]刘长增,徐文军,魏乃静.1,5-(2,2-羟基2-磺酸基苯)氰基甲催化褪色光度法测定微量过氧化氢.冶金分析,2007,27(2):70-72.
    [79]Rita Giovannetti, Leila Alibabaei, Filippo Pucciarelli. Spectral and kinetic investigation on oxidation and reduction of water soluble porphyrin manganese(Ⅲ) complex. Inorganica Chimica Acta,2010,363(7):1561-1567.
    [80]Paolo Zucca, Francesca Sollai, Alessandra Garau, et al. Fe(Ⅲ)-5,10,15, 20-tetrakis(pentafluorophenyl)porphine supported on pyridyl-functionalized, crosslinked poly(vinyl alcohol) as a biomimetic versatile-peroxidase-like catalyst. Journal of Molecular Catalysis A:Chemical,2009,306(1):89-96.
    [81]Masaki Mifune, Hidenori Kamiguchi, Taka-aki Tai, et al. Peroxidase-like catalytic activity of Mn3+-octabromo-tetrakis(4-sulfophenyl)porphine on linoleate hydroperoxide and its analytical application. Talanta,2007, 71(1):456-461.
    [82]Hiroshi Umakoshi, Kengo Morimoto, Yuji Ohama, et al. Liposome Modified with Mn(II) Porphyrin Complex Can Simultaneously Induce Antioxidative Enzyme-like Activity of Both Superoxide Dismutase and Peroxidase.2008, 24(9):4451-4455.
    [83]Kiyoko Takamura, Takatoshi Matsumoto. Characterization of a titanium(Ⅳ)-porphyrin complex as a highly sensitive and selective reagent for the determination of hydrogen peroxide:a computational chemistry approach and a critical review. Analytical and Bioanalytical Chemistry,2008,391:951-961.
    [84]E. I. Karasevich, Yu. K. Karasevich. Oxidation of Cycloalkanes by Hydrogen Peroxide in a Biomimetic Iron Porphyrin System. Kinetics and Catalysis,2002, 43:23-33.
    [85]T. N. Lomova, M. E. Klyueva,O. V. Kosareva, et al. The kinetics of disproportionation of hydrogen peroxide in the presence of palladium(II)porphyrins with regularly changing macroring structures. Russian Journal of Physical Chemistry A, Focus on Chemistry,2008,82:1086-1092.
    [86]T. N. Lomova, E. N. Kiseleva, M. E. Klyueva. Kinetics and mechanism of oxidation of manganese(Ⅲ) acidoporphyrin complexes with hydrogen peroxide. Russian Journal of Inorganic Chemistry,2006,51:1820-1825.
    [87]Arunava Agarwala, Debkumar Bandyopadhyay. The Radical Versus Non-radical Reactive Intermediates in the Iron(Ⅲ) Porphyrin Catalyzed Oxidation Reactions by Hydroperoxides, Hydrogen Peroxide and Iodosylarene. Catalysis Letters,2008,124:256-261.
    [88]E. N. Kiseleva, T. N. Lomova, M. E. Klyueva. Kinetics and mechanism of the reaction of manganese(Ⅲ) octaethylporphine with hydrogen peroxide. Russian Journal of General Chemistry,2007,77:641-647.
    [89]Zhang X B, Han Z X, Fang Z H, et al.5,10,15-Tris(pentafluorophenyl)corrole as highly selective neutral carrier for a silver ion-sensitive electrode. Anal. Chim. Acta.,2006,562(2):210-215.
    [90]Chan Wing Hong, Yang R H, Wang K M. Development of a mercuryi on-selective optical sensor based on fluorescence quenching of 5,10,15, 20-teraphenylporphyrin. Anal. Chim. Acta.,2001,444:261-269.
    [91]Yu Yang, Jianhui Jiang, Guoli Shen, et al. An optical sensor for mercury ion based on the fluorescence quenching of tetra(p-dimethylaminophenyl) porphyrin. Anal. Chim. Acta.,2009,636(1):83-88.
    [92]Serap Seyhan Bozkurt, Sevda Ayata, Ipek Kaynak. Fluorescence-based sensor for Pb(Ⅱ) using tetra-(3-bromo-4-hydroxyphenyl)porphyrin in liquid and immobilized medium. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,72(4):880-883.
    [93]Chun-Yan Li, Fen Xu, Yong-Fei Li. A fluorescent chemosensor for silver ions based on porphyrin compound with high selectivity. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2010,76(2):197-201.
    [94]Cheng-Gang Niu, Xiao-Qin Gui, Guang-Ming Zeng, et al. Fluorescence ratiometric pH sensor prepared from covalently immobilized porphyrin and benzothioxanthene. Analytical and Bioanalytical Chemistry,2005,383(2): 349-357.
    [95]Vinod Kumar Gupta, Ajay Kumar Jain, Zakariyya Ishtaiwi, et al. Ni2+ selective sensors based on meso-tetrakis-{4-[tris-(4-allyl dimethylsilyl-phenyl)-silyl]-phenyl}porphyrin and (sal)-trien in poly(vinyl chloride) matrix. Talanta,2007,73(5):803-811.
    [96]Radchada Buntem, Amarawan Intasiri, Warunee Lueangchaichaweng. Facile synthesis of silica monolith doped with meso-tetra(p-carboxyphenyl)porphyrin as a novel metal ion sensor. Journal of Colloid and Interface Science,2010, 347(1):8-14.
    [97]V. K. Gupta, A. K. Jain, G. Maheshwari, et al. Copper(Ⅱ)-selective potentiometric sensors based on porphyrins in PVC matrix. Sensors and Actuators B:Chemical,2006,117(1):99-106.
    [98]Yan-Qin Weng, Ying-Lai Teng, Fan Yue. A new selective fluorescent chemosensor for Cu(Ⅱ) ion based on zinc porphyrin-dipyridylamino. Inorganic Chemistry Communications,2007,10(4):443-446.
    [99]A. R. Fakhari, M. Shamsipur, Kh. Ghanbari. Zn(Ⅱ)-selective membrane electrode based on tetra(2-aminophenyl) porphyrin. Anal. Chimica. Acta.,2002, 460(2):177-183.
    [100]Xunjin Zhu, Shitao Fu, Wai-Kwok Wong, et al. A near-infrared fluorescent chemodosimeter for silver(Ⅰ) ion based on an expanded porphyrin. Tetrahedron Letters,2008,49(11):1843-1846.
    [101]Jonathan L. Sessler, Patricia J. Melfi, Daniel Seidel, Hexaphyrin(1.0.1.0.0.0). A new colorimetric actinide sensor. Tetrahedron,2004,60(49):11089-11097.
    [102]Ken Okamoto, Shunichi Fukuzumi. An Yttrium Ion-Selective Fluorescence Sensor Based on Metal Ion-Controlled Photoinduced Electron Transfer in Zinc Porphyrin□Quinone Dyad. J. Am. Chem. Soc.,2004,126(43):13922-13923.
    [103].Ronghua Yang, Ke'an Li, Kemin Wang, et al. Porphyrin Assembly on β-Cyclodextrin for Selective Sensing and Detection of a Zinc Ion Based on the Dual Emission Fluorescence Ratio. Anal. Chem.,2003,75 (3):612-621.
    [104]Lin J. Recent development and applications of optical and fiber-optic pH sensors. Trends in Anal. Chem.,2000,19:541-552.
    [105]Yang X H, Wang K M, Xiao D, et al. Development of a fluorescent optodemembrane for sodium ion based on the calix arene and tetraphenylporphine. Talanta,2000,52:1033-1039.
    [106]Biesaga M, Pyrzynska K, Trojanowicz M. Porphyrin in analytical chemistry. Talanta,2000,51(2):209-224.
    [107]Gupta V K, Jain A K, Mangla R, et al. A new Zn2+-selective sensor based on 5,10,15,20-tetraphenyl-21 H,23 H-porphine in PVC maxtrix. Electroanal,2001, 13(12):1036-1040.
    [108]Fakhari A R, shamsipur M, Ghanbari K h. zinc(Ⅱ)-selective membrane electrode based on tetm(2-aminophenyl)pofphyrin. Anal. Chim. Acta.,2002, 460(2):177-183.
    [109]Ardakani M M, Dehghani H, Jalayer M, et al. Potemiometric detemination of silver(Ⅰ) by selective membrane electrode based on derivative of porphyrin. Anal. Sci.,2004,20(12):1667-1672.
    [110]Lee H K, Song K, Seo H R, et al. Lead(Ⅱ)-selective electrodes based on tetrakis(2-hydroxy-1-naphthyl)porphyrins:effcct of atropisomers. Sens. And Actuators B,2004,99(2-3):323-329.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.