棉花耐盐性的SSR鉴定及其研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐碱化现已成为危害农业发展和生态环境的全球性问题。棉花作为我国主要的经济作物,在国民经济发展中占有举足轻重的地位。由于我国人均耕地面积较少、粮棉争地矛盾突出,棉花的种植和生产受到严重影响。因此培育棉花耐盐品种,将是有效开发利用盐碱地、推进农业可持续发展的一条有效途径。棉花的耐盐性鉴定工作对耐盐品种的选育起着至关重要的作用,目前生产上常用的形态学的耐盐性鉴定方法费时费力,且易受外界环境变化影响和季节限制。本研究选用25份耐盐和23份盐敏感棉花种质为实验材料,采用SSR技术,展开了棉花耐盐性鉴定技术的有关研究,初步建立了棉花耐盐性的SSR鉴定方法。
     1.利用95对SSR引物对48份棉花耐盐相关种质的遗传多样性进行分析,研究结果表明大多数种质之间的亲缘关系较近。棉花种内遗传基础狭窄,种间遗传差异较大。利用类平均法(UPGMA)聚类将48份棉花种质分成3个类群,聚类分析表明类群的划分和材料的地域来源关系不大。
     2.从5053对SSR引物中筛选了26对清晰度高、稳定性好的SSR核心引物,构建了48份棉花耐盐相关种质的DNA指纹图谱,为棉花遗传多样性研究、纯度检测、种质鉴定和评价等奠定了基础。
     3.针对棉花耐盐性复杂,耐盐基因显性标记难以筛选,单标记鉴定棉花耐盐性有困难等问题,提出用多标记组合法鉴定棉花耐盐性。通过分析比较单标记和多标记组合的鉴定效率,确定Y190、Y159和Y258三标记组合鉴定棉花耐盐性最为经济有效。
     4.从DNA快速提取到PCR扩增和产物检测以及多标记组合鉴定等环节进行分析探讨,初步制定了一套适于棉花耐盐性分子鉴定的方法,即多标记组合鉴定法。并用11份材料对该方法进行了验证,结果表明和盐池鉴定结果的相符率达90.91%。初步研究结果表明多标记组合鉴定法可用于棉花耐盐分子标记辅助鉴定。
     本研究所建立的棉花耐盐性的SSR鉴定方法—多标记组合鉴定法,为实现棉种耐盐性分子鉴定奠定了基础,为棉花耐盐育种提供理论依据。但是本方法目前仅能将耐盐和盐敏感材料进行初步区分,关于棉花耐盐性详细的分级标准还有待于进一步研究。
Soil salinization has become a serious global problem affecting the agricultural development and the ecological environment. Cotton, the major cash crop in China, is playing a crucial role in national economic development. China, with less cultivated lands and more people, faces the contradiction between food and cotton, which seriously affects the cultivation and production of cotton. Therefore, it is an effective way to farm saline land and to enhance the sustainable agricultural development by develop the salinity-tolerant varieties of cotton. Identification of salinity-tolerance also plays a vital role on cotton breeding. The salinity-tolerant identification methods used before, mainly based on morphological characters, were usually restricted for time-wasting, labor-costing, environment influence, and seasonal cultivation. 25 salinity- tolerant and 23 salinity-sensitive cotton accessions were used in this study to identify salinity-tolerance of cotton by SSR markers. A SSR molecular marker method was initially established to identify salinity-tolerance of cotton.
     1. The genetic diversity of cotton germlasm was analyzed among 48 cotton salinity-tolerance relevant accessions using 95 SSR molecular markers, which showed that most of germplasm had close genetic relationship, the cotton germplasm were of close relationship with narrow background of the intra-specific genetic diversity and broad hereditary gap between inter-specific cotton accessions. 48 cotton accessions could be classified into 3 groups by cluster analysis by UPGMA, which revealed that there was similar background among the dividing group in territorial background.
     2. 26 pairs of SSR core primers were screened from 5053 pairs of primers. The fingerprints of 48 salinity-tolerance relevant cotton accessions were constructed by 26 pairs of core SSR primers, which enhenced the researches of the genetic diversity, purity test, identification and evaluation of cotton germplasm.
     3. A new SSR molecular marker identification method was suggested for the complex of the salinity-tolerance of cotton, for the difficulty to screen dominant markers related to the salinity-tolerant genes, and for the difficulty to identify salinity-tolerance by single marker. To analyze the identification efficiency between single marker and multi-markers, the most economical and effective way to identify the salinity tolerance was the combination of 3 markers Y190, Y159 and Y258.
     4. A new preliminary methods, called SSR multi-markers salinity-identification method, was initially established to identify salinity-tolerance of cotton by the standardization of the whole process of DNA extraction, PCR amplification, amplification products detecting, and marker-combination. Another 11 materials were used to testify this method, which showed the coincidence of 90.91% in consistence with the identification result of 0.4%NaCl identification method. This study showed that the multi-markers identification method was proved to be used to assist identify the salinity-tolerance of cotton germplasm.
     The multi-markers identification method lays the foundation for molecular identification of salinity-tolerance on cotton, and provided theoretical basis for screening and breeding of salinity-tolerant cotton varieties. This method might be restricted only to be used to distinguish salinity-tolerant accessions from salinity sensitive accessions, which suggests that it need further in-depth studying to research how to grading salinity-tolerance of cotton germplasm.
引文
[1]艾呈祥,张力思,魏海蓉,苑克俊,金松南,刘庆忠.甜樱桃品种SSR指纹图谱数据库的建立.中国农学通报, 2007, 23(5): 55-58.
    [2]陈翠霞,于元杰.棉花耐盐变异体的遗传分析.西北植物学报, 2000, 20(2): 234-237.
    [3]陈浩东,李育强,洪亚辉.棉花SSR-PCR反应体系的优化.分子植物育种, 2007, 5(6): 182-186.
    [4]陈利,张正圣,胡美纯,王威,张建,刘大军等.陆地棉遗传图谱构建及产量和纤维品质性状QTL定位.作物学报, 2008, 34(7): 1199-1205.
    [5]陈勋基,葛峰,屈喜军,师维军,徐利明,黄全生.棉花SSR分子标记体系优化研究.新疆农业科学, 2008, 45(1): 66-69.
    [6]程保山,万志兵,洪德林. 35个粳稻品种SSR指纹图谱的构建及遗传相似性分析.南京农业大学学报, 2007, 30(3): 1-8.
    [7]单雷,赵双宜,陈芳,夏光敏.小麦体细胞杂种山融3号耐盐相关SSR标记的筛选和初步定位.中国农业科学, 2006, 39(2): 225-230.
    [8]单莹,那艳斌,何伟锋,沈丹,赵丹. SSR标记在棉花遗传育种中的应用.现代农业科技, 2009, (4): 160-160.
    [9]丁海媛,张耕耘,郭岩,陈少麒,陈受宜.运用RAPD分析标记水稻耐盐突变系的耐盐主效基因.科学通报, 1998, 43(4): 418-421.
    [10]董玉琛,曹永生,张学勇,刘三才,王兰芬,游光霞等.中国普通小麦初选核心种质的产生.植物遗传资源学报, 2003, 4(1): 1-8.
    [11]杜雄明,刘国强,陈光.论我国棉花育种的基础种质.植物遗传资源学报, 2004, 5(1): 69-74.
    [12]郭宝生,翁跃进.大豆耐盐机理及相关基因分子标记.植物学通报, 2004, 21(1): 113-120.
    [13]郭蓓,邱丽娟,邵桂花,常汝镇,刘立宏,许占友等.大豆耐盐基因的PCR标记.中国农业科学, 2000, 33(1): 10-16.
    [14]郭纪坤,王沛政,胡保民,曲延英.棉花抗旱耐盐性品种筛选.新疆农业科学, 2008, 45(1): 162-166.
    [15]郭纪坤.陆地棉抗旱耐盐及产量、形态性状的QTL定位. [郭纪坤硕士学位论文].乌鲁木齐:新疆农业大学, 2007.
    [16]胡文静,张晓阳,张天真,郭旺珍.陆地棉优质纤维QTL的分子标记筛选及优质来源分析.作物学报, 2008, 34(4): 578-586.
    [17]江行玉,赵可夫,窦君霞,史仁玖. NaCl胁迫下外源亚精胺和二环己基胺对滨藜内源多胺含量和抗盐性的影响.植物生理学通讯, 2001, 37(1): 6-9.
    [18]姜伟,何觉民,陆建农,钟孝威.中国主要棉花栽培群体的遗传多样性分析.农业生物技术学报, 2008, 16(1): 127-133.
    [19]蒋彩虹,王元英,孙玉合. SSR和ISSR标记技术应用进展.中国烟草科学, 2007, 28(2): 1-5.
    [20]蒋锋,赵君,周雷,郭旺珍,张天真.陆地棉抗黄萎病基因的分子标记定位.中国科学C辑:生命科学, 2009, 39(9): 849-861.
    [21]蒋玉蓉,吕有军,祝水金.棉花耐盐机理与盐害控制研究进展.棉花学报, 2006, 18(4): 248-254.
    [22]雷开荣,杨华,吴红,张胜恒,林清,郝风.五个鲜食玉米新品种的DNA指纹图谱研究与应用.中国农学通报, 2006, 22(12): 387-392.
    [23]李付广,李凤莲,李秀兰.盐胁迫对棉花幼苗保护酶系统活性的影响.河北农业大学学报, 1994, 17(3): 52-56.
    [24]李付广,李秀兰,李凤莲.离体快速鉴定棉花耐盐性初报.中国棉花, 1992, 19(6): 16-17.
    [25]李姝晋.水稻耐盐、抗旱性生理研究及耐盐性的遗传分析、SSR标记定位及其初步利用. [李姝晋硕士学位论文].雅安:四川农业大学, 2005.
    [26]李维江,徐惠纯,辛承松.一种方便快速测定棉花抗盐性的新方法.中国棉花, 1995, 22(9): 35.
    [27]李永强,李宏伟,高丽锋,何蓓如.基于表达序列标签的微卫星标记(EST-SSRs)研究进展.植物遗传资源学报, 2004, 5(1): 91-95.
    [28]梁理民,王增信,刘有良,党银侠,王远,胡芸生等.棉花种间杂交新品系及新种质的育成.西北农林科技大学学报, 2003, 31(5): 9-12.
    [29]林鸿宣,柳原城司,庄杰云,仙北俊弘,郑康乐,八岛茂夫.应用分子标记检测水稻耐盐性的QTL.中国水稻科学, 1998, 12(2): 72-78.
    [30]林栖凤,李冠一.植物耐盐性研究进展.生物工程进展, 2000, 20(2): 20-25.
    [31]刘国强,鲁黎明,刘金定.棉花品种资源耐盐性鉴定研究.作物品种资源, 1993, (2): 21-22.
    [32]刘文欣,孔繁玲,郭志丽,张群远,彭惠茹,付小琼等.建国以来我国棉花品种遗传基础的分子标记分析.遗传学报, 2003, 30(6): 560-570.
    [33]刘旭,史娟,张学勇,马缘生,贾继增.小麦耐盐种质的筛选鉴定和耐盐基因的标记.植物学报, 2001, 43(9): 948-954.
    [34]陆丹,牛楠,李玥莹. SSR标记技术在植物基因组研究上的应用.沈阳师范大学学报:自然科学版, 2010, (1): 83-85.
    [35]吕有军,叶武威,祝水金.盐胁迫对陆地棉蕾铃形成与脱落的影响.安徽农业科学, 2006, 34(10): 2090-2094.
    [36]罗宾.棉花生理学.上海:上海科技出版社, 1983.
    [37]马文月.植物抗盐性研究进展.农业与技术, 2004, 24(4): 95-99.
    [38]马轩,杜雄明,孙君灵. 18个彩色棉品系的SSR指纹分析.植物遗传资源学报, 2003, 4(4): 305-310.
    [39]马雪霞,王凯,郭旺珍,张天真.棉花SSR多重PCR技术的初步研究和利用.分子植物育种, 2007, 5(5): 648-654.
    [40]倪西源,王学德,孙志栋.棉花表型性状基因的SSR标记定位.棉花学报, 2003, 15(6): 357-360.
    [41]聂新辉.棉花抗旱耐盐生理指标的鉴定及抗旱耐盐相关cDNA片段的分离. [聂新辉硕士学位论文].乌鲁木齐:新疆农业大学,2007.
    [42]牛东玲,王启基.盐碱地治理研究进展.土壤通报, 2002, 33(6): 449-455.
    [43]庞朝友,杜雄明,马峙英.棉花种间杂交渐渗系创新效果评价及特异种质筛选.科学通报,2006, 51(1): 55-62.
    [44]秦利,李冰,范玲,李磊,胡保民,王沛政.新疆陆地棉SSR标记指纹图谱构建和杂种纯度鉴定研究.新疆农业科学, 2005, 42(6): 399-401.
    [45]邵桂花,常汝镇,陈一舞,闫淑荣.大豆耐盐性遗传的研究.作物学报, 1994, 20(6): 721-726.
    [46]沈法富,于元杰,毕建杰,刘凤珍,尹承佾.棉花耐盐性的双列杂交分析.作物学报, 2001, 27(1): 50-54.
    [47]沈法富.棉花耐盐碱生理指标研究.中国棉花, 1991, 18(4): 9-10.
    [48]沈法富,尹承佾.盐胁迫对棉花幼苗子叶超氧化物歧化酶活性的影响.棉花学报, 1993, 5(1): 39-44.
    [49]沈法富,尹承佾,于元杰,刘凤珍,程立.棉花植株和花粉耐盐性的鉴定.作物学报, 1997, 23(5): 620-625.
    [50]宋国立,崔荣霞,王坤波,郭立平,黎绍惠,王春英等.改良CTAB法快速提取棉花DNA.棉花学报, 1998, 10(5): 273-275.
    [51]苏顺宗,黄玉碧,杨俊品,丁仲芳,高世斌.利用SSR鉴定水稻杂交种子纯度的研究.种子, 2003, (1): 23-25.
    [52]孙小芳,刘友良.棉花品种耐盐性鉴定指标可靠性的检验.作物学报, 2001, 27(6): 794-801.
    [53]孙叶红.苹果砧木实生后代耐盐性鉴定的分子标记筛选及相关基因片段分析. [孙叶红硕士学位论文].保定:河北农业大学, 2009.
    [54]索广力,黄占景,何聪芬,沈银柱.利用RAPD—BSA技术筛选小麦耐盐突变位点的分子标记.植物学报, 2001, 43(6): 598-602.
    [55]谭君,丁仲芳,孙仕贤,林勇,唐海涛,黄玉碧等.西南常用玉米自交系SSR指纹图谱构建.西南农业学报, 2003, 16(2): 1-6.
    [56]王凤格,赵久然,郭景伦,孙世贤.中国玉米新品种标准DNA指纹库构建研究的几点思考.植物学通报, 2005, 22(1): 121-128.
    [57]王凤格,赵久然,郭景伦,刘龙洲.中国玉米新品种DNA指纹库建立系列研究Ⅰ.玉米品种纯度及真伪鉴定中SSR技术标准实验体系的建立.玉米科学, 2003, 11(1): 3-6.
    [58]王宏英,张萃,黄占景,朱正歌,郭光艳,沈银柱.用微卫星标记定位小麦耐盐突变体的耐盐相关基因.作物学报, 2004, 30(7): 697-699.
    [59]王俊芳,杨伟华,匡猛,许红霞,王延琴,周大云等.棉花品种指纹图谱构建及棉种鉴定技术研究.中国棉花, 2009, 36(3): 6-9.
    [60]王俊芳.基于SSR标记的棉种真实性和品种纯度鉴定技术研究. [王俊芳硕士学位论文].北京:中国农业科学院, 2009.
    [61]王省芬,马峙英,张桂寅,李喜焕,李瑞奇,李爱丽.我国棉花抗枯、黄萎病骨干品种(系)基于AFLP的遗传多样性.棉花学报, 2005, 17(1): 23-28.
    [62]王希文.棉花优异种质遗传多样性分析及其SSR数字指纹图谱构建. [王希文硕士学位论文].雅安:四川农业大学, 2009.
    [63]温小杰,马峙英,王省芬,张桂寅,李喜焕.中国抗枯,黄萎病陆地棉材料分子水平的遗传差异评价.中国农业科学, 2005, 38(5): 936-943.
    [64]翁跃进.茶淀红麦耐盐基因的RFLP分子标记.河北农业科学, 1999, 3(1): 1-5.
    [65]翁跃进,陈道明.小麦耐盐基因的标记和标记的克隆.遗传学报, 2002, 29(4): 343-349.
    [66]武耀廷,张天真,郭旺珍,殷剑美.陆地棉品种SSR标记的多态性及用于杂交种纯度检测的研究.棉花学报, 2001, 13(3): 131-133.
    [67]徐秋华,张献龙,聂以春,冯纯大.我国棉花抗枯萎病品种的遗传多样性分析.中国农业科学, 2002, 35(3): 272-276.
    [68]许祥明,叶和春,李国凤.植物抗盐机理的研究进展.应用与环境生物学报, 2000, 6(4): 379-387.
    [69]姚正培.玉米抗旱、耐盐种质筛选及RAPD分子标记研究. [姚正培硕士学位论文].乌鲁木齐:新疆大学, 2007.
    [70]杨青川,韩建国.紫花苜蓿耐盐分子标记的初步鉴定.中国农业科学, 2005, 38(3): 606-611.
    [71]叶武威,刘金定.棉花种质资源耐盐性鉴定技术与应用.中国棉花, 1998, 25(9): 34-34.
    [72]叶武威,庞念厂,王俊娟,樊宝相.盐胁迫下棉花体内Na+的积累、分配及耐盐机制研究.棉花学报, 2006, 18(5): 279-283.
    [73]叶武威.棉花种质的耐盐性及其耐盐基因表达的研究. [叶武威博士学位论文].北京:中国农业科学院, 2007.
    [74]于海武,李莹.植物耐盐性研究进展.北华大学学报:自然科学版, 2004, 5(3): 257-263.
    [75]袁昭岚,沈颂东,黄鹤忠,许璞. SSR和ISSR分子标记技术及其在遗传多态性方面的应用.水产养殖, 2005, 26(2): 10-13.
    [76]张耕耘,郭岩,刘凤华,陈受宜,陈少麟.九个水稻耐盐突变体的RFLP分析.植物学报, 1994, 36(5): 345-350.
    [77]张海艳.盐胁迫诱导的棉花叶片细胞程序性死亡.中国农学通报, 2009, (5): 158-159.
    [78]赵久然,王凤格,郭景伦,陈刚,廖琴,孙世贤等.中国玉米新品种DNA指纹库建立系列研究Ⅱ.适于玉米自交系和杂交种指纹图谱绘制的SSR核心引物的确定.玉米科学, 2003, 11(2): 3-8.
    [79]赵可夫.植物抗盐生理.北京:中国科学技术出版社, 1993 .
    [80]赵可夫. NaCl抑制棉花幼苗生长的机理—盐离子效应.植物生理学报, 1989, 15(2): 173-178.
    [81]中国农业科学院棉花研究所.中国棉花遗传育种学.济南:山东科学技术出版社, 2003: 1.
    [82]朱美霞,李英芝,王建书,侯英梅,孟艳玲.利用SSR方法鉴定棉花品种纯度.安徽农业科学, 2005, 33(11): 2010.
    [83]左开井,孙济中,张献龙,聂以春,刘金兰,冯纯大.利用RFLP、SSR和RAPD标记构建陆地棉分子标记连锁图.华中农业大学学报, 2000, 19(3): 190-193.
    [84]Abdel T, Fahmy EM, Bahieldin A, Eissa HF. Molecular markers for salt tolerance in some inbreds of maize (Zea mays L.). Arabic Universities Joural Agriculture Science. 1997, 5: 389-417.
    [85]Ahmad S, Khan N, Iqbal MZ, Hussain A, Hassan M. Salt tolerance of cotton (Gossypium hirsutum L.). Asian Journal Plant Science. 2002, 1(6): 715-719.
    [86]Ashraf M, McNeilly T, Bradshaw AD. Selection and heritability of tolerance to sodium chloride in four forage species. Crop Science. 1987, 27(2): 232.
    [87]Beckmann JS, Soller M. Detection of linkage between marker loci and loci affecting quantitative traits in crosses between segregating populations. Theoretical and Applied Genetics. 1988, 76(2): 228-236.
    [88]Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics. 1980, 32(3): 314-331.
    [89]Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R. Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics. 2000, 156(2): 847-854.
    [90]Chen G, Du XM. Genetic diversity of source germplasm of upland cotton in China as determined by SSR marker analysis. Acta Genetica Sinica. 2006, 33(8): 733-745.
    [91]Cheong MS, Yun DJ. Salt-stress signaling. Journal of Plant Biology. 2007, 50(2): 148-155.
    [92]Foolad MR, Stoltz T, Dervinis C, Rodriguez RL, Jones RA. Mapping QTLs conferring salt tolerance during germination in tomato by selective genotyping. Molecular Breeding. 1997, 3(4): 269-277.
    [93]Hamada H, Petrino MG, Kakunaga T. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proceedings of the National Academy of Sciences of the United States of America. 1982, 79(21): 6465-6469.
    [94]Harding RM, Boyce AJ, Clegg JB. The evolution of tandemly repetitive DNA: recombination rules. Genetics. 1992, 132(3): 847-859.
    [95]Lee GJ, Boerma HR, Villagarcia MR, Zhou X, Carter TE, Li Z, et al. A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theoretical and Applied Genetics. 2004, 109(8): 1610-1619.
    [96]Liu DQ, Guo XP, Lin ZX, Nie YC, Zhang XL. Genetic diversity of Asian cotton (Gossypium arboreum L.) in China evaluated by microsatellite analysis. Genetic resources and crop evolution. 2006, 53(6): 1145-1152.
    [97]Liu S, Cantrell RG, McCarty JC Jr, Stewart JM. Simple sequence repeat-based assessment of genetic diversity in cotton race stock accessions. Crop Science. 2000, 40(5): 1459-1469.
    [98]M?ller IS, Tester M. Salinity tolerance of Arabidopsis: a good model for cereals. Trends in Plant Science. 2007, 12(12): 534-540.
    [99]Maggio A, Raimondi G, Martino A, De Pascale S. Salt stress response in tomato beyond the salinity tolerance threshold. Environmental and Experimental Botany. 2007, 59(3): 276-282.
    [100]Mano Y, Takeda K. Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica. 1997, 94(3): 263-272.
    [101]Michelmore RW, Paran I, Kesseli RV. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America. 1991, 88(21): 9828-9832.
    [102]Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology. 2008, 59: 651-681. .
    [103]Nguyen TB, Giband M, Brottier P, Risterucci AM, Lacape JM. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theoretical and Applied Genetics. 2004, 109(1): 167-175.
    [104]Paterson AH, Brubaker CL, Wendel JF. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Molecular Biology Reporter. 1993, 11(2): 122-127.
    [105]Reinisch AJ, Dong JM, Brubaker CL, Stelly DM, Wendel JF, Paterson AH. A detailed RFLP map of cotton, Gossypium hirsutum x Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome. Genetics. 1994, 138(3): 829-847.
    [106]Rengasamy P. World salinization with emphasis on Australia. Journal of Experimental Botany. 2006, 57(5): 1017-1023.
    [107]Richard GF, Paques F. Mini-and microsatellite expansions: the recombination connection. EMBO reports. 2000, 1(2): 122-126.
    [108]Tachida H, Iizuka M. Persistence of repeated sequences that evolve by replication slippage. Genetics. 1992, 131(2): 471-478.
    [109]Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research. 1984, 12(10): 4127-4138.
    [110]Ward JM, Hirschi KD, Sze H. Plants pass the salt. Trends in Plant Science. 2003, 8(5): 200-201.
    [111]Yazici I, Türkan I, Sekmen AH, Demiral T. Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environmental and Experimental Botany. 2007, 61(1): 49-57.
    [112]Zhang GY, Guo Y, Chen SL, Chen SY. RFLP tagging of a salt tolerance gene in rice. Plant science. 1995, 110(2): 227-234.
    [113]Zhang TZ, Yuan YL, Yu J, Guo WZ, Kohel RJ. Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection. Theoretical and Applied Genetics. 2003, 106(2): 262-268.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.