一个水稻长护颖突变体和一个水稻窄叶突变体的遗传分析及基因定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花器官的研究一直是植物分子生物学研究的热点,长护颖突变体的鉴定和研究有利于进一步地补充和阐明水稻花器官发育的分子机理;理想株型是保证杂交水稻高产的基础,窄叶作为水稻叶形的一种,对理想株型的塑造起了重要的作用。
     本研究在地方栽培稻品种“鸭血糯”中发现了一个水稻长护颖自然突变体,暂时命名为Osleg。该突变体表现为护颖发育异常且长于整个果实,种子萌发缓慢,发芽率低,生育期延迟等性状,组织细胞学观察发现,长护颖突变体护颖的远轴表皮细胞凸凹不平,毛状体较多,许多瘤状体轴向平行排列,与外稃表皮细胞结构相似。同时,从特青的EMS突变体库中,发现了一个水稻窄叶突变体,暂时命名为nal。经初步观察发现,窄叶突变体表现出叶片高度内卷,叶绿素检测结果显示,窄叶突变体的剑叶叶绿素含量显著低于野生型,其它表型差异不显著。为了定位这两个突变性状,分别将Osleg和nal纯合体与籼稻品种9311杂交构建F2和F3群体用于表型鉴定、遗传分析和基因定位。结果如下:
     1.遗传分析表明,在Osleg∕9311的F2代群体中,控制水稻的长护颖突变性状是受一对隐性核基因控制的。利用已公布的水稻SSR标记将Osleg位点初步定位在水稻第7染色体短臂上RM3222和RM3325两个标记之间。然后,利用自行设计的STS标记对Osleg位点进一步精细定位,最终将OsLEG基因定位在水稻7号染色体短臂上的LC15和LC25标记之间,物理距离约207kb,为进一步克隆OsLEG基因和研究禾本科植物花器官的分子调控机理奠定了基础。
     2.遗传分析表明,在nal∕9311的F2代群体中,控制水稻的窄叶突变性状是受一对隐性核基因控制的。为了定位该基因,选取了500株窄叶突变株作为窄叶性状的基因定位群体,运用本实验室均匀分布在水稻12条染色体上的533对SSR标记对两亲本进行多态性筛选,其中233对在亲本间呈现出多态性,多态性频率为41.8%。
The research on floral organ is always hot to plant molecular biologists. The studies on long empty glumes mutant may further elucidate additionally that the molecular mechanism of rice floral development. Ideal plant type is the base of hybrid rice with high yield. As one kind of leaf shape, narrow leaf plays an important role in building the ideal plant type of rice.
     In this study, we obtained a long empty glumes mutant, provisionally named Osleg, from the cultivar called‘Yaxuenuo’. Several abnormal morphological characteristics, including two long empty glumes longer than the fruit, slower seed-germinating, later growth period were observed. Using scanning electron micrograph, we observed that the abaxial surface of the mutant Osleg is rough, formed some trichomes, arranged in some tubercles in parallel, which is very similar to the lemma of the mutant and contrast. We also discovered narrow leaf mutant, provisionally named nal, from the EMS mutant library in rice. Through the observation, the mutant was very dwarf with highly inward rolling leaves. At the heading stage, the chlorophyll content detected by the portable chlorophyll testing system showed that the content of chlorophyll in the flag leaf of mutant reduced compared with the contrast.
     To mapping the two mutant traits, we constructed F2 and F3 populations by crossing between the two mutants and 9311 respectively for phenotype analysis, genetic analysis and gene location. The results listed as follows:
     1. To map the OsLEG gene, F2 population was constructed by a cross between Osleg and 9311. A total of 1485 long empty glumes plants and 4302 normal plants were observed in F2 population fitting for the 3:1 segregation ratio through the chi-square test. The result of genetic analysis indicated that the mutation was controlled by a single recessive gene. Some published SSR markers were used to map the OsLEG gene on the on the short arm of chromosome7 between RM3222 and RM3225. To fine-map the OsLEG gene, we designed some STS markers. Ultimately, the OsLEG gene was located on the short arm of chromosome7 between LC15 and LC25 in a 207kb region. These results provided the foundation for the further cloning the OsLEG gene and study on the molecular mechanism of floral development in monocot.
     2. Genetic analysis showed that the mutant character was controlled by a single ressesive gene based on the field observations on a F2 population crossed between nal and 9311. A total of 500 narrow leaf mutants from the F2 population were selected to map the mutable gene. 533 pairs SSR markers, which distributed on 12 chromosomes equably, were used to screen the polymorphism between the two parents. 233 pairs of them were polymorphic markers with the polymorphism rate of 41.8%.
引文
1.陈温福,徐正进.水稻高产育种生理基础.沈阳:辽宁科学技术出版社,1995
    2.陈宗祥,潘学彪,胡俊.水稻卷叶性状与理想株形的关系.江苏农业研究,2001,22(4):88-91
    3.戴照义.不同类型水稻株型及物质生产研究.湖北农业科学,1994,6:9-14
    4.傅荣昭,邵鹏柱,高文远,等. DNA分子标记技术及其在药用植物研究上的应用前景.生物工程进展,1998,18(4):14-17
    5.角田重三郎(黄湛节译).水稻生理生态译丛(1).北京:中国农业出版社,1992:108-109
    6.吕川根,谷福林,邹江石,等.水稻理想株型品种的生产潜力及其相关特性研究.中国农业科学,1991,4(5):15–23
    7.李红,卢孟柱,蒋湘宁.表达序列标签(EST)分析及其在林木研究中的应用.林业科学研究,2004,17(6):804-809
    8.梁明山,曾宇,周翔,等.遗传标记及其作物品种鉴定中的应用.植物学通报,2001,18(3):
    257-265
    9.罗永文,胡骏,李小方.微卫星序列及其应用.遗传,2003,25(5):615-619
    10.卢扬江,郑康乐.提取水稻DNA的一种简易方法.中国水稻科学,1992,6(1):47-48
    11.龙跃生,陈良碧,夏快飞,等.分子标记技术在分离和克隆水稻基因中的应用.生物学杂志,2001,18(2):29-31
    12.倪新强,王忠华,夏英秀.分子标记辅助育种及其在水稻育种中的应用.中国农学通报,2001,17(3):58-61
    13.骆蒙,贾继增.植物基因组表达序列标签(EST)计划研究进展.生物化学与生物物理进展,2001,28(4):494-497
    14.松岛省三(庞诚译).稻作的理论与技术.北京:中国农业出版社,1981:249-250
    15.孙旭初.水稻叶型的类别及其与光合作用关系的研究.中国农业科学,1985,4:49–55
    16.腾兆岩.星星草RAPD-PCR反应体系建立与优化.生物技术,2007,17(1):48-49
    17.吴钿,郭建夫,张建中.水稻叶型特征与产量的典型相关分析.石河子大学学报(自然科学版),2005,23(3):336-339
    18.汪得凯,刘合芹,李克磊,等.一个水稻窄叶突变体的鉴定和基因定位.科学通报,2009,54(3):360–365
    19.王志林,赵树进,吴新荣.分子标记技术及其进展.生命化学,2001,21(1):39-42
    20.许云华,沈洁. DNA分子标记技术及其原理.连云港师范高等专科学校学报,2003,9(3):78-81
    21.杨慧珍. RAPD标记在林木育种中的应用.山西农业科学,2007,35(1):73-76
    22.杨守仁,张龙步,王进民.水稻理想株型育种的理论和方法初论.中国农业科学,1984,17(3):6-13
    23.袁隆平.杂交水稻超高产育种.杂交水稻,1997,12(6):1-3
    24.叶济宇.关于叶绿素含量测定中的Arnon计算公式.植物生理学通讯,1985,6:69
    25.张汉尧,刘小珍,杨宇明. RFLP在植物遗传育种研究中的应用.西南林学院学报,2006,26(1):75-80.
    26.郑敏,罗玉萍.真核生物基因组多态性分析的DNA指纹技术.生物技术,1999,3:35-38.
    27.周宇爝.分子标记发展简史.现代农业科技,2009,11:264-270
    28.赵淑清,武维华. DNA分子标记和基因定位.生物技术通报,2000,6:1-2
    29.祝军.苹果M系矮化砧木AFLP指纹图谱的构建与分析.农业生物学报,2000(1):59-62
    30.郑康乐,黄宁.标记辅助育种在水稻改良中的应用前景.遗传,1997,19(2):40-44
    31.张林青,苏祖芳,张亚洁,等.水稻拔节期群体茎蘖结构与叶面积指数及产量关系的研究.扬州大学学报,2004,25(1):55-58
    32. Ahn, S., Tanksley, S D. Comparative linkage maps of the rice and maize genomes. Pro Natl Acad Sci, 1993, 90: 7980-7984.
    33. Ambrose, B A. Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell, 2000, 5: 569-579.
    34. Angenet, G C., Franken, J., Busscher, M., et al. A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell, 1995, 7: 1569-1582.
    35. Arber, A. The Gramineae: a study of cereal, bamboo, and grasses. Cambridge Univ Press, Cambridge, UK, 1934.
    36. Bommert, P., Satoh-Nagasawa, N., Jackson, D., et al. Genetics and evolution of inflorescence and flower development in grasses. Plant Cell Physiol, 2005, 46: 69-78.
    37. Bostein, D., White, R L., Skolnick, M., et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980, 32 (3): 314-331.
    38. Bowman, J L., Floyd, S K. Patterning and polarity in seed plant shoots. Annu Rev Plant Biol, 2008,
    59: 67-88.
    39. Byrne, M., Timmermans, M., Kidner, C., et al. Development of leaf shape.Curr Opin Plant Biol, 2001, 4 (1): 38-43.
    40. Carlos, M., Exequiel, E. The narrow-leaf syndrome: a functional and evolutionary approach to the form of fog-harvesting rosette plants. Oecologia, 2007, 151: 561-573.
    41. Chung, Y Y., Kim, S R., Finkel, D., et al. Early flowering and reduced apical dominance result from eceopic expression of a rice MADS box gene. Plant Mol Biol, 1994, 26: 657-665.
    42. Chung, Y Y., Kim, S R., Kang, H R., et al. Characterization of two rice MADS-box genes homologous to GLOBOSA. Plant Science, 1995, 109: 45-56.
    43. Clark, S E. Cell signalling at the shoot meristem. Nat Rev Mol Cell Biol, 2001, 2: 276-284.
    44. Coen, E S., Meyerowitz, E M. The war of the whorls: genetic interactions controlling flower development. Nature, 1991, 353: 31-37.
    45. Colasanti, J., Sundaresan, V. Control of the transition to flowering. Curr Opin Biotech, 1996 (7): 145-149.
    46. Colombo, L., Franken, J., Koetje, E., et al. The petunia MADS box gene FBPⅡdetermines ovule identity. Plant Cell, 1995, 7: 1859-1868.
    47. Gustafson-Brown, C., Savidge, B., Yanofsky, M F. Regulation of the Arabidopsis floral homeoticgene APETALA1. Cell, 1994, 76: 131-143.
    48. Heath, D V., Gregory, F G. The constancy of the mean net assimilation and its ecological importance. Ann Bot, 1938, 2: 811-8l8.
    49. Hirokazu, T., Ryoko, I., Jun, Y., et al. Leaf-shape variation of Paederia foetida in Japan: reexamination of the small, narrow leaf form from Miyajima Island. J Plant Res, 2006, 119: 303-308.
    50. Horiguchi, G., Kim, G T., Tsukaya, H. The transcription factor AtGRF5 and the ranscription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J, 2005, 43: 68-78.
    51. Jeon, J S. leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell, 2000, 12: 871–884.
    52. Jeon, J S., Jang, S., Lee, S., et al. leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell, 2000, 12: 871-884.
    53. Jeffrey, A J., Wilson, V., Thein, L S. Hypervariable‘minisatellite’regions in human DNA. Nature, 1985, 314: 67-73.
    54. Jia, H., Chen, R., Cong, B., et al. Characterization and transcriptional profiles of two rice MADS-box genes. Plant Science, 2000, 155: 115-122.
    55. Jing, Q., Qian, Q., Qing, Y B., et al. Mutation of the Rice Narrow leaf1 Gene, Which Encodes a Novel Protein, Affects Vein Patterning and Polar Auxin Transport. Plant Physiol, 2008, 147: 1947-1955.
    56. Jose′, L M., Sarah, H. The Development of Plant Leaves. Plant Physiology, 2003, 131: 389-394.
    57. Kang, H G., Jeon, J S., Lee, S., et al. Identification of class B and class C floral organ identity genes from rice plants. Plant Mol Biol, 1998, 38: 1021-1029.
    58. Kenji, F., Yasuyuki, M., Kenjirou, O., et al. NARROW LEAF7 controls leaf shape mediated by auxin in rice. Mol Genet Genomics, 2008, 279: 499-507.
    59. Kyozuka, J., Kobayashi, T., Morita, M., et al. Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol, 2000, 41: 710-718.
    60. Lander, E S., Green, P., Abrahamson, J., et al. Mapmaker: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1(2): 174-181.
    61. Li, Y., Jia, J Z., Wang, T Y. Types of molecular markers and their development. Biotechnology Information, 1999 (4): 19-22.
    62. Lim, J., Moon, Y H., An, G., et al. Two rice MADS domain proteins interact with OsMADS1. Plant Mol Biol, 2004, 44: 513-527.
    63. Litt, M., Luty, A J. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Human Genet, 1989, 44 (3): 397-401.
    64. Lohmann, J U., Weigel, D. Building beauty: The genetic control of floral patterning. Dev Cell, 2002, 2: 135–142.
    65. Lopez-Dee, Z P., Wittich, P., Enrico, P M., et al. OSMADS13, a novel rice MADS-box gene expressed during ovule development. Dev Genet, 1999, 25: 237-244.
    66. Martin, G B., Brommonschenkel, S H., Chunwongse, J., et al. Science, 1993, 262: 1432-1436.
    67. Michelmore, R W., Paran, I., Kesseli, R V., et al. Identification of markers linked to disease-resistance genes by bulked segregation analysis: A rapid method to detect markers in specific genomic regions by using segregation population. Proc Natl Acad Sci, 1991, 88 (21): 9828-9832.
    68. Micol, L. J., Hake, S. The development of plant leaves. Plant Physiol, 2003, 131 (2): 389-394.
    69. Moon, Y H., Kang, H G., Jung, J Y., et al. Determination of the motif responsible for interaction between the rice APETALAIIAGAMOUS-LIKE9 family proteins using a yeast two-hybrid system. Plant Physiol, 1999, 120: 1193-1204.
    70. Moon, Y H., Jung, J Y., Kang, H G., et al. Identification of a rice APETALA3 homologue by yeast two-hybrid screening. Plant Mol Biol, 1999, 40: 167-177.
    71. Nagasawa, N. SUPERWOMAN 1 and DROOPING LEAF genes control floral organ identity in rice. Development, 2003, 130: 705-718.
    72. Nakamura, Y., Leppert, M., Connell, P O., et al. Variable number of tandem repeat (VNTR) makers for human gene mapping. Science, 1987, 235 (4796): 1616-1622.
    73. Otsen, M., Bieman, M D. Amplified fragment length polymorphisms used for the genetic characterization of rat inbred stains. Proceedings 24th International society for Animal Genetics, 1994.
    74. Paran, I., Michelmore, R W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet, 1993, 85: 985-993.
    75. Pelaz, S., Ditta, G S., Baumann, E., et al. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 2000, 405: 200-203.
    76. Pelucchi, N., Fornara, F., Favalli, C., et al. Comparative ananlysis of rice MADS-box genes expressed during flower development. Sex.Plant Rep, 2002, 15: 113-122.
    77. Prasad, K., Parameswaran, S., Vijayraghavan, U. OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs. Plant J, 2005, 43: 915–928.
    78. Preston, J C., Christensen, A., Malcomber, S T., et al. MADS-box gene expression and implications for developmental origins of the grass spikelet. Am J Bot, 2009, 96: 1419-1429.
    79. Qi, J., Qian, Q., Bu., Q., et al. Mutation of the rice Narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol, 2008, 147 (4): 1947-1959.
    80. Ray, A., Lang, J D. Golden short integument (SIN1), a gene required for ovule development in Arabidopsis, also controls flowering time. Development, 1996, 122: 2631-2638.
    81. Sajo, M G., Longhi-Wagner, H M., Rudall, P J. Reproductive morphology of the early-divergentgrass Streptochaeta and its bearing on the homologies of the grass spikelet. Plant Syst Evol, 2008, 275: 245-255.
    82. Schmalzing, D., Belenky, A., Novotny, M A., et al. Microchip electrophoresis: a method for high-speed SNP detection. Nucleic Acids Res, 2000, 28 (9): 43.
    83. Tanksley, S D., Young, N D., Paterson, A H., et al. RFLP mapping in plant breeding:new tools for an old science. Biotechnology, 1989 (7): 257-264.
    84. Theissen, G., Becker, A., Di-Rosa, A., et al. A short history of MADS-box genes in plants. Plant Mol Biol, 2000, 42: 115-149.
    85. Thompson, B E., Hake, S. Translational biology: from Arabidopsis flowers to grass inflorescence architecture. Plant Physiol, 2009, 149: 38-45.
    86. Tsukaya, H. Interpretation of mutants in leaf morphology: genetic evidence for a compensatory system in leaf morphogenesis that provides a new link between cell and organismal theory. Intl Rev Cytol, 2002, 217: 1-3.
    87. Wang, Z Y., Tanksley, S D. Restriction fragment length polymorphism in Oryza sativa L. Genome, 1989, 32: 1113-1118.
    88. Wang, H J., Huang, X Q., Roder, M S. Genetic mapping of loci determining long glumes in the genus Triticum. Euphytica, 2002, 123: 287-293.
    89. Watanabe N., Imamura I. Genetic control of long glume phenotype in tetraploid wheat derived from Triticum petropavlovskyi Udacz. et Migusch. Euphytica, 2002, 128: 211-217.
    90. Watanabe, N. Genetic control of the long glume phenotype in tetraploid wheat by homoeologous chromosomes. Euphytica, 1999, 106: 39-43.
    91. Weigel, D., Meyemrowitz, E M. The ABCs of floral homeotic genes. Cell, 1994, 78: 203-209.
    92. Welsh, J., McClelland, M. Fingerprinting genomes using PCR with arbitrary primers. Nucl Adics Res, 1990 (18): 7213-7218.
    93. Whipple, C J. Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development, 2004, 131: 6083–6091.
    94. Williams, J K., Kubelid, A R., Livak, K J. DNA polymorphism amplified by arbitrary primers are useful genetic markers. Nucleic Acids Res, 1990, 18: 6531-6537.
    95. Woo, Y M., Park, H J., Suudi, M., et al. Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol Biol, 2007, 65: 125-136.
    96. Yamaguchi, T., Nagasawa, N., Kawasaki, S., et al. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell, 2004, 16: 500-509.
    97. Yamaguchi, T., Lee, D Y., Miyao, A., et al. Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell, 2006, 18 (1): 15-28.
    98. Yokoyama, J., Fukuda, T., Tsukaya, H. Morphological and molecular with special reference to systematic treatment of the dwarf form from Yakushima. J Plant Res, 2003, 116: 309-315.
    99. Yoshida, S. Grown and development of the rice plant. In Fundamentals of rice crop SciencePhilippines: IRRI, L Banos, 1981: 1-61.
    100. Tax, F E., Durbak, A. Meristems in the movies: live imaging as a tool for decoding intercellular signaling in shoot apical meristems. Plant Cell, 2006, 18: 1331-1337.
    101. Zanis, M J. Grass spikelet genetics and duplicate gene comparisons. Int J Plant Sci, 2007, 168: 93-110.
    102. Zhao, Y., Christensen, S K., Fankhauser, C., et al. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science, 2001, 291: 306-309.
    103. Zheng K., Qian, H., Shen, B. et al. RFLP-based phylogenetic analysis of wide compatibility varieties in Oryza sativa L. Theor Appl Genet, 1994, 88: 65-69.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.