抗Cry1Ac杀虫晶体蛋白近等基因系小菜蛾中肠蛋白质基因组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏云金芽孢杆菌(Bacillus thuringiensis, Bt)是目前世界上用途最广、产量最大的微生物杀虫剂,其编码Bt杀虫毒蛋白基因作为主要的杀虫基因转入到多种作物中,在害虫防治中成效显著。但与此同时,Bt制剂的大量使用和转Bt作物的广泛种植,使得Bt的抗性问题越来越严重。十字花科重要害虫小菜蛾Plutella xylostella (L.)是最早被发现且目前仅有的6种在田间对Bt产生抗性的害虫之一。但到目前为止,Bt对小菜蛾的杀虫作用过程和小菜蛾对Bt的抗性机理,研究的仍不是完全清楚。
     在本研究中,我们建立了对Cry1Ac有高于5000倍抗性的近等基因系小菜蛾种群,同时研究了其相关生物学特性。同时,我们首次利用shotgun HPLC-ESI-MS/MS技术对小菜蛾幼虫中肠蛋白质进行了蛋白质基因组分析。同时为了更好的揭示小菜蛾抗Cry1Ac的分子机理,我们利用iTRAQ和MRM两种蛋白质组分析技术,对两个种群的中肠蛋白质组进行了定量分析,发现了大量差异表达蛋白质和可能的Bt受体。结果如下:
     1.小菜蛾抗CrylAc近等基因系种群的构建
     我们利用弗罗里达Florida抗Cry1Ac小菜蛾DBMlAc-R与纽约日内瓦Geneva敏感种群DBM1Ac-S,建立了两套近等基因系种群。经ISSR分子标记技术对其近等性进行评估发现,利用高世代回交法构建的近等基因系抗性种群BC7F3(更名为NIL-R),与轮回亲本敏感种群DBM1Ac-S之间的遗传相似度达到98.24%,具有较高的相似度,且其对Cry1Ac毒蛋白的抗性倍数保持在5000倍以上,是理想的实验材料。
     2.抗CrylAc近等基因系小菜蛾的抗性相关生物学研究
     我们利用以上建立的抗CrylAc小菜蛾近等基因系种群NIL-R开展相关生物学研究。我们通过3次生命表对NIL-R种群的抗性适合度研究发现:在卵的大小、寿命、幼虫发育、成虫寿命和产卵量上,抗性种群NIL-R与敏感种群DBM1Ac-S相比没有显著差别,说明NIL-R没有出现发育的延迟;利用两种群的内禀增长率(Ro)计算相对适合度,三次生命表结果分别为1.016、0.940和0.932,说明抗Cry1Ac小菜蛾近等基因系种群NIL-R没有抗性适合度代价。根据交互抗性谱分析发现:NIL-R对CrylAb毒蛋白和Cry1Ah蛋白具有一定的交互抗性,对Cry1Ca毒蛋白和Cry1Ie毒蛋白没有交互抗性,由此我们可以推断小菜蛾对CrylA类毒蛋白可能具有共同的受体位点,而与Cry1Ca毒蛋白和Cry1Ie毒蛋白的受体位点不同。利用单对杂交实验和剂量对数-期望死亡机率曲线两种方法研究其遗传方式发现:抗性近等基因系种群NIL-R对Cry1Ac的抗性由一个常染色体、不完全隐形的基因位点决定。
     3.利用shotgun ESI-MS对小菜蛾幼虫中肠进行蛋白质基因组研究
     我们利用shotgun HPLC-ESI-MS/MS对小菜蛾幼虫中肠蛋白质进行测定,结合其基因组数据,完成了首个小菜蛾中肠蛋白质基因组分析。通过研究,一共得到了876,341张质谱图,将这些质谱图与小菜蛾基因组的蛋白质数据库及全基因组6框翻译的蛋白数据相比对,共鉴定出15,887条肽段。其中,12,004条肽段与已经发表的小菜蛾基因组中的预测蛋白质信息相匹配,同时发现了2113新肽段。利用这些发现的新肽段鉴定得到491个新基因,修正了202个小菜蛾基因组注释基因。通过对小菜蛾中肠蛋白质组的功能注释分析我们发现脂质消化作用相关酶和基因在小菜蛾中肠蛋白质中占据了重要地位,这可能是小菜蛾与其主要寄主十字花科作物的共进化的又一证据。同时我们从这些蛋白质数据鉴定到了大量与小菜蛾杀虫剂抗性相关的蛋白质,为小菜蛾适应性及广泛抗药性等的分子机理、功能基因组研究供了必要的数据支持。
     4.抗CrylAc近等基因系小菜蛾的比较蛋白质组研究
     我们利用iTRAQ技术,对NIL-R和DBM1Ac-S两个种群的中肠BBMV进行蛋白质定量比较研究,共筛选出了128个差异表达蛋白质。其中发现了氨肽酶和ABC转运蛋白质两个已报道的Bt受体蛋白质,在抗性种群中的表达量显著低于敏感种群。这可能说明这两个蛋白质也是Cry1Ac在小菜蛾中的受体。我们还发现了一个葡糖基转移酶的显著升高。另外,我们还发现了细胞色素P450解毒酶和谷胱甘肽转移酶两个解毒酶在抗性种群中显著升高的现象。随后,我们利用MRM技术对找出的差异蛋白质及已报道的Bt受体进行质谱定量检测,比较以上蛋白质在两个种群的中肠样品的表达量差异情况。MRM技术检测的结果与iTRAQ结果基本一致。另外,我们还发现氨肽酶、ABC转运蛋白质、碱性磷酸酶、钙黏蛋白以及鞘糖脂等潜在受体蛋白质在抗性小菜蛾中都有显著的降低。这个结果说明在本研究的小菜蛾种群抗Cry1Ac过程中,这些潜在受体蛋白质可能都不同程度的发挥着作用。
Bt crystalline toxins, produced by the bacteria Bacillus thuringiensis, are the most widely used biological insecticide in pest management. Genes encoding Bt insecticidal proteins are commonly incorporated into transgenic crops to protect plants from insect feeding damage. The widespread use of Bt foliar sprays and transgenic Bt crops provide the opportunity for the evolution of Bt resistance to arise in populations of targeted insects. Understanding resistance mechanisms will provide new insights into the mode of action of Bt toxins to develop the effective management of resistance, which is still controversial. Plutella xylostella (L.) was the first of six lepidopteran species to develop field resistance to insecticidal Bt toxins. Different populations selected for Bt resistance often show diverse responses in terms related to resistance mechanism.
     In order to elucidate the mechanism of resistance to Cry1Ac, the near-isogenic P.xylostella with>5,000-fold resistance were constructed. And the biology characterization of the near-isogenic resistant strain was also studied. In addition, we carried out an in-depth proteogenomic analysis using shotgun HPLC-ESI-MS/MS approach to identify genes and gene networks putatively involved in various physiological and toxicological processes in the P. xylostella larval midgut. And then iTRAQ and Multiple Reaction Monitoring (MRM) were used to discover different expression proteins between the two strains. Many different expression proteins and candidate receptors were discover. The results were as follows:
     1. Construction of near isogenic P.xylostella strains resistant to CrylAc toxin
     To elucidate the mechanism of resistance to Bt CrylAc toxin, we developed near-isogenic line (NIL) strains with>5,000-fold resistance. Two pairs of NILs were generated using either backcross or recombinant inbred line methodologies and then evaluated for near isogenicity using ISSR markers. One backcross line, BC7F3(renamed NIL-R), showed98.24%similarity to the susceptible parental strain, DBM1Ac-S, suggesting its optimal use for resistance characterization studies.
     2. Characterization of near isogenic P.xylostella strain resistant to CrylAc toxin
     The cross-resistance spectrum in the NIL-R strain suggested high levels of cross-resistance to Cry1Ab and Cry1Ah but no cross-resistance to CrylCa or Cry1Ie. The interpretation of the overall data seems to suggest the involvement of an alteration in the binding of CrylA toxins to a common receptor, not recognized by CrylCa or Cry1Ie toxins. Three times of life tables and comparisons of the biological parameters were investigated to minimize the effects of environmental factors and personal error to obtain more real and accuracy date on the fitness of resistance. There were no significantly difference in the development of egg, larvae, the longevity of adult and fecundity of every female adult between the near isogenic resistant strain NIL-R and susceptible strain with DBM1Ac-S, which indicated the Cry1Ac-resistant P.xylostella strain did not lead to developmental asynchrony in our stains. And then the net reproductive rate (R0), the gross reproduction rate (GRR), the finite rate of increase (λ) and the mean generation time (T) of the two strains were similar. The relative fitness of P.xylostella, measured as a ratio of Ro (the net reproductive rate) of resistant strain divided by Ro of the susceptible strain, were ratios of1.02,0.94and0.93respectively in repeats of life table study, which reflected the lack-of-fitness costs of Cry1Ac resistance in NIL-R strain. Single pair genetic cross analyses between the two strains revealed that Cry1Ac-resistance in DBM was controlled by a single, autosomal, recessive locus. The experiment of inheritance of resistance based on the log dose-probit line indicated that resistance might be controlled by a single locus and autosome and be incompletely recessive with degree of dominance of F1and F1' progeny were-0.74and-0.71, respectively. These informations provide reference in the study of resistance to Cry1Ac proteins in P. xylostella.
     3. Proteogenomic analysis of the larval midgut by shotgun ESI-MS approach
     We carried out an in-depth proteogenomic analysis using shotgun HPLC-ESI-MS/MS approach to identify genes and gene networks in the P. xylostella larval midgut. A total of876,341tandem mass spectra were searched against a database of predicted P.xylostella protein sequences generated from public databases, and a whole-genome six-frame translation. This search identified15,887distinct peptide sequences, total5270proteins (including58containment protein), and a comparison with the publicly available proteome from the published P.xylostella genome identified1,568new peptides suggesting corrections or additions to the current annotations. In-depth analysis identified proteins putatively involved in nutrient digestion and insecticide resistance. Presence and expression at high levels of numerous enzymes of absorption and transport of fatty acids and lipids and glycolysis pathway indicate that active metabolism processes of carbohydrates, and lipids occurred in the larval midgut of P. xylostella.
     4. Comparative Proteomics Analysis on the near isogenic P.xylostella resistant to Cry1Ac toxin
     The iTRAQ and multiple reaction monitoring (MRM) were used to discover different expression proteins between the near-isogenic resistant strain and susceptible strain. Based on iTRAQ,128different expression proteins were obtained. Notably, one aminopeptidase N and one ATP-binding cassette were found to express lower in resistant strain than susceptible strain, which were reported as Bt receptor before. This may make some evidences that aminopeptidase N and ATP-binding cassette are the receptors to CrylAc in P.xylostella. And then one glucosyltransferase and two enzymes related to medication (methyltransferases and phosphatase) were also found to express higher. There were also two detoxifying enzymes expressing in higher level. The results evaluating by MRM agreed with these from iTRAQ. In addition, some candidate Bt receptors reported in other species were analyzed in these two P.xylostella strains. Finally, all the candidate receptors including aminopeptidase N, ATP-binding cassette, Alkaline Phosphatase, cadherin and beta-1,4-Ga1NAc transferase bre were found had low expression in resistant strains, which may indicated that these receptors may all play some role in the process Cry1Ac resistance in P. xylostella.
引文
1. Abbas, N., S. A. Shad and M. Razaq. Fitness cost, cross resistance and realized heritability of resistance to imidacloprid in Spodoptera litura (Lepidoptera:Noctuidae). Pesticide Biochemistry and Physiology.2012.103(3):181-188.
    2. Akhurst, R. J., W. James, L. J. Bird and C. Beard. Resistance to the Cry 1 Ac delta-endotoxin of Bacillus thuringiensis in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J Econ Entomol.2003.96(4):1290-1299.
    3. Akhurst, R. J., James, W., Bird, L. Resistance to the Cry 1 Ac d-endotoxin of Bacillus thuringiensis in the cotton bollworm, Helicoverpa armigera (Lepidoptera:Noctuidae). J. Econ. Entomol..2003.96:1290-1298.
    4. Ali H Sayyed, D. J. W. Cross-resistance and inheritance of resistance to Bacillus thuringiensis toxin Cry 1 Ac in diamondback moth(Plutella xylostella L) from lowland Malaysia. Pest management science.2001.57(5):413-421.
    5. Ali H Sayyed, D. J. W. Fitness costs and stability of resistance to Bacillus thuringiensis in a field population of the diamondback moth Plutella xylostella L.2001.
    6. Ali H Sayyed, J. F. a. D. J. W. Mode of inheritance and stability of resistance to Bacillus thuringiensis var kurstaki in a diamondback moth (Plutella xylostella)population from Malaysia. Pest management science.2000.56(9):743-748.
    7. Alonso-Blanco, C., S. E.-D. El-Assal, G. Coupland and M. Koornneef. Analysis of Natural Allelic Variation at Flowering Time Loci in the Landsberg erecta and Cape Verde Islands Ecotypes of Arabidopsis thaliana. Genetics.1998.149(2):749-764.
    8. Alves, A. P., T. A. Spencer, B. Tabashnik and B. Siegfried. Inheritance of resistance to the CrylAb Bacillus thuringiensis toxin in Ostrinia nubilalis (Lepidoptera:Crambidae). Journal of economic entomology.2006.99(2):494-501.
    9. Anderson, L. and C. L. Hunter. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics.2006.5(4):573-588.
    10. Anilkumar, K. J., A. Rodrigo-Simon, J. Ferre, M. Pusztai-Carey, S. Sivasupramaniam and W. J. Moar. Production and characterization of Bacillus thuringiensis Cry 1 Ac-resistant cotton bollworm Helicoverpa zea (Boddie). Appl Environ Microbiol.2008.74(2):462-469.
    11. Ansong, C., N. Tolic, S. Purvine, S. Porwollik, M. Jones, H. Yoon, S. Payne, J. Martin, M. Burnet, M. Monroe, P. Venepally, R. Smith, S. Peterson, F. Heffron, M. McClelland and J. Adkins. Experimental annotation of post-translational features and translated coding regions in the pathogen Salmonella Typhimurium. BMC Genomics. 2011.12(1):433.
    12. Arcade, A., F. Anselin, P. F. Rampant, M. C. Lesage, L. E. Paques and D. Prat. Application of AFLP, RAPD and ISSR markers to genetic mapping of European and Japanese larch. Theoretical and Applied Genetics.2000.100(2):299-307.
    13. Ashburner, M., C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin and G. Sherlock. Gene ontology:tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000.25(1):25-29.
    14. Atsumi, S., K. Miyamoto, K. Yamamoto, J. Narukawa, S. Kawai, H. Sezutsu, I. Kobayashi, K. Uchino, T. Tamura, K. Mita, K. Kadono-Okuda, S. Wada, K. Kanda, M. R. Goldsmith and H. Noda. Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin CrylAb in the silkworm, Bombyx mori. Proc Natl Acad Sci U S A. 2012.109(25):E1591-1598.
    15. Baerenfaller, K., J. Grossmann, M. A. Grobei, R. Hull, M. Hirsch-Hoffmann, S. Yalovsky, P. Zimmermann, U. Grossniklaus, W. Gruissem and S. Baginsky. Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science.2008.320(5878): 938-941.
    16. Bagla, P. India. Hardy cotton-munching pests are latest blow to GM crops. Science.2010. 327(5972):1439.
    17. Barnidge, D. R., M. K. Goodmanson, G. G. Klee and D. C. Muddiman. Absolute quantification of the model biomarker prostate-specific antigen in serum by LC-Ms/MS using protein cleavage and isotope dilution mass spectrometry. J Proteome Res.2004.3(3): 644-652.
    18. Baxter, S. W., F. R. Badenes-Perez, A. Morrison, H. Vogel, N. Crickmore, W. Kain, P. Wang, D. G. Heckel and C. D. Jiggins. Parallel evolution of Bacillus thuringiensis toxin resistance in lepidoptera. Genetics.2011.189(2):675-679.
    19. Bentsink, L., K. Yuan, M. Koornneef and D. Vreugdenhil. The genetics of phytate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana, using natural variation. TheorAppl Genet. 2003.106(7):1234-1243.
    20. Bird, L. J. and R. J. Akhurst. Effects of host plant species on fitness costs of Bt resistance in Helicoverpa armigera (Lepidoptera:Noctuidae). Biological Control.2007.40(2):196-203.
    21. Blanco, A., R. Simeone and A. Gadaleta. Detection of QTLs for grain protein content in durum wheat. Theor Appl Genet.2006.112(7):1195-1204.
    22. Blanco, C, Perera, O.P., Gould, F., Sumerford, D.V., liernandez, G., Abel, C.A., Andow,D.A. An empirical test of the F2 screen for detection of Bacillus thuringiensis-resistance alleles in tobacco budworm (Lepidoptera:Noctuidae). J. Econ. Entomol.2008.101:1406-1414.
    23. Blanco, E., G. Parra and R. Guigo. Using geneid to identify genes. Curr Protoc Bioinformatics.2007. Chapter 4:Unit 4.3.
    24. Bloomquist, J. R. Chloride channels as tools for developing selective insecticides. Arch Insect Biochem Physiol.2003.54(4):145-156.
    25. Bourguet, D., A. Genissel and M. Raymond. Insecticide resistance and dominance levels. J Econ Entomol.2000.93(6):1588-1595.
    26. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem.1976.72:248-254.
    27. Brosch, M., L. Yu, T. Hubbard and J. Choudhary. Accurate and sensitive peptide identification with Mascot Percolator. J Proteome Res.2009.8(6):3176-3181.
    28. Buss, D. S. and A. Callaghan. Interaction of pesticides with p-glycoprotein and other ABC proteins:A survey of the possible importance to insecticide, herbicide and fungicide resistance. Pesticide Biochemistry and Physiology.2008.90(3):141-153.
    29. Butko, P. Cytolytic toxin Cyt1A and its mechanism of membrane damage:data and hypotheses. Appl Environ Microbiol.2003.69(5):2415-2422.
    30. Candas, M. Insect Resistance to Bacillus thuringiensis:Alterations in the Indianmeal Moth Larval Gut Proteome. Molecular & Cellular Proteomics.2002.2(1):19-28.
    31. Carriere Y, S. M., Tabashnik BE. Resistance management for sustainable use of Bacillus thuringiensis crops in integrated pest management. In Insect Pest Management:Field and Protected Crops,ed. AR Horowitz, I Ishaaya.2004. Berlin:Springer-Verlag:65-95.
    32. Castellana, N. E., S. H. Payne, Z. Shen, M. Stanke, V. Bafna and S. P. Briggs. Discovery and revision of Arabidopsis genes by proteogenomics. Proc Natl Acad Sci U S A.2008.105(52): 21034-21038.
    33. Castellana, N. E., Z. Shen, Y. He, J. W. Walley, C. J. Cassidy, S. P. Briggs and V. Bafna. An Automated Proteogenomic Method Uses Mass Spectrometry to Reveal Novel Genes in Zea mays.Mol Cell Proteomics.2014.13(1):157-167.
    34. Chaerkady, R., D. Kelkar, B. Muthusamy, K. Kandasamy, S. Dwivedi, N. Sahasrabuddhe, M. Kim, S. Renuse, S. Pinto and R. Sharma. A proteogenomic analysis of Anopheles gambiae using high-resolution Fourier transform mass spectrometry. Genome Res.2011.21(11):1872-1881.
    35. Chaufaux, J., Muller-Cohn, J., Buisson, C, Sanchis, V., Lereclus, D., Pasteus, N. Inheritance of resistance to Bacillus thuringiensis Cry 1 Ac toxin in Spodoptera littoralis (Lepidoptera: Noctuidae). J. Econ. Entomol.1997.90:873-878.
    36. Chelvanayagam, G., M. W. Parker and P. G. Board. Fly fishing for GSTs:a unified nomenclature for mammalian and insect glutathione transferases. Chemico-Biol. Interact. 2001.133:256-260.
    37. Chi, H. Life-table analysis incorporating both sexesand variable development rate among individuals. Environ. Entomol.1988.17:26-34.
    38. Chi, H. (1997). Computer program for the probit analysis. National Chung Hsing University, Taichung, Taiwan.
    39. Chi, H. CONSUME-MSChart:computer program for consumption rate analysis based on the age stage, two-sex life table. Available from:.2012.
    40. Chi, H. and H. S. I. Liu. TWO NEW METHODS FOR THE STUDY OF INSECT POPULATION ECOLOGY.1985.
    41. Christie-Oleza, J., G. Miotello and J. Armengaud. High-throughput proteogenomics of Ruegeria pomeroyi:seeding a better genomic annotation for the whole marine Roseobacter clade. BMC Genomics.2012.13(1):73.
    42. Coates, B. S., D. V. Sumerford, R. L. Hellmich and L. C. Lewis. Mining an Ostrinia nubilalis midgut expressed sequence tag (EST) library for candidate genes and single nucleotide polymorphisms (SNPs). Insect Mol Biol.2008.17(6):607-620.
    43. Crespo, A. L., A. Rodrigo-Simon, H. A. Siqueira, E. J. Pereira, J. Ferre and B. D. Siegfried. Cross-resistance and mechanism of resistance to CrylAb toxin from Bacillus thuringiensis in a field-derived strain of European corn borer, Ostrinia nubilalis. J Invertebr Pathol.2011. 107(3):185-192.
    44. Crespo, A. L., T. A. Spencer, A. P. Alves, R. L. Hellmich, E. E. Blankenship, L. C. Magalhaes and B. D. Siegfried. On-plant survival and inheritance of resistance to CrylAb toxin from Bacillus thuringiensis in a field-derived strain of European corn borer, Ostrinia nubilalis. Pest management science.2009.65(10):1071-1081.
    45. Crickmore, N., D. R. Zeigler, J. Feitelson, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum and D. H. Dean. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev.1998.62(3):807-813.
    46. David G. Heckel, B. E. T., Y.-B. L., L. J. G., A. M., A. M. Shelton, J.-Z. Z. and S. W. Baxter. Diamondback moth resistance to Bt relevance of genetics and molecular biology to detection and management.2001.
    47. de Groot, A., R. Dulermo, P. Ortet, L. Blanchard, P. Guerin, B. Fernandez, B. Vacherie, C. Dossat, E. Jolivet, P. Siguier, M. Chandler, M. Barakat, A. Dedieu, V. Barbe, T. Heulin, S. Sommer, W. Achouak and J. Armengaud. Alliance of proteomics and genomics to unravel the specificities of Sahara bacterium Deinococcus deserti. PLoS Genet.2009.5(3): e1000434.
    48. de Maagd, R. A., A. Bravo, C. Berry, N. Crickmore and H. E. Schnepf. Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet.2003.37:409-433.
    49. de Souza, G. A., M. O. Arntzen, S. Fortuin, A. C. Schurch, H. Malen, C. R. McEvoy, D. van Soolingen, B. Thiede, R. M. Warren and H. G. Wiker. Proteogenomic analysis of polymorphisms and gene annotation divergences in prokaryotes using a clustered mass spectrometry-friendly database. Mol Cell Proteomics.2011.10(1):M110.002527.
    50. de Souza, G. A. and H. G. Wiker. A proteomic view of mycobacteria. Proteomics.2011. 11(15):3118-3127.
    51. Dhanashree S. Kelkar, D. K., Praveen Kumar, Lavanya Balakrishnan et al, Proteogenomic analysis of Mycobacterium tuberculosis by high esolution mass spectrometry. Mol Cell Proteomics.2011.
    52. Diaz-Gomez, O., J. C. Rodriguez, A. M. Shelton, A. Lagunes and R. Bujanos. Susceptibility of Plutella xylostella (L.) (Lepidoptera:Plutellidae) populations in Mexico to commercial formulations of Bacillus thuringiensis. J Econ Entomol.2000.93(3):963-970.
    53. Domon, B. and R. Aebersold. Mass spectrometry and protein analysis. Science.2006. 312(5771):212-217.
    54. Dong, K. and J. G. Scott. Linkage of kdr-type resistance and the para-homologous sodium channel gene in German cockroaches (Blattella germanica). Insect Biochem Mol Biol.1994. 24(7):647-654.
    55. Downes, S., T. L. Parker and R. J. Mahon. Characteristics of resistance to Bacillus thuringiensis toxin Cry2Ab in a strain of Helicoverpa punctigera (Lepidoptera:Noctuidae) isolated from a field population. J Econ Entomol.2010.103(6):2147-2154.
    56. Dunnett, C. W. Pairwise Multiple Comparisons in the Homogeneous Variance, Unequal Sample Size Case. Journal of the American Statistical Association.1980.75(372):789-795.
    57. Eddy, S. R. Non-coding RNA genes and the modern RNA world. Nat Rev Genet.2001.2(12): 919-929.
    58. Edwards, K. D., J. R. Lynn, P. Gyula, F. Nagy and A. J. Millar. Natural allelic variation in the temperature-compensation mechanisms of the Arabidopsis thaliana circadian clock. Genetics.2005.170(1):387-400.
    59. Efron, B. and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall, New York, USA.1993.
    60. Eum, J. H., Y. R. Seo, S. M. Yoe, S. W. Kang and S. S. Han. Analysis of the immune-inducible genes of Plutella xylostella using expressed sequence tags and cDNA microarray. Dev Comp Immunol.2007.31(11):1107-1120.
    61. Fangneng Huang, L. L. B. a. R. A. H. Larval survival and development of susceptible and resistant Ostrinia nubilalis (Lepidoptera Pyralidae) on diet containing Bacillus thuringiensis. 2005.
    62. FAOSTAT. Production statistics. Rome:FAO. http://faostat.fao.org/site/567/default.aspx# ancor.2012.
    63. Ferre, J., M. D. Real, J. Van Rie, S. Jansens and M. Peferoen. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proceedings of the National Academy of Sciences of the United States of America.1991.88:5119-5123.
    64. Ferre, J., M. D. Real, J. Van Rie, S. Jansens and M. Peferoen. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc Natl Acad Sci U S A.1991.88(12):5119-5123.
    65. Ferre, J. and J. Van Rie. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol.2002.47:501-533.
    66. Furlong, M. J., D. J. Wright and L. M. Dosdall. Diamondback moth ecology and management:problems, progress, and prospects. Annu Rev Entomol.2013.58:517-541.
    67. Gahan, L. J., F. Gould and D. G. Heckel. Identification of a gene associated with Bt resistance in Heliothis virescens. Science.2001.293(5531):857-860.
    68. Gahan, L. J., Y. Pauchet, H. Vogel and D. G. Heckel. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry 1 Ac toxin. PLoS Genet.2010. 6(12):e1001248.
    69. Gallien, S., E. Perrodou, C. Carapito, C. Deshayes, J. M. Reyrat, A. Van Dorsselaer, O. Poch, C. Schaeffer and O. Lecompte. Ortho-proteogenomics:multiple proteomes investigation through orthology and a new MS-based protocol. Genome Res.2009.19(1):128-135.
    70. Gao, M., R. Li and S. Dai. Diversity of Bacillus thuringiensis strains from soil in China and their pesticidal activities. Biological Control.2008.44:380-388.
    71. Gassmann, A. J., Y. Carriere and B. E. Tabashnik. Fitness costs of insect resistance to Bacillus thuringiensis. Annu Rev Entomol.2009.54:147-163.
    72. Georghiou G P, G. M. J. Studies on the inheritance of carbamate-resistance in the house-fly (Musca domeddicaL.). Bull WHO.1965.32:181-196.
    73. Gomez, I., L. Pardo-Lopez, C. Munoz-Garay, L. E. Fernandez, C. Perez, J. Sanchez, M. Soberon and A. Bravo. Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis. Peptides.2007.28(1):169-173.
    74. Gong, Y., C. Wang, Y. Yang, S. Wu and Y. Wu. Characterization of resistance to Bacillus thuringiensis toxin Cry 1 Ac in Plutella xylostella from China. J Invertebr Pathol.2010. 104(2):90-96.
    75. Griffitts, J. S., S. M. Haslam, T. Yang, S. F. Garczynski, B. Mulloy, H. Morris, P. S. Cremer, A. Dell, M. J. Adang and R. V. Aroian. Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science.2005.307(5711):922-925.
    76. Groeters, F. R., Tabashnik, B. E., Finson, N.& Johnson,M. W.. Fitness costs of resistance to Bacillus thuringiensis in the diamondback moth(Plutella xylostella). Evolution.1994.48: 197-201.
    77. Groeters, F. R. T., Bruce E.; Finson, Naomi; Johnson, Marshall W. Fitness costs of resistance to Bacillus thuringiensis in the diamondback moth (Plutella xylostella). Evolution.1994. 48(1):5.
    78. Guengerich, F. P. Cytochrome p450 and chemical toxicology. Chem Res Toxicol.2008. 21(1):70-83.
    79. Gunning, R. V., H. T. Dang, F. C. Kemp, I. C. Nicholson and G. D. Moores. New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis CrylAc toxin. Appl Environ Microbiol.2005.71(5):2558-2563.
    80. Gupta, N., J. Benhamida, V. Bhargava, D. Goodman, E. Kain, I. Kerman, N. Nguyen, N. Ollikainen, J. Rodriguez, J. Wang, M. S. Lipton, M. Romine, V. Bafna, R. D. Smith and P:A. Pevzner. Comparative proteogenomics:combining mass spectrometry and comparative genomics to analyze multiple genomes. Genome Res.2008.18(7):1133-1142.
    81. Gupta, N., S. Tanner, N. Jaitly, J. N. Adkins, M. Lipton, R. Edwards, M. Romine, A. Osterman, V. Bafna, R. D. Smith and P. A. Pevzner. Whole proteome analysis of post-translational modifications:applications of mass-spectrometry for proteogenomic annotation. Genome Res.2007.17(9):1362-1377.
    82. Haddow, J. D., L. R. Haines, R. H. Gooding, R. W. Olafson and T. W. Pearson. Identification of midgut proteins that are differentially expressed in trypanosome-susceptible and normal tsetse flies (Glossina morsitans morsitans). Insect Biochem Mol Biol.2005.35(5):425-433.
    83. Han, F., S. E. Ullrich, A. Kleinhofs, B. L. Jones, P. M. Hayes and D. M. Wesenberg. Fine structure mapping of the barley chromosome-1 centromere region containing malting-quality QTLs. Theoretical and Applied Genetics.1997.95(5-6):903-910.
    84. Han, H. L., Li, G. T., Wang, Z. Y., Zhang, J. & He, K. L. Cross resistance of CrylAc selected Asian corn borer to other Bt toxins. J. Plant Prot.2009.36:7.
    85. Hardstone, M. C., O. Komagata, S. Kasai, T. Tomita and J. G. Scott. Use of isogenic strains indicates CYP9M10 is linked to permethrin resistance in Culex pipiens quinquefasciatus. Insect Mol Biol.2010.19(6):717-726.
    86. Hernandez-Martinez, P., G. Navarro-Cerrillo, S. Caccia, R. A. de Maagd, W. J. Moar, J. Ferre, B. Escriche and S. Herrero. Constitutive activation of the midgut response to Bacillus thuringiensis in Bt-resistant Spodoptera exigua. PLoS One. 2010.5(9).
    87. Herrero, S., T. Gechev, P. L. Bakker, W. J. Moar and R. A. de Maagd. Bacillus thuringiensis Cry1 Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes. BMC Genomics.2005.6:96.
    88. Hofte, H. and H. R. Whiteley. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev.1989.53(2):242-255.
    89. Holt, C. and M. Yandell. MAKER2:an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics.2011.12(1): 491.
    90. Hopkins, R. J., N. M. van Dam and J. J. van Loon. Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Entomol.2009.54:57-83.
    91. Huang, D. F., J. Zhang, F. P. Song and Z. H. Lang. Microbial control and biotechnology research on Bacillus thuringiensis in China. J Invertebr Pathol.2007.95(3):175-180.
    92. Huang, F., B. R. Leonard and D. A. Andow. Sugarcane borer (Lepidoptera:Crambidae) resistance to transgenic Bacillus thuringiensis maize. Journal of economic entomology.2007. 100(1):164-171.
    93. Huang, F. and W. McGaughey. Inheritance of resistance to Bacillus thuringiensis toxin (Dipel ES) in the European corn borer. Science.1999.284(5416):965-967.
    94. Huang, Y. B. and H.Chi. Life tables of Bactrocera cucurbitae (Diptera:Tephritidae):with an invalidation of the jackknife technique. Journal of Applied Entomology.2013.137(5): 327-339.
    95. Huang, Y. B. and H.Chi. Assessing the application of the jackknife and bootstrap techniques to the estimation of the variability of the net reproductive rate and gross reproductive rate:a case study in Bactrocera cucurbitae (Coquillett) (Diptera:Tephritidae). J. Agri. For.2012.61: 37-45.
    96. Iqbal, M., R. H. J. Verkerk, M. J. Furlong, P. C. Ong, S. A. Rahman and D. J. Wright. Evidence for Resistance to Bacillus thuringiensis (Bt) subsp. kurstaki HD-1, Bt subsp. aizawai and Abamectin in Field Populations of Plutella xylostella from Malaysia. Pesticide Science.1996.48(1):89-97.
    97. Jaffe, J., H. Berg and G. Church. Proteogenomic mapping as a complementary method to perform genome annotation. Proteomics.2004.4:59-77.
    98. James, C. Global status of commercialized biotech/GM crops:2012. ISAAA Brief 44, ISAAA, Ithaca, NY.2012.
    99. Janmaat, A. F. and J. Myers. Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni. Proc Biol Sci. 2003.270(1530):2263-2270.
    100.JBJ, v. R. First report of field resistance by stem borer Busseola fusca (Fuller) to Bt-transgenic maize. S. Afr. J. Plant Soil.2007.24:147-151
    101. Walters FS, deFontes ChM, Hart H, Warren GW, Chen JS. Lepidopter.
    102. Jeuken, M. J. and P. Lindhout. The development of lettuce backcross inbred lines (BILs) for exploitation of the Lactuca saligna (wild lettuce) germplasm. Theor Appl Genet.2004. 109(2):394-401.
    103. Jha, R. K., H. Chi and L. Tang. A comparison of artificial diet and hybrid sweet corn for the rearing of Helicoverpa armigera (Hubner) (Lepidoptera:Noctuidae) based on life table characteristics. Environ Entomol.2012.41(1):30-39.
    104. Jia, Y. L., Y.C. Zhu, X. Liu, C. Gao, J. Shen. Inheritance, fitness cost andmechanism of resistance to tebufenozide in Spodoptera exigua (Hubner)(Lepidoptera:Noctuidae). Pest Manag. Sci.2009.65:996-1002.
    105. Juenger, T. E., J. K. McKay, N. Hausmann, J. J. B. Keurentjes, S. Sen, K. A. Stowe, T. E. Dawson, E. L. Simms and J. H. Richards. Identification and characterization of QTL underlying whole-plant physiology in Arabidopsis thaliana:δ13C, stomatal conductance and transpiration efficiency. Plant, Cell & Environment.2005.28(6):697-708.
    106.Jurat-Fuentes, J. L., L. Karumbaiah, S. R. Jakka, C. Ning, C. Liu, K. Wu, J. Jackson, F. Gould, C. Blanco, M. Portilla, O. Perera and M. Adang. Reduced levels of membrane-bound alkaline phosphatase are common to lepidopteran strains resistant to Cry toxins from Bacillus thuringiensis. PLoS One.2011.6(3):e17606.
    107.Kalia, V., Gujar, G.T. Sex influenced inheritance of Bacillus thuringiensis CrylAc resistance in the American bollworm, Helicoverpa armigera (Hubner). Pestic.Res. J.2004.16:40-44.
    108. Kall, L., J. D. Canterbury, J. Weston, W. S. Noble and M. J. MacCoss. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Meth.2007.4(11): 923-925.
    109.Kamruzzaman, A. S. M., Alam, M. Z. & Miah, M. R. U. Bionomics and fertilitylife table of the yellow mite, Polyphagotarsonemus latus (Banks) (Acari Tarsonemidae) injute (Corchorus olitorius L.) at different temperature-humidity. Munis Entomology & Zoology. 2013.8:223-235.
    110.Kandemir, N., D. A. Kudrna, S. E. Ullrich and A. Kleinhofs. Molecular marker assisted genetic analysis of head shattering in six-rowed barley. Theoretical and Applied Genetics. 2000. 101(1-2):203-210.
    111.Kanehisa, M., M. Araki, S. Goto, M. Hattori, M. Hirakawa, M. Itoh, T. Katayama, S. Kawashima, S. Okuda, T. Tokimatsu and Y. Yamanishi. KEGG for linking genomes to life and the environment. Nucleic Acids Res.2008.36(Database issue):D480-484.
    112.Kanehisa, M., S. Goto, S. Kawashima, Y. Okuno and M. Hattori. The KEGG resource for deciphering the genome. Nucleic Acids Res.2004.32(Database issue):D277-280.
    113.Kaur, P. and V. K. Dilawari. Inheritance of resistance to Bacillus thuringiensis Cry 1 Ac toxin in Helicoverpa armigera (Hubner) (Lepidoptera:Noctuidae) from India. Pest Manag Sci. 2011.67(10):1294-1302.
    114.Keshishian, H., T. Addona, M. Burgess, E. Kuhn and S. A. Carr. Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteomics.2007.6(12):2212-2229.
    115.Kranthi, K. R., C. S. Dhawad, S. R. Naidu, K. Mate, G. T. Behere, R. M. Wadaskar and S. Kranthi. Inheritance of resistance in Indian Helicoverpa armigera (Hubner) to Cry 1 Ac toxin of Bacillus thuringiensis. Crop Protection.2006.25(2):119-124.
    116. Kuhn, E., J. Wu, J. Karl, H. Liao, W. Zolg and B. Guild. Quantification of C-reactive protein in the serum of patients with rheumatoid arthritis using multiple reaction monitoring mass spectrometry and DC-labeled peptide standards. Proteomics.2004.4(4):1175-1186.
    117. Kumar, D., A. K. Yadav, P. K. Kadimi, S. H. Nagaraj, S. M. Grimmond and D. Dash. Proteogenomic analysis of Bradyrhizobium japonicum USDA110 using GenoSuite, an automated multi-algorithmic pipeline. Mol Cell Proteomics.2013.12(11):3388-3397.
    118.Kuzyk, M. A., D. Smith, J. Yang, T. J. Cross, A. M. Jackson, D. B. Hardie, N. L. Anderson and C. H. Borchers. Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma. Mol Cell Proteomics.2009.8(8):1860-1877.
    119. Labbe, R., S. Caveney and C. Donly. Genetic analysis of the xenobiotic resistance-associated ABC gene subfamilies of the Lepidoptera. Insect Mol Biol.2011.20(2):243-256.
    120. Lahm, G. P., D. Cordova and J. D. Barry. New and selective ryanodine receptor activators for insect control. Bioorg Med Chem.2009.17(12):4127-4133.
    121. Lamontagne, J., M. Beland, A. Forest, A. Cote-Martin, N. Nassif, F. Tomaki, I. Moriyon, E. Moreno and E. Paramithiotis. Proteomics-based confirmation of protein expression and correction of annotation errors in the Brucella abortus genome. BMC Genomics.2010.11(1): 300.
    122. Li, A., Y. Yang, S. Wu, C. Li and Y. Wu. Investigation of resistance mechanisms to fipronil in diamondback moth (Lepidoptera:Plutellidae). J Econ Entomol.2006.99(3):914-919.
    123. Li, H. M., V. Margam, W. M. Muir, L. L. Murdock and B. R. Pittendrigh. Changes in Drosophila melanogaster midgut proteins in response to dietary Bowman-Birk inhibitor. Insect Mol Biol.2007.16(5):539-549.
    124. Li, X., M. A. Schuler and M. R. Berenbaum. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol.2007.52:231-253.
    125. Liang, G., W. Tan and Y. Guo. Study on screening and inheritance mode of resistance to Bt transgenic cotton in cotton bollworm. Kun chong xue bao. Acta entomologica Sinica.2000.43(增刊1):57-62.
    126. Liang, G. M, K. M. Wu, H. K. Yu, K. K. Li, X. Feng and Y. Y. Guo. Changes of inheritance mode and fitness in Helicoverpa armigera (Hubner) (Lepidoptera:Noctuidae) along with its resistance evolution to CrylAc toxin. J Invertebr Pathol.2008.97(2):142-149.
    127. Ling, S., H. Zhang and R. Zhang. Effect of fenvalerate on the reproduction and fitness costs of the brown planthopper, Nilaparvata lugens and its resistance mechanism. Pesticide Biochemistry and Physiology.2011.101(3):148-153.
    128. Liu, J., S. Zheng, L. Liu, L. Li and Q. Feng. Protein profiles of the midgut of Spodoptera litura larvae at the sixth instar feeding stage by shotgun ESI-MS approach. J Proteome Res. 2010.9(5):2117-2147.
    129. Liu, Y.-B., B. E. Tabashnik, S. K. Meyer, Y. Carriere and A. C. Bartlett. Genetics of pink bollworm resistance to Bacillus thuringiensis toxin CrylAc. Journal of economic entomology. 2001.94(1):248-252.
    130. Liu, Y. and B. E. Tabashnik. Inheritance of Resistance to the Bacillus thuringiensis Toxin Cry1C in the Diamondback Moth. Appl Environ Microbiol.1997.63(6):2218-2223.
    131. Liu, Y. B., B. E. Tabashnik, T. J. Dennehy, A. L. Patin and A. C. Bartlett. Development time and resistance to Bt crops. Nature.1999.400(6744):519.
    132. Liu, Y. B., Tabashnik, B. E. & Pusztai-Carey, M. Field-evolved resistance to Bacillus thuringiensis toxin Cry1C in diamondback moth (Lepidoptera:Plutellidae). J. Econ. Entomol..1996.89:12.
    133.Lomsadze, A., V. Ter-Hovhannisyan, Y. O. Chernoff and M. Borodovsky. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 2005.33(20):6494-6506.
    134.Loudet, O., V. Gaudon, A. Trubuil and F. Daniel-Vedele. Quantitative trait loci controlling root growth and architecture in Arabidopsis thaliana confirmed by heterogeneous inbred family. Theor Appl Genet.2005.110(4):742-753.
    135. Luo, K., D. Banks and M. J. Adang. Toxicity, binding, and permeability analyses of four Bacillus thuringiensis Cryl delta-endotoxins using brush border membrane vesicles of Spodoptera exigua and Spodoptera frugiperda. Appl Environ Microbiol.1999.65(2): 457-464.
    136. Ma, G., H. Roberts, M. Sarjan, N. Featherstone, J. Lahnstein, R. Akhurst and O. Schmidt. Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant Helicoverpa armigera larvae? Insect Biochem Mol Biol. 2005.35(7):729-739.
    137.MacLean, B., D. M. Tomazela, N. Shulman, M. Chambers, G. L. Finney, B. Frewen, R. Kern, D. L. Tabb, D. C. Liebler and M. J. MacCoss. Skyline:an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics.2010.26(7): 966-968.
    138.McGaughey, W. H. Insect Resistance to the Biological Insecticide Bacillus thuringiensis. Science.1985.229(4709):193-195.
    139.Mckenzie, J. A., Whitten, M. J. & Adena, M. A. The effect of genetic background on the fitness of diazinon resistance genotypes of the Australian sheep blowfly Lucilia cuprina. Herecity.1982.49:9.
    140. McNall, R. J. and M. J. Adang. Identification of novel Bacillus thuringiensis CrylAc binding proteins in Manduca sexta midgut through proteomic analysis. Insect Biochem Mol Biol. 2003.33(10):999-1010.
    141. Meunier, L., G. Prefontaine, M. Van Munster, R. Brousseau and L. Masson. Transcriptional response of Choristoneura fumiferana to sublethal exposure of CrylAb protoxin from Bacillus thuringiensis. Insect Molecular Biology.2006.15(4):475-483.
    142.Monforte, A. J. and S. D. Tanksley. Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background:a tool for gene mapping and gene discovery. Genome.2000. 43(5):803-813.
    143.Monforte, A. J. and S. D. Tanksley. Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor Appl Genet.2000.100:471-479.
    144.Morin, S., R. W. Biggs, M. S. Sisterson, L. Shriver, C. Ellers-Kirk, D. Higginson, D. Holley, L. J. Gahan, D. G. Heckel, Y. Carriere, T. J. Dennehy, J. K. Brown and B. E. Tabashnik. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proc Natl Acad Sci U S A.2003.100(9):5004-5009.
    145.Morishita, M., K. Azuma and S. Yano. Changes in insecticide susceptibility of the diamondback moth in Wakayama,Japan. JARQ-Japan Agricultural Research Quarterly.1992. 26:139-143.
    146.Muehlbauer, G. J., J. E. Specht, M. A. Thomas-Compton, P. E. Staswick and R. L. Bernard. Near-Isogenic Lines-A Potential Resource in the Integration of Conventional and Molecular Marker Linkage Maps. Crop Sci.1988.28(5):729-735.
    147. N. Crickmore, D. R. Z., J. Feitelson, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum, D.H. Dean. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev.1998.62:807-813.
    148.Oppert, B., K. J. Kramer, R. W. Beeman, D. Johnson and W. H. McGaughey. Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J Biol Chem.1997. 272(38):23473-23476.
    149. Perez, C. and A. Shelton. Resistance of Plutella xylostella (Lepidoptera:Plutellidae) to Bacillus thuringiensis Berliner in Central America. Journal of Economic Entomology.1997. 90:80-93.
    150.Pauchet, Y., A. Muck, A. Svatos, D. G. Heckel and S. Preiss. Mapping the larval midgut lumen proteome of Helicoverpa armigera, a generalist herbivorous insect. J Proteome Res. 2008.7(4):1629-1639.
    151.Pauchet, Y., P. Wilkinson, H. Vogel, D. R. Nelson, S. E. Reynolds, D. G. Heckel and R. H. ffrench-Constant. Pyrosequencing the Manduca sexta larval midgut transcriptome:messages for digestion, detoxification and defence. Insect Mol Biol.2010.19(1):61-75.
    152.Pereira, E. J., H. A. Siqueira, M. Zhuang, N. P. Storer and B. D. Siegfried. Measurements of Cry1F binding and activity of luminal gut proteases in susceptible and Cry1F resistant Ostrinia nubilalis larvae (Lepidoptera: Crambidae). J Invertebr Pathol.2010.103(1):1-7.
    153. Pierce, A., R. D. Unwin, C. A. Evans, S. Griffiths, L. Carney, L. Zhang, E. Jaworska, C.-F. Lee, D. Blinco, M. J. Okoniewski, C. J. Miller, D. A. Bitton, E. Spooncer and A. D. Whetton. Eight-channel iTRAQ Enables Comparison of the Activity of Six Leukemogenic Tyrosine Kinases. Molecular & Cellular Proteomics.2008.7(5):853-863.
    154.Pigott, C. R. and D. J. Ellar. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol Rev.2007.71(2):255-281.
    155.Popesku, J. T., C. J. Martyniuk, N. D. Denslow and V. L. Trudeau. Rapid Dopaminergic Modulation of the Fish Hypothalamic Transcriptome and Proteome. PLoS ONE. 2010. 5(8): e12338.
    156.Prasad, T. S., H. C. Harsha, S. Keerthikumar, N. R. Sekhar, L. D. Selvan, P. Kumar, S. M. Pinto, B. Muthusamy, Y. Subbannayya, S. Renuse, R. Chaerkady, P. P. Mathur, R. Ravikumar and A. Pandey. Proteogenomic analysis of Candida glabrata using high resolution mass spectrometry. J Proteome Res.2012.11(1):247-260.
    157.Rae, A. M., E. C. Howell and M. J. Kearsey. More QTL for flowering time revealed by substitution lines in Brassica oleracea. Heredity.1999.83(5):586-596.
    158. Rahardja, U. a. W., M.E. Inheritance of resistance to Bacillus thuringiensis subsp. tenebrionis CryⅢ A σ-endotoxin in Colorado potato beetle (Coleoptera:Chrysomelidae).. Journal ofEconomic Entomology.1995.88:21-26.
    159. Rahman, M. M., Roberts, H.L.S., Sarjan,M., Asgari, S., Schmidt, O. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. Proc. Natl. Acad. Sci. USA.2004.101:2696-2699.
    160.Ranson, H., L. Rossiter, F. Ortelli, B. Jensen, X. Wang, C. Roth, F. Collins and J. Hemingway. Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochem. J.2001.359(Pt 2): 295-304.
    161.Ratzka, A., H. Vogel, D. J. Kliebenstein, T. Mitchell-Olds and J. Kroymann. Disarming the mustard oil bomb. Proc Natl Acad Sci U S A.2002.99(17):11223-11228.
    162. Raymond, B., A. H. Sayyed and D. J. Wright. Genes and environment interact to determine the fitness costs of resistance to Bacillus thuringiensis. Proc Biol Sci.2005.272(1571): 1519-1524.
    163. Reymond, M., S. Svistoonoff, O. Loudet, L. Nussaume and T. Desnos. Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana. Plant Cell Environ.2006.29(1):115-125.
    164. Richard T. Roush, J. C. D. The role of population genetics in resistance research and management, pp.97-152. Pesticide resistance in arthropods. Chapman & Hall, New York. Pesticide Resistance in Arthropods 1991. New York:97-152.
    165. Rifai, N., M. A. Gillette and S. A. Carr. Protein biomarker discovery and validation:the long and uncertain path to clinical utility. Nat Biotech.2006.24(8):971-983.
    166.Ringrose, J. H., H. W. van den Toorn, M. Eitel, H. Post, P. Neerincx, B. Schierwater, A. F. Altelaar and A. J. Heck. Deep proteome profiling of Trichoplax adhaerens reveals remarkable features at the origin of metazoan multicellularity. Nat Commun.2013.4:1408.
    167. Roush, R. T., R. L. Combs, T. C. Randolph & J. A.Hawkins. Inheritance and effective dominance of pyrethroid resistance in the horn fly (Dip-tera:Muscidae). J. Econ. Entomol. 1986.79:1178-1182.
    168. Roush, R. T. a. D. A. W. Inheritance of methomyl resistance in the tobacco budworm (Lepidoptera:Noctuidae). J. Econ. Entomo.1985.78:1020-1022.
    169.Roux, O., M. Gevrey, L. Arvanitakis, C. Gers, D. Bordat and L. Legal. ISSR-PCR:tool for discrimination and genetic structure analysis of Plutella xylostella populations native to different geographical areas. Mol Phylogenet Evol.2007.43(1):240-250.
    170.Savidor, A., R. S. Donahoo, O. Hurtado-Gonzales, N. C. Verberkmoes, M. B. Shah, K. H. Lamour and W. H. McDonald. Expressed peptide tags:an additional layer of data for genome annotation. J Proteome Res. 2006.5(11):3048-3058.
    171. Sayyed, A. H., R. Gatsi, M. S. Ibiza-Palacios, B. Escriche, D. J. Wright and N. Crickmore. Common, but complex, mode of resistance of Plutella xylostella to Bacillus thuringiensis toxins Cry1Ab and Cry1Ac. Appl Environ Microbiol.2005.71(11):6863-6869.
    172. Sayyed, A. H., R. Haward, S. Herrero, J. Ferre and D. J. Wright. Genetic and Biochemical Approach for Characterization of Resistance to Bacillus thuringiensis Toxin Cry1Ac in a Field Population of the Diamondback Moth, Plutella xylostella. Applied and Environmental Microbiology.2000.66(4):1509-1516.
    173.Sayyed, A. H., G. Moores, N. Crickmore and D. J. Wright. Cross-resistance between a Bacillus thuringiensis Cry toxin and non-Bt insecticides in the diamondback moth. Pest Manag Sci.2008.64(8):813-819.
    174. Sayyed, A. H., D. Omar and D. J. Wright. Genetics of spinosad resistance in a multi-resistant field-selected population of Plutella xylostella. Pest Manag Sci.2004.60(8):827-832.
    175. Sayyed, A. H., T. H. Schuler and D. J. Wright. Inheritance of resistance to Bt canola in a field-derived population of Plutella xylostella. Pest Manag Sci.2003.59(11):1197-1202.
    176. Sayyed, A. H. and D. J. Wright. Fitness costs and stability of resistance to Bacillus thuringiensis in a field population of the diamondback moth Plutella xylostella L. Ecological Entomology.2001.26(5):502-508.
    177.Schellhorn, N. A., S. Macfadyen, F. J. J. A. Bianchi, D. G. Williams and M. P. P. Zalucki. Managing ecosystem services in broadacre landscapes:what are the appropriate spatial scales? Australian Journal of Experimental Agriculture.2008.48(12):1549-1559.
    178. Seifinejad, A., G. R. Salehi Jouzani and A. Hosseinzadeh. Characterization of Lepidoptera-active cry and vip genes in Iranian Bacillus thuringiensis strain collection. Biological Control.2008.44:216-226.
    179. Shanahan, G. J. Genetics of dieldrin resistance in Lucilia cuprina (wiedemamn) (Diptera: Calliphoridea). Bull. ent. Res..1979.69:4.
    180. Shelton, A. M., J. L. Robertson, J. D. Tang, C. Perez, S. D. Eigenbrode, H. K. Preisler, W. T. Wilsey and R. J. Cooley. Resistance of Diamondback Moth (Lepidoptera:Plutellidae) to Bacillus thuringiensis Subspecies in the Field. Journal of Economic Entomology.1993.86(3): 697-705.
    181.Shevchenko, A., M. Wilm, O. Vorm and M. Mann. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem.1996.68(5):850-858.
    182. Shimada, T., E. M. Gillam, P. Sandhu, Z. Guo, R. H. Tukey and F. P. Guengerich. Activation of procarcinogens by human cytochrome P450 enzymes expressed in Escherichia coli. Simplified bacterial systems for genotoxicity assays. Carcinogenesis.1994.15(11): 2523-2529.
    183.Shirai, Y., Tanaka, H., Miyasono, M. & Kuno, E. Low intrinsic rate of natural increase in Bt-resistant population of diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae). JPN. J. Appl. Entomol. Z..1998.42:5.
    184. Simpson, R. M., R. D. Newcomb, H. S. Gatehouse, R. N. Crowhurst, D. Chagne, L. N. Gatehouse, N. P. Markwick, L. L. Beuning, C. Murray, S. D. Marshall, Y. K. Yauk, B. Nain, Y. Y. Wang, A. P. Gleave and J. T. Christeller. Expressed sequence tags from the midgut of Epiphyas postvittana (Walker) (Lepidoptera:Tortricidae). Insect Mol Biol.2007.16(6): 675-690.
    185. Sobhian, R., Ryan, F. J., Khamraev, A., Pitcairn, M. J. & Bell, D. E.. DNA phenotyping to find a natural enemy in Uzbekistan for California biotypes of Salsola tragusL..Biol. Control 28:6.
    186.Sokal, F. J. R. a. R. R. Comparing Numerical Taxonomic Studies. Syst Biol.1981.30: 459-490.
    187. Song, F., J. Zhang, A. Gu, Y. Wu, L. Han, K. He, Z. Chen, J. Yao, Y. Hu, G. Li and D. Huang. Identification of cry11-Type Genes from Bacillus thuringiensis Strains and Characterization of a Novel crylI-Type Gene. Applied and Environmental Microbiology. 2003.69(9):5207-5211.
    188. Sorensen, J. S. and M. D. Dearing. Efflux transporters as a novel herbivore countermechanism to plant chemical defenses. J Chem Ecol.2006.32(6):1181-1196.
    189. Srinivasan, A., A. P. Giri and V. S. Gupta. Structural and functional diversities in lepidopteran serine proteases. Cell Mol Biol Lett.2006.11(1):132-154.
    190.Stahl-Zeng, J., V. Lange, R. Ossola, K. Eckhardt, W. Krek, R. Aebersold and B. Domon. High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites. Mol Cell Proteomics.2007.6(10):1809-1817.
    191.Stanke, M., O. Schoffmann, B. Morgenstern and S. Waack. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics.2006.7(1):62.
    192. Stephen J. Simpson, D. R, The geometric analysis of nutrient-allelochemical interactions:a case study using locusts. Ecology.2001.82:422-439.
    193. Stone, B. A formula determining degree of dominance in cases ofmonofactorial inheritance of resistance to chemicals. Bull WHO.1968.38:325-326.
    194. Storer, N. P., J. M. Babcock, M. Schlenz, T. Meade, G. D. Thompson, J. W. Bing and R. M. Huckaba. Discovery and characterization of field resistance to Bt maize:Spodoptera frugiperda (Lepidoptera:Noctuidae) in Puerto Rico. J Econ Entomol.2010.103(4): 1031-1038.
    195.Stylianou, I. M., S. W. Tsaih, K. DiPetrillo, N. Ishimori, R. Li, B. Paigen and G. Churchill. Complex genetic architecture revealed by analysis of high-density lipoprotein cholesterol in chromosome substitution strains and F2 crosses. Genetics.2006.174(2):999-1007.
    196.Swarup, K., C. Alonso-Blanco, J. R. Lynn, S. D. Michaels, R. M. Amasino, M. Koornneef and A. J. Millar. Natural allelic variation identifies new genes in the Arabidopsis circadian system. Plant J.1999.20(1):67-77.
    197. Tabashnik, B. Evolution of resistance to Bt. Annu. Rev. Entomol.1994.39:32.
    198. Tabashnik, B. E. Evolution of Resistance to Bacillus thuringiensis. Annual Review of Entomology.1994.39(1):47-79.
    199. Tabashnik, B. E., N. L. Cushing, N. Finson and M. W. Johnson. Field Development of Resistance to Bacillus thuringiensis in Diamondback Moth (Lepidoptera:Plutellidae). Journal of Economic Entomology.1990.83(5):1671-1676.
    200. Tabashnik, B. E., N. Finson, F. R. Groeters, W. J. Moar, M. W. Johnson, K. Luo and M. J. Adang. Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. Proc Natl Acad Sci U S A.1994.91(10):4120-4124.
    201. Tabashnik, B. E., N. Finson, M. W. Johnson and D. G. Heckel. Cross-Resistance to Bacillus thuringiensis Toxin CrylF in the Diamondback Moth (Plutella xylostella). Appl Environ Microbiol.1994.60(12):4627-4629.
    202. Tabashnik, B. E., N. Finson, M. W. Johnson and W. J. Moar. Resistance to Toxins from Bacillus thuringiensis subsp. kurstaki Causes Minimal Cross-Resistance to B. thuringiensis subsp. aizawai in the Diamondback Moth (Lepidoptera:Plutellidae). Appl Environ Microbiol. 1993.59(5):1332-1335.
    203.Tabashnik, B. E., A. J. Gassmann, D. W. Crowder and Y. Carriere. Insect resistance to Bt crops:evidence versus theory. Nat Biotechnol.2008.26(2):199-202.
    204. Tabashnik, B. E., Y.-B. Liu, T. J. Dennehy, M. A. Sims, M. S. Sisterson, R. W. Biggs and Y. Carriere. Inheritance of resistance to Bt toxin CrylAc in a field-derived strain of pink bollworm (Lepidoptera:Gelechiidae). Journal of economic entomology.2002.95(5): 1018-1026.
    205. Tabashnik, B. E., Y. B. Liu, N. Finson, L. Masson and D. G. Heckel. One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins. Proc Natl Acad Sci U S A.1997.94(5):1640-1644.
    206. Tabashnik, B. E., Y. B. Liu, T. Malvar, D. G. Heckel, L. Masson, V. Ballester, F. Granero, J. L. Mensua and J. Ferre. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proc Natl Acad Sci U S A.1997. 94(24):12780-12785.
    207. Talekar, N. S. and A. M. Shelton. Biology, Ecology, and Management of the Diamondback Moth. Annual Review of Entomology.1993.38(1):275-301.
    208. Tang, J. D., S. Gilboa, R. T. Roush and A. M. Shelton. Inheritance, stability, and lack-of-fitness costs of field-selected resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera:Plutellidae) from Florida.. J. Econ. Entomol.1997.90:10.
    209. Tang, J. D., A. M. Shelton, J. Van Rie, S. De Roeck, W. J. Moar, R. T. Roush and M. Peferoen. Toxicity of Bacillus thuringiensis Spore and Crystal Protein to Resistant Diamondback Moth(Plutella xylostella). Appl Environ Microbiol.1996.62(2):564-569.
    210. Tao, W., D. Liu, J. Liu, Y. Feng and P. Chen. Genetic mapping of the powdery mildew resistance gene Pm6 in wheat by RFLP analysis. Theoretical and Applied Genetics.2000. 100(3-4):564-568.
    211.Textor, S. and J. Gershenzon. Herbivore induction of the glucosinolate-myrosinase defense system:major trends, biochemical bases and ecological significance. Phytochemistry Reviews.2008.8(1):149-170.
    212.thaphan;, P., S. keawsompong and J. chanpaisaeng. Isolation, toxicity and detection of cry gene in Bacillus thuringiensis isolates in Krabi province, Thailand. Songklanakarin. Journal of Science and Technology.2008.30(5):597-601.
    213.Tiewsiri, K. and P. Wang. Differential alteration of two aminopeptidases N associated with resistance to Bacillus thuringiensis toxin Cry 1 Ac in cabbage looper. Proc Natl Acad Sci U S A.2011.108(34):14037-14042.
    214. Tsukamoto, M. Methods of Genetic Analysis of Insecticide Resistance. Pest Resistance to Pesticides.1983.71-98.
    215.Tuinstra, M. R., G. Ejeta and P. B. Goldsbrough. Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theoretical and Applied Genetics.1997.95(5-6):1005-1011.
    216.Uraichuen, S. Comparative study of the toxicity and receptors of Bacillus thuringiensis Berliner d-endotoxins against two major pests of cotton, Helicoverpa armigera and Heliothis virescens:relation with resistance.2002. Ph.D.Thesis. National Superior Agronomic School of Montpellier.
    217. Vachon, V., R. Laprade and J. L. Schwartz. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins:a critical review. J Invertebr Pathol.2012.111(1): 1-12.
    218. Venter, E., R. D. Smith and S. H. Payne. Proteogenomic Analysis of Bacteria and Archaea:A 46 Organism Case Study. PLoS ONE.2011.6(11):e27587.
    219. Verkerk, R. and D. Wright. Field-based studies with the diamondback moth tritrophic system in Cameron Highlands of Malaysia:Implications for pest management. International Journal of Pest Management.1997.43:27-33.
    220.Volkening, J. D., D. J. Bailey, C. M. Rose, P. A. Grimsrud, M. Howes-Podoll, M. Venkateshwaran, M. S. Westphall, J. M. Ane, J. J. Coon and M. R. Sussman. A proteogenomic survey of the Medicago truncatula genome. Mol Cell Proteomics.2012. 11(10):933-944.
    221. von Korff, M., H. Wang, J. Leon and K. Pillen. Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor Appl Genet.2004.109(8):1736-1745.
    222. Wang, L., Li, X.-F., Zhang, J., Zhao, J.-Z., Wu, Q.-J., Xu, B., Zhang, Y.-J.. Monitoring of resistance for the diamondback moth to Bacillus thuringiensis Cry 1 Ac and CrylAa toxins and a Bt commercial formulation. J. Appl. Environ.2007.131:6.
    223. Wang, P., J. Z. Zhao, A. Rodrigo-Simon, W. Kain, A. F. Janmaat, A. M. Shelton, J. Ferre and J. Myers. Mechanism of resistance to Bacillus thuringiensis toxin Cry 1 Ac in a greenhouse population of the cabbage looper, Trichoplusia ni. Appl Environ Microbiol.2007.73(4): 1199-1207.
    224. Wang, W., W. Zhai, M. Luo, G. Jiang, X. Chen, X. Li, R. A. Wing and L. Zhu. Chromosome landing at the bacterial blight resistance gene Xa4 locus using a deep coverage rice BAC library. Mol Genet Genomics.2001.265(1):118-125.
    225. Wang, Z., M. Gerstein and M. Snyder. RNA-Seq:a revolutionary tool for transcriptomics. Nat Rev Genet.2009.10(1):57-63.
    226.Weihua, M., Z. Zan, P. Chuanhua, W. Xiaoping, L. Fei and L. Yongjun. Exploring the Midgut Transcriptome and Brush Border Membrane Vesicle Proteome of the Rice Stem Borer, Chilo suppressalis (Walker). PLoS ONE.2012.7(5).
    227. White, N. D. G. B., R. J. Inheritance of malathion resistance in a strain of Tribolium castaneum (Coleoptera:Tenebrionideae) and effects of resistance genotypes on fecundity and larval in malathion-treated wheat. J Econ Entomol..1988.81:7.
    228. Whiteaker, J. R., H. Zhang, L. Zhao, P. Wang, K. S. Kelly-Spratt, R. G. Ivey, B. D. Piening, L. C. Feng, E. Kasarda, K. E. Gurley, J. K. Eng, L. A. Chodosh, C. J. Kemp, M. W. McLntosh and A. G. Paulovich. Integrated pipeline for mass spectrometry-based discovery and confirmation of biomarkers demonstrated in a mouse model of breast cancer. J Proteome Res.2007.6(10):3962-3975.
    229. Wolfersberger, M. G. Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the gypsy moth (Lymantria dispar). Arch Insect Biochem Physiol.1993.24(3):139-147.
    230. Wright, D. J., M. Iqbal, F. Granero and J. Ferre. A Change in a Single Midgut Receptor in the Diamondback Moth(Plutella xylostella) Is Only in Part Responsible for Field Resistance to Bacillus thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai. Appl Environ Microbiol.1997.63(5):1814-1819.
    231. Wright, J. C, D. Sugden, S. Francis-McIntyre, I. Riba-Garcia, S. J. Gaskell, I. V. Grigoriev, S. E. Baker, R. J. Beynon and S. J. Hubbard. Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger. BMC Genomics.2009.10:61.
    232. Wu, X., F. Huang, B. R. Leonard and M. Ghimire. Growth and development of Bacillus thuringiensisCryl Ab-susceptible and CrylAb-resistant Sugarcane borer on diet and conventional maize plants. Entomologia Experimentalis et Applicata.2009.133(2):199-207.
    233. Wu Xiaoyi, F. H., B. Rogers Leonard, James Otte. Inheritance of resistance to Bacillus thuringiensis CrylAb proteinin the Sugarcane borer (Lepidoptera:Crambidae). Journal of Invertebrate Pathology.2009.102:44-49.
    234. Xie, W., Y. Lei, W. Fu, Z. Yang, X. Zhu, Z. Guo, Q. Wu, S. Wang, B. Xu, X. Zhou and Y. Zhang. Tissue-specific transcriptome profiling of Plutella xylostella third instar larval midgut. Int J Biol Sci.2012.8(8):1142-1155.
    235. Xu, X., L. Yu and Y. Wu. Disruption of a cadherin gene associated with resistance to Cry 1 Ac δ-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Applied and environmental microbiology.2005.71(2):948-954.
    236. Yadav, A. K., D. Kumar and D. Dash. Learning from Decoys to Improve the Sensitivity and Specificity of Proteomics Database Search Results. PLoS ONE.2012.7(11):e50651.
    237. Yang, Y. H., Y. J. Yang, W. Y. Gao, J. J. Guo, Y. H. Wu and Y. D. Wu. Introgression of a disrupted cadherin gene enables susceptible Helicoverpa armigera to obtain resistance to Bacillus thuringiensis toxin Cry 1 Ac. Bull Entomol Res.2009.99(2):175-181.
    238. Yates, J. R., J. K. Eng and A. L. McCormack. Mining Genomes:Correlating Tandem Mass Spectra of Modified and Unmodified Peptides to Sequences in Nucleotide Databases. Analytical Chemistry.1995.67(18):3202-3210.
    239. Yeh, E. C., Yang, R. C., Boyle, T. B. J., Ye, Z. H. & Mao, J. X (1997). POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre.University of Alberta, Edmonton, Alberta.
    240. You, M., Z. Yue, W. He, X. Yang, G. Yang, M. Xie, D. Zhan, S. W. Baxter, L. Vasseur, G. M. Gurr, C. J. Douglas, J. Bai, P. Wang, K. Cui, S. Huang, X. Li, Q. Zhou, Z. Wu, Q. Chen, C. Liu, B. Wang, X. Li, X. Xu, C. Lu, M. Hu, J. W. Davey, S. M. Smith, M. Chen, X. Xia, W. Tang, F. Ke, D. Zheng, Y. Hu, F. Song, Y. You, X. Ma, L. Peng, Y. Zheng, Y. Liang, Y. Chen, L. Yu, Y. Zhang, Y. Liu, G. Li, L. Fang, J. Li, X. Zhou, Y. Luo, C. Gou, J. Wang, J. Wang, H. Yang and J. Wang. A heterozygous moth genome provides insights into herbivory and detoxification. Nat Genet.2013.45(2):220-225.
    241. Young N D, Z. D. G., Tanksley S D. Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the TM22a gene in tomato. Genetics.1988.120: 579-585.
    242. Zangerl, A. R., L. H. Liao, T. Jogesh and M. R. Berenbaum. Aliphatic esters as targets of esterase activity in the parsnip webworm (Depressaria pastinacella). J Chem Ecol.2012. 38(2):188-194.
    243.Zhang, L., F. Huang, B. Rogers Leonard, M. Chen, T. Clark, Y. C. Zhu, D. S. Wangila, F. Yang and Y. Niu. Susceptibility of CrylAb maize-resistant and-susceptible strains of Sugarcane borer (Lepidoptera:Crambidae) to four individual Cry proteins. J Invertebr Pathol. 2013.112(3):267-272.
    244. Zhang, P., K. Yamamoto, Y. Wang, Y. Banno, H. Fujii, F. Miake, N. Kashige and Y. Aso. Utility of dry gel from two-dimensional electrophoresis for peptide mass fingerprinting analysis of silkworm proteins. Biosci Biotechnol Biochem.2004.68(10):2148-2154.
    245. Zhang, S., H. Cheng, Y. Gao, G. Wang, G. Liang and K. Wu. Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry 1 Ac toxin. Insect Biochem Mol Biol.2009.39(7):421-429.
    246. Zhao, J. Z., Y. X. Li, H. L. Collins, J. Cao, E. D. Earle and A. M. Shelton. Different cross-resistance patterns in the diamondback moth (Lepidoptera:Plutellidae) resistant to Bacillus thuringiensis toxin Cry1C. J Econ Entomol.2001.94(6):1547-1552.
    247. Zhao, J. Z., Y. X. Li, H. L. Collins and A. M. Shelton. Examination of the F2 screen for rare resistance alleles to Bacillus thuringiensis toxins in the diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol.2002.95(1):14-21.
    248. Zhao, L., L. Liu, W. Leng, C. Wei and Q. Jin. A proteogenomic analysis of Shigella flexneri using 2D LC-MALDI TOF/TOF. BMC Genomics.2011.12(1):528.
    249.Zhong, Y., X. Chang, X. J. Cao, Y. Zhang, H. Zheng, Y. Zhu, C. Cai, Z. Cui, Y. Zhang, Y. Y. Li, X. G. Jiang, G. P. Zhao, S. Wang, Y. Li, R. Zeng, X. Li and X. K. Guo. Comparative proteogenomic analysis of the Leptospira interrogans virulence-attenuated strain IPAV against the pathogenic strain 56601. Cell Res. 2011.21(8):1210-1229.
    250. Zhu, X., Y. Lei, Y. Yang, S. W. Baxter, J. Li, Q. Wu, S. Wang, W. Xie, Z. Guo, W. Fu and Y. Zhang. Construction and Characterization of Near Isogenic Plutella xylostella (Lepidoptera: Plutellidae) Strains Resistant to Cry1 Ac toxin. Pest Manag Sci.2014.
    251.Zivanovic, Y., J. Armengaud, A. Lagorce, C. Leplat, P. Guerin, M. Dutertre, V. Anthouard, P. Forterre, P. Wincker and F. Confalonieri. Genome analysis and genome-wide proteomics of Thermococcus gammatolerans, the most radioresistant organism known amongst the Archaea. Genome Biol. 2009.10(6):R70.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.