黄淮海地区冬小麦水氮高效利用栽培技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以黄淮海地区冬小麦为研究对象,以节水灌溉为研究核心,以水肥高效利用为研究目标,在中国农科院陵县试验基地,开展了冬小麦晚播适宜临界期及效应研究,冬小麦节水灌溉模式研究,冬小麦限水灌溉下氮肥用量研究。通过一年的试验研究,主要得出以下结论:
     (1)四个播期处理冬前积温差异明显,10月10号(D10)冬前积温为581.4℃,10月15号(D15)为501.4℃,10月20号(D20)为406.3℃,10月25号(D25)为329.8℃。根据冬前积温划分,D10处理为中晚播小麦、D15为晚播小麦,D20、D25为过晚播小麦。冬前积温差异对冬前苗情产生显著影响。D10、D15处理小麦冬前达到4~5个叶龄,产生3~4个分蘖,3~4条次生根,麦苗壮而不旺,小麦安全越冬。D20、D25处理小麦冬前无分蘖和次生根产生,麦苗弱小。D10、D15晚播小麦群体穗数、产量、植株吸氮量都显著高于过晚播D20、D25处理。D20、D25处理小麦土壤水消耗量显著低于D10、D15处理,但水分利用效率、氮素吸收效率、氮素生产效率也显著低于D10、D15处理。所以,适宜晚播是应对气候干暖化,提高抵御冻害和抗旱能力最佳播种模式。根据陵县05~08气象数据统计,10月10号至15号冬前积温在450~580℃,是该地区常规年份适宜晚播期,以7.50×106/hm2群体穗数为参照,基本苗宜控制在2.55~3.00×106/hm2。
     (2)小麦播种至拔节期,以消耗0~40cm土层水分为主。在期间42mm降水条件下,不灌冻水处理在拔节前0~40cm土层达到重度水分亏缺,灌冻水处理只为轻度水分亏缺。前期重度水分亏缺对后期根系吸收深层水分和旗叶光合速率产生显著抑制作用。轻度水分亏缺条件下,气孔导度下降,蒸腾速率随之降低,而光合速率可得以维持,单叶水分利用效率提高。随灌水次数增加,总耗水量加大,土壤水和降水的消耗比例显著降低。拔节期灌水显著提高氮素的吸收效率和生产利用效率,在此基础上增加冻水、开花水、灌浆水等效果不显著。后期增加灌水次数会显著加大硝态氮的淋洗损失。产量、WUE与耗水量均呈二次曲线关系,但变化趋势不一致,两曲线在耗水量360mm处相交,为两者理论上最佳结合点。本试验中冻水+拔节水处理产量最高,达到7753kg/hm2,相对不灌水处理提高40.2%,WUE值为1.9kg/m3,与不灌水处理差异不显著,为本试验的最优节水高产灌溉方案。
     (3)施用氮肥显著增加小麦穗数和穗粒数,对千粒重无显著影响。作物产量、吸氮量与施氮量均呈抛物线关系,当施氮量超过240kg/hm2,产量、吸氮量随施氮量增加反而略有降低。小麦起身期后,0~100cm土层都有硝态氮分布,相同处理不同土层,含量随土层深度增加而减少;不同处理相同土层,含量随施氮量增加而增加。土壤硝态氮积累量随生育期推进而降低,N0和N120处理分别在拔节期和开花期后表现出氮素亏缺。成熟期,土壤表观盈余以残留为主,表观损失量占小部分。氮肥表观利用率、农学利用率随施氮量增加呈降低趋势,而氮素残留率随施氮量增加呈增加趋势。在本试验条件下,施氮量在180~220kg/hm2水平可以实现产量、氮素表观利用率、氮素残留率的较好结合,为限水灌溉下兼顾经济效益与环境效益的适宜施氮量。
     综合以上研究,根据陵县05~08气象数据统计,10月10号至15号冬前积温在450~580℃,是该地区常规年份适宜晚播期,以7.50×106/hm2群体穗数为参照,基本苗宜控制在2.55~3.0×106 /hm2。节水灌溉浇1水应把有限的水资源优先用于灌溉效益最大的拔节~挑旗阶段,浇2水有冻水+拔节水,起身水+孕穗水,拔节水+开花水、拔节水+灌浆水四种方案,具体应根据当年的降水分布确定最优灌溉时间。在限水灌溉条件下,施氮量在180~220kg/hm2为兼顾经济效益和环境效益的适宜施氮量。
Field experiments were conducted during 2008~2009 in lingxian experimental station of Chinese academy of agricultural science,(located in Huang-Huai-Hai area of north China).The objective of this research was to find integrated cultivation techniques in winter wheat with high yield and high resources utilization efficiency, water-saving is the concentration. It included three experiments. The first experiment was about critical period of delayedsowing in winter wheat responsing climate chang and water-saving demand. The second experiment was about water-saving scheme in winter wheat. The third research was about N application rates under water-saving irrigation in winter wheat. Through one year study got these conclusions:
     (1)In 2008, accumulated temperature before winter of october 10 treatment (D10)was 581.4℃, october 15 (D15)was 501.4℃, october 20(D20 )was 406.3℃, october 25(D25) was 329.8. D10 treatment belonged to middle-delayedsowing wheat, D15 treatment belonged to delayedsowing wheat, D20 and D25 treatments belonged to exceedingly delayedsowing wheat .This difference had signifigant effects on wheat seedling before winter. Wheat of D10 and D15 treatments formed 4~5 leaf ages, 3~4 tillerings, 3~4 secondary roots before winter. Plant and population were srong and proper , this was the base of safely overwintering and high yielding. Wheat of D20 and D25 treatments had zero tillering and secondary root before winter, plant and population were small and weak. Colony spike numbers、grain yield、nitrogen uptake of D10 and D15 treatments were signifigant higher than D20 and D25 treatments. Soil water consumption of D10 and D15treatments were higher than D20 and D25 treatments, but water use efficiency、N uptake efficiency、N production efficiency of D10 and D15treatments were also higher than D20 and D25 treatments. Proper delayedsowing is optimum sowing model in order to cope with climate change、defense freeze injury and resist drought. According to statistics of Lingxian temperature date, accumulated temperature before winter from october 10 to october 15 were between 450~580℃. So we infer that this period is feasible delayedsowing days in general years. Refering to colony spike numbers 7.50×106/ha, basic seeding numbers shoud be control in 2.55~3.00×106 /ha..
     (2)During sowing to jointing stages, under 42 mm precipitation condition, available water content of 0~40cm soil layer decreased significantly, 0~40cm soil layer of all treatments (except wintering and jointing treatment) got serious water stress, while wintering and jointing treatment only got light water stress. Serious water stress before jointing stages remarkably affected root to absorb water in deep soil layer and photosynthetic rate of wheat in late stages. With increase of irrigation times, total water consumption increased, but the percentage of soil -water consumption and precipitation consumption decreased. Under light water stress condition, stomatal- conductivity decreased, consequently reduced transpiration rate, but preserved the net photosynthetic rate, so WUE of leaves increased. Irrigation at jointing stage significantly increased N uptake efficiency and N production efficiency, adding other irrigations had no significant elevated effect, moreover, increasing irrigation in later stages raised soil NO-3_N lost probability.There were conic relationships among grain yield, WUE and water consumption, but the two conics did not have the same variation tendency. A point of intersection at 360mm water consumption was found , which indicated the best combining site of grain yield and WUE. Grain yield of wintering and jointing treatment was 7753kg/ha, which increasing 40.2% compared to no irrigation treatment. WUE of wintering and jointing treatment was 1.9kg /m3, which did not differ with no irrigation treatment. So wintering and jointing treatment was the best water-saving and high yielding treatment this year.
     (3)N application significantly increased spike numbers and per spike grains of winter wheat, meanwhile the effect on thousand-grain-weight was not significant. Relationships among grain yield、N uptake and N application rates were parabolics, when N application rates exceeded 240 kg/ha, grain yield and N uptake reduced with increase of N application rates. Soil NO-3_N was founded in 0~20, 20~40, 40~60, 60~80, 80~100 cm soil layers after raising stage of winter wheat. Soil NO-3_N contents decreased with increase of soil layer depth for the same treatment; different treatments in the same layer, NO-3_N contents increased with increase of N application rates. Soil NO-3_N accumulations decreased with winter wheat growth going forward. N0 and N120 treatments appeared NO-3_N efficiency, respectively after jointing stage and anthesis stage. In harvest stage, residual N in 100 cm soil layer was the main part of surplus N, lost N accounted for little percentage. With increase of N application rates, N utilization efficiency and Nagronomy efficiency appeared downtrend, while N residue efficiency appeared uptrend. Under this experiment condition, N application rates from 180 to 220kg/ha can have good combinations of grain yield、N utilization efficiency and N residue efficiency. So 180~220 kg/ha were ideal N rates levels considering both economic benefit and environmental benefit.
     In conclusion, according to 05~08 Ling Xian weather data statistics, If seeding date is in october 10 to 15 , accumulated temerature before winter was between 450~580℃, these days are proper seeding date in Huang-Huai-Hai area, and referring to 7.50×106/ha spikes, basic seeding numbers shoud be control in control in 2.55~3.00×106 /ha. If carry out one irrigation, irrigation should be arranged at water critical period, that is jointing~flagging stage. If carry out twice irrigations, there are four combinations, irrigation at wintering and jointing, irrigation at raising and booting, irrigation at jointing and anthesis, irrigation at jointing and grouting. According to precipitation choose the optimum irrigation times. Under water-saving irrigation, N application rates from 180 to 220kg/ha can have good combinations of grain yield、N utilization efficiency and N residue efficiency. So180~220 kg/ha is ideal N rates levels considering both economic benefit and environmental benefit.
引文
1.陈宝明.施氮对植物生长、硝态氮累积及土壤硝态氮残留的影响.生态环境2006,15(3):630~632.
    2.陈玮,员冬梅,李忠民.小麦生育后期限量供水对生理指标的影响.三门峡职业技术学院学报,2004,3(2):69~70.
    3.丛振涛,王舒展,倪广恒.气候变化对冬小麦潜在产量影响的模型模拟分析.清华大学学报(自然科学版),2008 ,21(4):1426~1430.
    4.董桂菊,刘文兆.伤根对春小麦光合特性及水分利用效率的影响研究.中国生态农业学报,2004,2(2):77~79.
    5.董树亭.大田条件下作物群体光合作用的研究及测定方法.耕作与栽培,1988,62~64.
    6.杜宝华,吕学都.土坡湿度对冬小麦光合速率的影响.中国农业气象,1992(4):8~11.
    7.段爱旺.水分利用效率的内涵及使用中需要注意的问题.见:中华人民共和国科学技术部编.中国节水农业发展战略研究与实践—中国节水农业科技发展论坛文集.北京:中国农业科学技术部出版社,2006,148~151.
    8.樊廷录,谢慧民.我国节水农业技术现状与未来发展重点.见:中华人民共和国科学技术部编.中国节水农业发展战略研究与实践—中国节水农业科技发展论坛文集.北京:中国农业科学技术部出版社,2006,81~86.
    9.房全孝,陈雨海.土壤水分对冬小麦生长后期光能利用及水分利用效率的影响.作物学报2006,32(6):861~866 .
    10.冯广龙,罗远培,刘建利等.不同水分条件下冬小麦根与冠生长及功能间的动态消长关系.干旱地区农业研究,1997,15(2):73~79.
    11.冯玉香,何维勋,孙忠富.我国冬小麦霜冻害的气候分析.作物学报,1999,25(3):335~340.
    12.郜庆炉,薛香,梁云娟等.暖冬气候条件下调整小麦播种期的研究.麦类作物学报,2002, 22 (2) : 46~50.
    13.关义新,林葆,凌碧莹.光、氮及其互作对玉米幼苗叶片光合和碳、氮代谢的影响.作物学报,2000,26(6):806~811.
    14.郭天财,宋晓,冯伟等.高产麦田氮素利用、氮平衡及适宜施氮量.作物学报,2008, 34(5): 886~892.
    15.果园.麦粒重形成.山西农业科学,1983 (9) :17~201.
    16.侯升林,杜瑞恒.作物抗旱性研究的发展与前景.见:中华人民共和国科学技术部编.中国节水农业发展战略研究与实践—中国节水农业科技发展论坛文集.北京:中国农业科学技术部出版社,2006,pp:342~347.
    17.居辉,王璞,周殿玺,兰林旺.不同灌溉时期的冬小麦土壤水分变化动态.麦类作物学报,2005,25(3):76~80.
    18.巨晓棠,潘家荣,刘学军等.高肥力土壤冬小麦生长季肥料氮的去向研究Ⅰ.冬小麦生长季肥料氮的去向.核农学报,2002,16(6):397~402.
    19.巨晓棠,张福锁.关于氮肥利用率的思考.生态环境,2003,12(2):192~197.
    20.康绍忠,蔡焕杰,张富仓.节水农业中作物水分管理基本理论问题的探讨.水利学报,1996,5:9~17.
    21.康绍忠.农业节水与水资源领域的科技发展态势及重大热点问题.见:中华人民共和国科学技术部编.中国节水农业发展战略研究与实践—中国节水农业科技发展论坛文集.北京:中国农业科学技术部出版社,2006,18~22.
    22.兰林旺,周殿玺.小麦节水高产研究.北京:中国农业大学出版社,1995.
    23.李存东,曹卫星,戴廷波,严美春.小麦不同品种和播期对发育阶段的效应.应用生态学报,2001 ,12 (2)∶218~222.
    24.李建民,周殿玺等.冬小麦水肥高效利用栽培技术原理.北京:中国农业大学出版,2000,pp5~6.
    25.李生秀,李世清,高亚军等.施用氮肥对提高旱地作物利用土壤水分的作用机理和效果.干旱地区农业研究,1994,12(1):38~46.
    26.李世娟,周殿玺,兰林旺.不同水分和氮肥水平对冬小麦吸收肥料氮的影响.核农学报,2002,16 (5) :315~319.
    27.李世娟,诸叶平,孙开梦等.冬小麦节水灌溉制度下不同施氮量的氮素平衡.核农学报,2003,17(6):472~475.
    28.李世清,李生秀.半干旱地区农田生态系统中硝态氮的淋失.应用生态学报,2000,11(2):240~242.
    29.李星敏.小麦播期温度变化对其冬前生育的影响.陕西气象,2001,5:21~23.
    30.李秧秧,刘文兆.灌水对小麦旗叶光合功能衰退的影响.西北植物学报,2001,21(1):75~80.
    31.李志勇,陈建军,王璞.不同水氮优化组合模式对冬小麦产量形成及水氮资源利用效率的影响.华北农学报,2005,20(2):66~71.
    32.梁银丽、康绍忠.节水灌溉对冬小麦光合速率和产量的影响.西北农业大学学报,1998,26(4):16~19.
    33.梁银丽.土壤水分和氮磷营养对冬小麦根系生长及水分利用的调.生态学报,1996,16(3):258~264.
    34.刘殿英,石立岩,黄炳茹等.栽培措施对冬小麦根系及其活力和植株性状的影响.中国农业科学,1993,26(5):51~56.
    35.刘殿英.土壤水分对冬小麦根系的影响.山东农业大学学报,1991,22(2):359~364.
    36.刘敏超,曾长立,王兴仁.氮肥施用对冬小麦氮肥利用率及土壤剖面硝态氮含量动态分布的影响.农业现代化研究,2000,21(5):309~312.
    37.刘文兆.作物生产、水分消耗与水分利用效率间的动态联系.自然资源学报,1998,13(1):23~26.
    38.刘学军,巨晓堂,边秀举等.基施氮肥对土壤剖面中无机氮动态的影响.青年学者论土壤与植物营养科学,2002,227~234.
    39.刘学军,赵紫娟,巨晓棠等.基施氮肥对冬小麦产量、氮肥利用率及氮平衡的影响.生态学报,2002,22(7)1122~1128.
    40.吕殿青,同延安,孙本华.氮肥施用对环境污染影响的研究.植物营养与肥料学报,1998,4(1):8~15.
    41.吕金印,山仑,高俊凤.非充分灌溉及其生理基础,西北植物学报,2002,22(6):1512~1517.
    42.马瑞昆、贾秀领.冬小麦节水高产的生理基础和调控技术.河北农业科学,2000,(4)2:49~75.
    43.马瑞昆.供水深度与冬小麦根系发育的关系.干旱地区农业研究,1991,3:1~10.
    44.马文奇.山东省作物施肥现状与评价[博士学位论文].北京,中国农业大学,1999.
    45.马兴华.小麦优质高产需水特性与植株一土壤氮素循环的研究[博士学位论文].泰安:山东农业大学,2007.
    46.梅方竹,周广生,朱旭彤等.麦粒重在产量构成中的作用及提高粒重的技术措施.湖北农业科学,2001 (2) :21~231.
    47.孟兆江,贾大林,刘安能等.调亏灌溉对冬小麦生理机制及水分利用效率的影响.农业工程学报,2003,19(4):66~69.
    48.苗果园,张云亭,尹钧等.黄土高原旱地冬小麦根系生长规律的研究.作物学报,1989,15(2): 104~115.
    49.牟会荣,姜东,曹卫星等.遮荫对小麦旗叶光合及叶绿素荧光特性的影响.中国农业科学,2008,41(2):599~606.
    50.逄焕成.我国节水灌溉技术现状与发展趋势分析.中国土壤与肥料,2006,5:1~6.
    51.彭世彰,朱成立.作物节水灌溉需水规律研究.节水灌溉,2003,2,5~8.
    52.山仑,邓西平,康绍忠.我国半干旱地区农业用水现状及发展方向.水利学报,2002,9:27~31.
    53.上官周平.小麦叶片光合作用对不伺干旱方式的反应.西北农业学报1997,6(4):38~41.
    54.山仑,徐萌.节水农业及其生理生态基础.应用生态学报,1991,2(1):70~76.
    55.山仑.小麦灌浆期生理特性和土坡水分条件对灌浆影响的研究.植物生理学通讯,1980,3: 41~46.
    56.石维,同延安,赵营等.灌溉施肥对冬小麦土壤氮素盈亏的影响.麦类作物学报,2006,26(2):93~97.
    57.石岩,林琪,位东斌等.不同灌水处理冬小麦耗水规律与节水灌溉方案确立.干旱地区农业研究,1996,14(4):7~11.
    58.石岩,林琪,位东斌等.土壤水份胁迫对冬小麦光合及产量的影响.华北农学报,1996,11(4):80~83.
    59.石岩,于振文,位东斌等.土壤水分胁迫对小麦根系与旗叶衰老的影响.西北植物学报,1998,18(2):196~201.
    60.史蒂文森,等著.闵九康,等译.农业土壤中的氮.北京:科学出版社,1989,359~411.
    61.孙景生,刘祖贵,肖俊夫等.冬小麦节水灌溉的适宜土壤水分上、下限指标研究.中国农村水利水电(农田水利与小水电),1998,9:10~12 .
    62.孙书娈,陈秀敏,乔文臣等.冬小麦干旱胁迫下不同土层根量分布与产量的关系.河北农业科学,2008,12(5): 6~8.
    63.汤章城.植物对水分胁迫的反应和适应性.植物生理学通讯,1993,(4):1~5.
    64.田展,刘纪远,曹明奎.气候变化对中国黄淮海农业区小麦生产影响模拟研究.自然资源学报,2006,21(4):598~607.
    65.王晨阳,马元喜,周苏玫等.土壤干旱胁迫对冬小麦衰老的影响.河南农业大学学报,1996,30(4):309~313.
    66.王晨阳.不同土壤水分条件下小麦根系生态生理效应的研究.华北农学报,1992,7(4):1~8.
    67.王德梅,于振文.灌溉量和灌溉时期对小麦耗水特性和产量的影响.应用生态学报,2008,19(9):1965~1970.
    68.王和洲,张晓萍.调亏灌溉条件下的作物水分生态生理研究进展.灌溉排水,2001,20(4):73~75.
    69.王家仁,王丙禄,周荣波等.冬小麦节水高产栽培技术研究.灌溉排水,2001,2(4):43~46.
    70.王小彬,蔡典雄,张志田等.稳态水流下肥料氮的运移.植物营养与肥料学报,1996,2(2):110~115.
    71.王小燕,褚鹏飞,于振文.水氮互作对小麦土壤硝态氮运移及水、氮利用效率的影响.植物营养与肥料学报,2009,15(5):992~1002.
    72.王晓英,贺明荣,刘永环等.水氮耦合对冬小麦氮肥吸收及土壤硝态氮残留淋溶的影响.生态学报,2008,28(2):685~694.
    73.王永平,商兆堂,吴建中等.小麦播期对干物质积累的影响分析.安徽农业科学,2008 ,36(12) :4907~4908.
    74.王志敏,王璞,兰林旺等.黄淮海地区优质小麦节水高产栽培研究.中国农学通报,2003,19(4):22~25.
    75.王志敏,王璞,李绪厚等.冬小麦节水省肥高产简化栽培理论与技述.中国农业科技导报,2006,8(5):38~44.
    76.位东斌,东先旺.作物栽培学.北京:中国农业大学出版社,2001,36~42.
    77.魏爱丽,张小冰,邢勇.小麦旗叶和穗光合作用与耐旱性关系研究.西北植物学报,2005,25(11):2245~2249.
    78.吴永成,周顺利,张永平等.节水高产小麦理想全株型探讨.干旱地区农业研究,2005,23(2):126~129.
    79.吴永成.华北地区冬小麦—夏玉米节水种植体系氮肥高效利用机理研究[博士学位论文].北京,中国农业大学,2005.
    80.武继承,王志和,徐健新等.河南省旱作节水农业建设的技术途径.郑州:黄河水利出版社,2006,11~12.
    81.武晓峰,谢森传.冬小麦田间根层中氮素迁移转化规律研究.灌溉排水,1996,15(4):10~15.
    82.武雪萍,梅旭荣,蔡典雄等.节水农业关键技术发展趋势及国内外差异分析.中国农业资源与区划,2005,26(4):28~32.
    83.谢家琪,李金才,魏凤珍等.不同播期对冬小麦籽粒灌浆特性及产量的影响.安徽农业科学,2008 ,36(13):5349~5350 ,5440.
    84.熊伟,许吟隆,林而达等.气候变化导致的冬小麦产量波动及应对措施模拟.农业资源与环境科学,2005,21(5):380~385.
    85.许振柱,李长荣,陈平等.土壤干旱对冬小麦生理特性和干物质积累的影响.干旱地区农业研究,2000,18(1),114~123.
    86.严昌荣.干暖气候条件下华北地区农业生产的问题与措施.见:中华人民共和国科学技术部编.中国节水农业发展战略研究与实践—中国节水农业科技发展论坛文集.北京:中国农业科学技术部出版社,2006,77~80.
    87.杨栋.日平均气温的升高对小麦冻害的影响及和适宜播期的关系.安徽农业科学,2000,28(1):43~44,46.
    88.杨培岭,刘洪禄,任树梅等.节水条件下大田冬小麦的根冠关系.中国农业大学学报,1997,2(6):46~62 .
    89.于振文,岳寿松,沈成国等.冬小麦高产高效灌水方案的研究.山东农业科学,1994,3~6.
    90.余泽高,覃章景,李力.小麦不同播期生长发育特性及若干性状的研究.湖北农业科学,2003,(5):24~27.
    91.袁新民,杨学云,同延安等.不同施氮量对土壤NO-3-N累积的影响.干旱地区农业研究,2001,19(1):8~13.
    92.翟丙年,李生秀.冬小麦水氮配合关键期和亏缺敏感期的确定.中国农业科学,2005,38(6):1188~1195 .
    93.张福锁,巨晓堂.对我国持续农业发展中氮肥管理与环境问题的几点认识.土壤学报,2002,39(增刊):42~54.
    94.张和平,刘晓楠.华北平原冬小麦根系生长规律及其与氮肥磷肥和水分的关系.华北农学报,1993,8(4):76~82.
    95.张久刚.提高山早地小麦水分利用率的研究.山西农业科学,1996,24(3): 7~9.
    96.张秋英,李发东,高克昌等.水分胁迫对冬小麦光合特性及产量的影响.西北植物学报,2005,25(6):1184~1190.
    97.张维理,田哲旭,张宁等.我国北方农用氮肥造成地下水硝酸盐污染的调查.植物营养与肥料学报,1995,1(2):80~87.
    98.张喜英,由懋正,王新元等.不同时期水分调亏及不同调亏程度对冬小麦产量的影响.华北农学报,1999,1(42):1~5.
    99.张永平,王志敏,黄琴等.不同水分供给对小麦叶与非叶器官叶绿体结构和功能的影响.作物学报,2008,34(7):1213~1219.
    100.张永平.冬小麦节水高产栽培群体源性能特征及其调控机制[博士学位论文].北京:中国农业大学,2004.
    101.张宇,王石立,王馥棠.气候变化对我国小麦发育及产量可能影响的模拟研究.应用气象学报,2000,11(3):264~270.
    102.张正斌,徐萍等.高水效农业是我国农业发展的必由之路.见:中华人民共和国科学技术部编.中国节水农业发展战略研究与实践—中国节水农业科技发展论坛文集.北京:中国农业科学技术部出版社,2006,70~75 .
    103.翟丙年,李生秀.氮素对冬小麦生长发育及产量的亏缺和补偿效应.植物营养与肥料学报,2005,11 (3) :308~313.
    104.赵国强,朱自玺,邓天宏等.水分和氮肥对冬小麦产量的影响及其调控技术.应用气象学报,1999,10(3):314~320.
    105.郑成岩,于振文,马兴华等.高产小麦耗水特性及干物质的积累与分配.作物学报,2008,34(8):1450~1458.
    106.周顺利,张福锁,王兴仁.土壤硝态氮时空变异与土壤氮素表观盈亏研究I.冬小麦.生态学报,2001,21(11):1782~1789.
    107.朱建国.硝态氮污染危害与研究展望.土壤学报,1995,32(增刊):62~69.
    108.朱兆良.农田中氮肥的损失与对策.土壤与环境,2000,9(1):l~6.
    109.朱兆良.中国土壤氮素研究.土壤学报,2008,45(5):778~782.
    110. A J. Clemmens D. J. Molden. Water uses and productivity of irrigation systems. Irrig Sci , 2007, 25:247~261.
    111. Ali Shahnazari, Seyed Hamid Ahmadia, Poul Erik Laerke etal. Nitrogen dynamics in the soil-plant system under deficit and partial root-zone drying irrigation strategies in potatoes. Europ. J. Agronomy , 2008, 28: 65~73.
    112. Arnau G, Monneveux P,This D, Alegre L. Photosynthesis of six barley genotypes as affected by water stress. Photosynthetica, 1997, 34: 67~76.
    113. Angus, J.F, van Herwaarden. Increasing water use and water use efficiency in dryland wheat. Agron. J,2001,93: 290~298.
    114. B.D.Sharma, S.Kar , S.S.Cheema. Yield water use and nitrogen uptake for different water and N levels in winter wheat. Fertilizer research, 1990, 22: 119~127.
    115. Baker. D. N. Musgrave K. B. The effects of two level moisture stresses on the rate of apparent photosynthesis in corn. Crop Science, 1964, 4: 249~253.
    116. Blum A, photosynthesis and transpiration in leaves and ears of wheat and barely varieties, J.Exp.Botany, 1985, 36, 432~440.
    117. B.R. RAJESW ARA RAO, RAJE NDRA PRASAD. Influence of competition, irrigation levels and nitrogen fertilization on protein content, and protein yield of three spring wheat(Triticum aestivumL.) Cultivars.plant foods for human nutrition, 1987, 37: 127~131.
    118. Bradford D. Brown , Steven Petrie. Irrigated hard winter wheat response to fall, spring, and late season applied nitrogen. Field Crops Research , 2006, 96 :260~268.
    119. C′edric Naud, David Makowski, Marie-H′el`ene Jeuffroy. Application of an interacting particle filter to improve nitrogen nutrition index predictions for winter wheat. Ecological modeling, 2007, 207:251~263.
    120. Carr D J, Wardlaw I F.The supply of photosynthetic assimilates to the grain from the flag leaf and ear of wheat. Aust J Biol Sci, 1965, 18: 711~719.
    121. E.A. Weber a, S. Graeff a, W.D. Koller. Impact of nitrogen amount and timing on the potential of acry lamide formation in winter wheat (Triticum aestivum L.). Field Crops Research, 2008, 106:44~52.
    122. EI Mejahed, Khalil. Effect of N on yield, N uptake and water use efficiency of wheat in rotation systems under semiaria condition of Morocco[Ph..D thesis]Nebraska university, Lincoln Nebraska America, 1993.
    123. Evans L.T. , H.M.Rawson. photosynthesis and respiration by the flag and compoents of the ear during grain development in wheat, Aust, j. Biol. Sci, 1970,23: 725~741.
    124. Farquhar G.D, Sharkey T.D, stomata conductance and photosynthesis, Annual Review of plant physiology, 1982, 33: 317~345.
    125. Fischer R.A, D Rees, K. D. Sayer. Wheat yield progress associated with high stomatal conductance and photosynthetic rate, and cooler canopies, crop science, 1998, 38:1476~1475.
    126. Fisher. D.B , Gifford, R.M. Accumulation and conversion of sugars by developing wheat grain filling. Plant Physiology, 1986, 82:1024~1030.
    127. Guo Yu Qiu a, Liming Wangb, Xinhua He etal. Water use efficiency and evapotranspiration of winter wheat and its response to irrigation regime in the north China plain.Agricultural and forest meteorology, 2008, 148: 1848~1859.
    128. Hong-Yong Sunc, Chang-Ming Liu, Xi-Ying Zhang. Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain. Agricultural water management, 2006, 85: 211~218.
    129. Hui-Lian Xu, Tohru Yamagishi and Atsuhiko Kumura. Effect of water deficit on photosynthesis in wheat plants .I.effects of a water deficit treatment on photosynthesis and transpiration in various part of plant, Janpan Journal of crop science, 1987a, 56:455~460.
    130. J.A. Rodriguez. Diaz. E. K. weatherhead. Climate change impacts on irrigation water requirements of climate change on irrigation water demand. Climatic Change, 2007, 84: 441~461.
    131. J.J.R. Groot, P.de.willigen.Simulation of nitrogen balance in the soil and winter wheat crop.Fertilizer research, 1991, 27:261~272.
    132. Jiamin Li , Shinobu Inanaga , Zhaohu Li. Optimizing irrigation scheduling for winter wheat in the North China Plain. Agricultural Water Management , 2005, 76 :8~23.
    133. Johnson R R, Frey N M, Moss D N. Effect of water stress on photosynthesis and transpiration of flag leaves and spikes of barley and wheat.Crop Sci, 1974, 14: 72~87.
    134. Jordan W R, Richie J T.Influence of soil water stress evaporation, root absorption and internal water status of cotton. PlantPhysiol, 1971, 48: 783~788.
    135. Justin Clawson. Nutrient and irrigation impacts on winter wheat yield and quality[Master thesis].utah state university, logan utah America, 2006.
    136. J.R.Wang, S.X. Li. Effect of water-limited deficit stress in different growth stages on winter wheat grain yields and their yield constituents, Acta Bot. Boreal-Occident Sin.,2000, 20 (2) : 193~200.
    137. K.S. Sandhu, A.S.Sidhu. Response of dryland wheat to supplemental irrigation and rate and method of N application. Fertilizer research, 1996, 45: 135~142.
    138. Kumar K, Singh D P, Phool Singh. Influence ofwater stress on photosynthesis, transpiration, wateruse efficiency and yield of Brassica juncea L. Field Crops Research, 1994, 37 (2) : 95~101.
    139. Kang, S, Liu, X., Xiong, Y. Research on the model of water uptake by winter wheat roots. Acta Univ. Agric. Boreali Occidentalis 1992, 20: 5~12.
    140. Martin del Molino, I.M. Relationship between wheat grain protein yield and grain yield, plant growth, and nutrition at anthesis. J. Plant Nutr, 1991, 14: 1297~1306.
    141. Li, Y.The Northern China needs a water-saving agriculture (in Chinese). Irrig Drain, 1993, 12, 10~20.
    142. Otto W M. Secondary root development of a winter wheat cultivar as influenced by soil water content. Applied Plant Sci-ence, 1998, 12: 2, 60~61.
    143. Papendick R. Soil water potentisal and water content profiles with wheat under low spring and summer rainfal1. Agron. J, 1971, 63: 731~734.
    144. P. Belder, J.H.J. Spiertza, B.A.M. Bouman etal. Nitrogen economy and water productivity of lowland rice under water-saving irrigation. Field Crops Research ,2005,93: 169~185.
    145. Papendick, R I, Cochran, V.L., Woody, W.M. Soil water potential and water content profiles with wheat under low spring and summer rainfall. Agron. J, 1971, 63 : 731~734.
    146. R, P, TRIPATHI and R. K.MISHKA. wheat root growth and seasonal water use as affected by irrigation under shallow water table condition.Plant and soil, 1985, 92: 181~186.
    147. R.L. CONNER, J.M. CAREFOOT, J.B.BOLE etal. The effect of nitrogen fertilizer and irrigation on black point incidence in soft white spring wheat. Plant and soil, 1992, 140: 41~47.
    148. RhamnaS.M.Yield water relation and nitrogen utilization by wheat in salt-affected soil of Bangladesh, Agric.water nanage, 1995, 28(1): 49~56.
    149. S.S.Prihar, k.S. sandhv, Mukhtar Singh. Response of dryland wheat to small supplemental irrigation and fertilizer scheduling nitrogen in submontane Punjab. Fertilizer research , 1989, 21: 23~28.
    150. Sadeh,A,Ravina. Relationships between yield and irrigation with low-quantity water a system approach. Agrie.Syst, 2000, 64: 99~113.
    151. Sharma BR, Chaudhary TN. Wheat root growth, grain yield and water uptake as influenced by water regime and depth of nitrogen placement in a sands. Agriculture Water Management, 1983, (6):365~373.
    152. Singh N.T, Rachpal singh, P.S.et al. Influence of supplemental irrigation and pre-sowing soil water storage on wheat.Agronomy Journal,1979, 71~76.
    153. Stark, J.C, Tindall, T.A. Timing split applications of nitrogen for irrigated hard red spring wheat. J. Prod. Agric, 1992, 5: 221~226.
    154. Turner N C. Plant water relation and water vapor exchange in response to drought in the atmosphere and in the soil. AnnRev Plant Physiol,1986, 37:247~274.
    155. THOMAS KATTERER, ANN-CHARLOTTE HANSSON, OLOF. ANDREN. Wheat root biomass and nitrogen dynamic-effect of daily irrigation and fertilization. Plant and soil, 1993, 151: 21~30.
    156. Quanxiao.Fang, Qiang .Yu , Enli Wang. Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat–maize double cropping system inthe North China Plain. Plant Soil , 2006, 284: 335~350.
    157. V. I. Nikitishen, V. I. Lichko. Nitrogen budget in agroecosystems on gray forest soils under long-term fertilization.Eurasian soil science, 2008, 41(4):429-440.
    158. VBALASUBR AMANIAIU, AV CHARI. Effect of irrigation scheduling on grain yield and nitrogen use efficiency of irrigated wheat at kadawa and Bakura, northern Nigeria. Fertilizer research, 1983, 4: 201~210.
    159. W.X. Wang, P. Vinocur, A. Altman. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance, Planta , 2003, 218 (1) :1~14.
    160. Xi-Ping Deng , Lun Shan , Heping Zhang. Improving agricultural water use efficiency as influenced by fertilization and irrigation in an intensive wheat–maize double cropping system in the North China. Plant Soil, 2006, 284:335~350.
    161. Xiying Zhang, Dong Pei , Chunsheng Hu. Conserving groundwater for irrigation in the North China Plain. Irrig Sci , 2003, 21: 159~166.
    162. Y.P.PuRI, M.F.MILLER, R.N.SAH etal. Response surface analysis of the effects of seeding rates, N-rates, precipitation and irrigation frequencies on durum wheat I. Grain yield and yield components. Fertilizer research, 1988, 17: 197~218.
    163. Ya-Chen Hua, Hong-Bo Shao , Li-Ye Chuc. Relationship between water use efficiency (WUE) and production of different wheat genotypes at soil water deficit. Colloids and Surfaces B: Biointerfaces , 2006, 53: 271~277.
    164. Z.C.Tang. Responses and adaptation of plants towater stress, Plant Physiol,1983, 4: 1~7.
    165. Zebarth, B.J, Sheard, R.W. Influence of nitrogen rate on yield and quality of four wheat types in southern Ontario, Canada. Cereal Res.Commun, 1992, 20: 263~271.
    166. Ziyou Su , Jin song Zhang , Wenliang Wu. Effects of conservation tillage practices on winter wheat water-use efficiency and crop yield on the Loess Plateau, China. Agricultral water management, 2007, 87: 307~314. R.L. CONNER ~, J.M. CAREFOOT j, J.B. BOLE
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.