拟南芥保卫细胞特异表达的F-box蛋白DOR负向调节耐旱性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DOR((?)r(?)ught (?)esistance)是与金鱼草S-locus F-box(SLF)基因同源的拟南芥SLF超家族的成员AtSFL35。该基因的T-DNA插入突变可以导致拟南芥产生耐旱性。离体叶片失水实验、MS+甘油培养基实验和盆栽干旱实验都证明dor突变体和野生型相比表现为耐旱。dor的功能互补实验进一步验证了该突变体表型是由于DOR基因的T-DNA插入造成的,表明该基因编码一个耐旱性的负调控因子。定量-PCR结果证明DOR基因组成型表达,但从DOR::GUS转化实验看出,DOR基因在叶子的保卫细胞中特异表达,提示dor表现出的耐旱可能与气孔有关。因此,我们比较了野生型和突变体在正常情况下的气孔大小和干旱条件下KAT1和KAT2的表达,结果显示dor突变体由于相对含水量高而表现为耐旱。为了研究DOR基因突变后耐旱的分子机制,我们采用Northern杂交方法分析了与耐旱相关的基因DREB2A、RD29A、COR15A和RD22在野生型和突变体中的表达,结果表明dor突变体表现出的耐旱可能与这些基因在干旱胁迫条件下的表达升高有关,提示DOR基因在依赖ABA和不依赖ABA信号通路上都发挥作用。我们从转录水平还发现DOR基因可能也参与了抗寒途径。酵母共转化和pull-down实验证明了DOR在体内可以与ASK14和CULLINI蛋白形成SCF复合体。这些结果表明,在干旱条件下DOR作为耐旱负调控因子参与泛素/26S蛋白小体降解途径来抑制气孔关闭。
DOR (DrOught Resistance) is AtSFL35, a member of Arabidopsis AtSFL (S-locus F-box-like) superfamily related to the Antirrhinum S-locus F-box gene(SLF). A T- DNA insertional mutant of DOR results in a significant increase in tolerance to drought. Detached leaves, MS plus glycerol and soil-grown plants all exhibit a drought- tolerant phenotype compared to wild-type plants. Functional complement action experiment showed that DOR mutation leads to the drought tolerance, suggesting that DOR encodes a novel drought tolerance repressor. Quantitative PCR showed that DOR expressed ubiquitously at a low level. Interestingly, GUS reporter gene studies indicated DOR is specifically expressed in guard cell, suggesting that the DOR may function in stomatal movement under drought stress. Furthermore, we compared the stomatal aperture under normal grown condition and KAT1 and KAT2 expression under drought stress between wild-type and dor mutant and revealed that the dor could limit its transpirational water loss in response to drought stress. To investigate the molecular mechanisms for the DOR action, we analysed the DREB2A, RD29A, COR15A and RD22 expression by RNA gel blot. The results showed that the dor mutant induced the expression of drought-responsive genes after PEG treatment, indicating that DOR may function in both ABA-dependent and ABA-independent pathways for stress-responsive gene expression. Meanwhile, we found that DOR also function in cold signal transduction. Yeast two-hybrid and pull-down assays showed that DOR protein is capable of interacting with ASK14 and CULLINl, suggesting that it could form an SCF (Skp1/Cullin or CDC53/F-box) complex. Taken together, these results suggest that the ubiqutin/26S proteasome-mediate proteolysis mediated by DOR acts a negative regulator of drought tolerance by inhibiting the stomatal closure under drought stress.
引文
Akie Sasaki, Hironori Itoh, Kenji Gomi, Miyako Ueguchi-Tanaka, Kanako Ishiyama, Masatomo Kobayashi, Dong-Hoon Jeong, Gynheung An, Hidemi Kitano, Motoyuki Ashikari, Makoto Matsuoka. (2003). Accumulation of Phosphorylated Repressor for Gibberellin Signaling in an F-box Mutant. SCIENCE 299, 1896-1898.
    Anna-Chiara Mustilli, Sylvain Merlot, Alain Vavasseur, Francesca Fenzi, and Jerome Giraudat. (2002). Arabidopsis OST1 Protein Kinase Mediates the Regulation of Stomatal Aperture by Abscisic Acid and Acts Upstream of Reactive Oxygen Species Production. The Plant Cell, 14, 3089-3099.
    Anna S. B. Olsson, Peter Engstrm and Eva So derman. (2004). The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water de. cit in Arabidopsis Plant Molecular Biology 55: 663-677.
    Assmann SM, Simoncini L, Schroeder JI. (1985). Blue light activates electrogenic ion pumping in guard cell protoplasts of Vicia faba. Nature 318: 285-87.
    Bachmair, A., Novatchkova, M., Potuschak, T., Eisenhaber, F. (2001). Ubiquitylation in plants: a post-genomic look at a posttranslational modification. Trends Plant Sci. 6: 463-70.
    Bai, C., Sen, P. and Hofmann, K. (1996). SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86: 263~274.
    Bohnert HJ, Ayoubi P, Borchert C, Bresson RA, Burnap RL, Cushman JC, Cushman MA, Callis, J., Carpenter, T., Sun, C. W. and Vierstra, R. D. (1995). Structure and evolutionof genes encoding polyubiquitin and ubiquitin-like proteins in Arabidopsis thaliana ecotype Columbia. Genetics 139: 921-39.
    Bray E, Bailey-Serres J, Weretilnyk E. (2000). Responses to abiotic stresses, In Biochemistry and Molecular Biology of Plants. Edited by Buchanan B, Gruissem W, Jones R Rockville: American Society of Plant Biologists. 1158-1203.
    Capron A, Serralbo O, Fulop K, Fruigier F, Parmentier Y, et al. (2003). The Arabidopsis APC/C: molecular and genetic characterization of the APC2 subunit. Plant Cell. 15: 2370-82.
    Chae HS, Faure F, Kieber JJ. (2003). The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell 15: 545-59.
    Clough RC, Jordan-Beebe ET, Lohman KN, Marita JM, Walker JM, et al. (1999). Sequences within both the N-and Cterminal domains of phytochrome A are required for Pfr ubiquitination and degradation. Plant J. 17: 155-67.
    Dahan, J., Etienne, E, Petitot, A. S., Houot, V., Blein, J. P. and Suty, L. (2001). Cryptogein affects expression of alpha3, alpha6 and beta1 20S proteasome subunits encoding genes in tobacco. J. Exp. Bot. 52: 1947-48.
    Deshaies, R. J. (1999). SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell. Dev. Biol. 15: 435-67.
    Deyholos M, Fischer R, Galbraith DW et al. (2001). A genomics approach towards salt stress tolerance. Plant Physiol Biochem 39: 295-311.
    de Nettancourt, D. (1977). Incompatibility in angiosperms. (Berlin: Springer-Verlag).
    Devoto A, Nieto-Rostro M, Xie DX, Ellis C, Harmston R, et al. (2002). COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J. 32: 457-66.
    Dieterle, M., Zhou, Y. C., Schafer, E., Funk, M. and Kretsch T. (2001). EID1, an F-Box protein involved in phytochrome A-specific light signaling. Genes Dev. 15: 939-44.
    Dietrich P, Hedrich R. (1994). Interconversion of fast and slow gating modes of GCAC1, a guard cell anion channel. Planta 195: 301-314
    Dill A, Thomas SG, Hu J, Steber CM, Sun TP. (2004). The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell. 16(6): 392-405.
    Downes, B. P., Stupar, R. M., Gingerich, D. J., Vierstra, R. D. (2003). The HECT ubiquitinprotein ligase (UPL) family in Arabidopsis: UPL3 has a specific role in trichome development. Plant J. 35: 729-742.
    Entani T, Takayama S, Iwano M, Shiba H, Che FS, and Isogai A. (1999). Relationship between polyploidy and pollen self-incompatibility phenotype in Petunia hybrida Vilm. Biosci Biotechnol Biochem. 63: 1882-1888.
    Feng S, Ma L, Wang X, Xie D, Dinesh-Kumar SP, et al. (2003). The COP9 signalosome interacts physically with SCFCOI1 and modulates jasmonate responses. Plant Cell 15: 1083-94.
    Fu H, Doelling JH, Arendt CS, Hochstrasser M, Vierstra RD. (1998). Molecular organization of the 20S proteasome gene family from Arabidopsis thaliana. Genetics 149: 677-92.
    Fu H, Doelling JH, Rubin DM, Vierstra RD. (1999). Structural and functional analysis of the six regulatory particle AAATPase subunits from the Arabidopsis 26S proteasome. Plant J. 18: 529-39.
    Fu H, Reis N, Lee Y, Glickman MH, Vierstra RD. (2001). Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. EMBO J. 20: 7096-107.
    Gagne, J. M., Downes, B. P., Shiu, S. H., Durski, A. M. and Vierstra, R. D. (2002). The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc. Natl. Acad. Sci. USA 99: 11519-11524.
    Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, et al. (1998). A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94: 615-23.
    Gray, W. M., Kepinski, S., Rouse, D., Leyser, O. and Estelle, M. (2001). Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414: 271-276.
    Gray, W. M., Kepinskl, S. and Rouse, D. (2001). Auxin regulates SCF~(TIR1)- dependent degradation of Aux/IAA proteins. Nature 414: 271~276.
    Guo, M., Rupe, M. A., Zinselmeier, C., Habben, J., Bowen, B. A., and Smith, O. S. (2004). Allelic variation of gene expression in maize hybrids. Plant Cell 16, 1707-1716.
    Guo H, Ecker JR. (2003). Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115: 667-77.
    Hardtke CS, Okamoto H, Stoop-Myer C, Deng XW. (2002). Biochemical evidence for ubiquitin ligase activity of the Arabidopsis COP1 interacting protein 8 (CIP8). Plant J. 30: 385-94.
    Harmon, F. G. and Kay, S. A. (2003). The F box protein AFR is a positive regulator of phytochrome A-mediated light signaling. Curr Biol. 13: 2091-96.
    Hartmann-Petersen, R., Seeger, M. and Gordon, C. (2003). Transferring substrates to the 26S proteasome. Trends Biochem. Sci. 28: 26-31.
    Hershko, A. and Ciechanover, A. (1998). The ubiquitin system. Annu. Rev. Biochem. 67: 425-479.
    Holm M, Ma LG, Qu LJ, Deng XW. (2002). Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev. 16: 1247-59.
    Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA. (2003). FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426: 302-6.
    Jackson, P. K., Eidridge, A. G. and Freed, E. (2000). The lore of the Rings: Substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol. 10: 429~439.
    Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomasho MF. (1998). Arabidopsis CBF1 overexpression induces cor genes and enhances freezing tolerance. Science 280: 104-106.
    James Z. Zhang, Robert A. Creelman, and Jian-Kang Zhu. (2004). From Laboratory to Field. Using Information from Arabidopsis to Engineer Salt, Cold, and Drought Tolerance in Crops. Plant Physiology, 135, 615-621.
    Joseph G. Dubouzet, Yoh Sakuma, Yusuke Ito, Mie Kasuga, Emilyn G. Dubouzet, Setsuko Miura, Motoaki Seki, Kazuo Shinozaki and Kazuko Yamaguchi-Shinozaki. (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. The Plant Journal 33, 751-763.
    Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17: 287-291.
    Kazuo Shinozaki_, Kazuko Yamaguchi-Shinozaki and Motoaki Seki. (2003). Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology 6: 410-417.
    Kim, H. S. and Delaney, T. P. (2002). Arabidopsis SON1 is an F-box protein that regulates a novel induced defense response independent of both salicylic acid and systemic acquired resistance. Plant Cell 14: 1469-1482.
    Kim M, Ahn JW, Jin UH, Choi D, Paek KH, Pai HS. (2003). Activation of the programmed cell death pathway by inhibition of proteasome function in plants. J. Biol. Chem. 278: 19406-15 Woffenden BJ, Freeman TB, Beers EP. 1998. Proteasome inhibitors prevent tracheary element differentiation in Zinnia mesophyll cell cultures. Plant Physiol. 118: 419-30.
    Kinoshita T, Nishimura M, Shimazaki K-I. (1995). Cytosolic concentration of Ca-2C regulates the plasma membrane HCATPase in guard cells of lava bean. Plant Cell 7: 1333-42.
    Kopito RR. (2000). Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 10: 524-30.
    Kostova Z, Wolf DH. (2003). For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection. EMBO J. 22: 2309-17.
    Krebs JA, Wu Y, Chang HS, Zhu T, Wang X, Harper J. (2002). Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130: 2129-2141.
    Kumar, A. and Paietta, J. V. (1995). An additional role for the F-box motif: Gene regulation within the Neurosporacrassa sulfur control network. Proc. Natl. Acad. Sci. USA, 95: 2417~2422.
    Kuroda, H., Takahashi, N., Shimada, H., Seki, M., Shinozaki, K. and Matsui, M. (2002). Classification and expression analysis of Arabidopsis F-box-containing protein genes. Plant Cell Physiol. 43: 1073-1085.
    Lai, Z., Ma, W., Han, B., Liang, L., Zhang, Y., Hong, G. and Xue Y, (2002). An F-box gene linked to the self-incompatibility (S) locus of Antirrhinura is expressed specifically in pollen and tapetum. Plant Mol. Biol. 50: 29-42.
    Lee HJ, Xiong LM, Gong ZZ, Ishitani M, Stevenson B, Zhu JK. (2001). The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays coldregulated nucleo-cytoplasmic partitioning. Genes Dev. 15: 912-24.
    Leggett DS, Hanna J, Borodovsky A, Crosas B, Schmidt M, et al. (2002). Multiple associated proteins regulate proteasome structure and function. Mol. Cell 10: 495-507.
    Lei Wang, Li Dong, Yu'e Zhang, Yansheng Zhang, Weihua Wu, Xingwang Deng, and Yongbiao Liu, Q., Sakuma, Y., Abe, H., Kasuga, M., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain, separate two cellular signal transduction pathways in drought-and low temperature-responsive gene expression, respectively, Arabidopsis. Plant Cell 10: 1391-1406.
    Liming Xiong, Hojoung Lee, Manabu Ishitani, Yuko Tanaka, Becky Stevenson, Hisashi Koiwa, Stefan Kepinskil, & Ottoline Leyser. (2005). The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435, 446-451.
    Lohse G, Hedrich R. (1992). Characterization of the plasma membrane HC ATPase from Vicia faba guard cells; modulation by extracellular factors and seasonal changes. Planta 188: 206-14.
    Lopez-Molina L, Mongrand S, Kinoshita N, Chua NH. (2003). AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation. Genes Dev. 17: 410-18.
    Isasser S, Gali RR, Schwickart M, Larsen CN, Leggett DS, et al. (2002). Proteasome subunit Rpn1 binds ubiquitinlike protein domains. Nat. Cell Biol. 4: 725-30.
    Mas, P., Kim, W. Y., Somers, D. E. and Kay, S. A. (2003). Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 26: 567-570.
    McAinsh MR, Brownlee C, Hetherington AM. (1990). Abscisic acid-induced elevation of guard cell cytosolic Ca2C precedes stomatal closure. Nature 343: 186-88.
    McGinnis, K. M., Thomas, S. G., Soule, J. D., Strader, L. C., Zale, J. M., Sun, T. P. and Steber, C. M. (2003). The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell 15: 1120-1130.
    Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K. (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34: 137-148.
    Nelson, D. C., Lasswell, J., Rogg, L. E., Cohen, M. A. and Bartel, B. (2000). FKF1, a clockcontrolled gene that regulates the transition to flowering in Arabidopsis. Cell 101: 331-40.
    Nihal Dharmasiril, Sunethra Dharmasiril & Mark Estellel. (2005). The F-box protein TIR1 is an auxin receptor. Nature 435, 441-445.
    OsterlundMT, Hardtke CS, Wei N, Deng XW. (2000). Targeted destabilization of HY5during light-regulated development of Arabidopsis. Nature 405: 462-66.
    Patton, E. E., Willems, A. R. and Tyers, M. (1998). Combinatorial control ubiquitin-dependent proteolysis: don't Skp the F-box hypothesis. Trends Genet. 14: 236-243.
    Peart JR, Lu R, Sadanandom A, Malcuit I, Moffett P, et al. (2002). Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc. Natl. Acad. Sci. USA 99: 10865-69.
    Pickart, C. M. (2001). Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70: 503-33.
    Pintard, L., Willems, A., and Peter, M. (2004) Cullin-based ubiquitin ligases: Cu13-BTB complexes join the family. EMBO J. 23, 1681-1687.
    Potuschak, T., Lechner, E., Parmentier, Y., Yanagisawa, S., Grava, S., Koncz, C. and Genschik, P. (2003). EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F- box proteins: EBF1 and EBF2. Cell 115: 679-689.
    Qiao, H., Wang, H., Zhao, L., Zhou, J., Huang, J., Zhang, Y. and Xue, Y. (2004a). The F-box protein AhSLF-S_2 physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum. Plant Cell 16: 582-595.
    Qiao, H., Wang, F., Zhao, L, Zhou, J., Lai, Z., Zhang, Y., Robbins, T. P. and Xue, Y. (2004b). The F-Box protein AhSLF-S_2 controls the pollen function of S-RNase-based self-incompatibility. Plant Cell 16: 2307-2332.
    Ray A. Bressan, Paul M. Hasegawa, and Jian-Kang Zhu. (2002). Repression of stress-responsive genes by FIERY2, a novel transcriptional regulator in Arabidopsis. PNAS 16, 10899-10904.
    Saijo Y, Sullivan JA, Wang H, Yang J, Shen Y, et al. (2003). The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Dev. 17: 2642-47.
    Samach A, Klenz JE, Kohalmi SE, Risseeuw E, Haughn GW, Crosby WL. (1999). The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-Box protein required for normal patterning and growth in the floral meristem, lant J. 20: 433-45.
    Sasaki A, Itoh H, Gomi K, Ueguchi- Tanaka M, Ishiyama K, et al. (2003). Accumulation of phosphorylated repressor for gibberellin signaling in an F-Box mutant. Science 299: 1896-98.
    Schroeder JI, Raschke K, Neher E. (1987). Voltage dependence of KC channels in guard cell protoplasts. Proc. Natl. Acad. Sci. USA 84: 4108-12.
    Schroeder JI, Hagiwara S. (1989). Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature 338: 427-30.
    Schultz, E. A. and Haughn, G. W. (1991). LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell 3: 771-781.
    Schwechheimer C, Serino G, Deng XW. (2002). Multiple ubiquitin ligasemediated processes require COP9 signalosome andAXR1function. Plant Cell 14: 2553-63.
    Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T et al. (2002). Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold, and high-salinity stresses using a full-length cDNA microarray. Plant J 31: 279-292.
    Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T et al. (2002). Monitoring the expression pattern of ca. 7000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integ Genom 2: 282-291.
    Seo HS, Yang JY, Ishikawa M, Bolle C, Ballesteros ML, Chua NH. (2003). LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 423: 995-99.
    Serino G, Deng XW. (2003). The COP9 signalsome: regulating plant development through control of proteolysis. Annu. Rev. Plant Biol. 54: 165-82.
    Serrauo R. (1988). Structure and function of proton translocation ATPase in plasma membranes of plants and fungi. Biochim. Biophys. Acta 947: 1-28.
    Shalitin D, Yang HY, Mockler TC, Maymon M, Guo HW, et al. (2002). Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Nature 417: 763-67.
    Shinozaki K, Yamaguchi-Shinozaki K. (2000). Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 2000, 3: 217-223.
    Shimazaki K, Iino M, Zeiger E. (1986). Blue light-dependent proton extrusion by guard-cell protoplasts of Vicia faba. Nature 319: 324-26.
    Sijacic, P., Wang, X., Skirpan, A. L., Wang, Y., Dowd, P. E., McCubbin, A. G., Huang, S. and Kao, T. H. (2004). Identification of the pollen determinant of S-RNase-mediated self-incompatibility. Nature 429: 302-305.
    Smalle, J. and Vierstra R. D. (2004). The ubiquitin 26S proteasome proteolytic pathway. Annu. Rev. Plant Biol. 55: 555-590.
    Smalle J, Kurepa J, Yang P, Emborg TJ, Babyichuk E, et al. (2003). The pleiotropic role of the 26S proteasome subunit RPN10 in Arabidopsis thaliana growth and development supports a substratespecific function in abscisic acid signaling. Plant Cell 15: 965-80.
    Somers, D. E., Schultz, T. F., Milnamow, M. and Kay, S. A. (2000). ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101: 319-329.
    Stirnberg P, van de Sande K, Leyser HM. (2002). MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129:1131-41.
    Stone S. L., Anderson E. M., Mullen R. T., Goring, D. R. (2003). ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell 15: 885-898.
    Suzuki G, Yanagawa Y, Kwok SF, Matsui M, DengXW. (2002). Arabidopsis COP10 is a ubiquitin-conjugating enzyme variant that acts together with COP1 and the COP9 signalosome in repressing photomorphogenesis. Genes Dev. 16:554-59.
    Takai R, Matsuda N, Nakano A, Hasegawa K, Akimoto C, et al. (2002). EL5, a rice N-acetylchitooligosaccharide elicitor-responsive RING-H2 finger protein, is a ubiquitin ligase which functions in vitro in cooperation with an elicitor-responsive ubiquitin-conjugating enzyme, Os UBC5b. Plant J. 30:447-55.
    Thelander, M., Fredriksson, D., Schouten, J., Hoge, H. C. & Ronne, H. (2002). Cloning by pathway activation in yeast: identification of an Arabidopsis thaliana F-box protein that can turn on glucose repression. Plant Mol. Biol. 49, 69-79 (2002).
    Thiel G, MacRobbie EAC, Blatt MR. (1992). Membrane transport in stomatal guard cells: the importance of voltage control. J. Memb. Biol. 126:1-18.
    Thomashow MF. (1999). Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571-599.
    Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. (2000). Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 97:11632-11637.
    Ushijima, K., Sassa, H., Dandekar, A.M., Gradziel, T.M., Tao, R. and Hirano H. (2003). Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. Plant Cell 15: 771-81.
    Verma R, Aravind L, Oania R, McDonald WH, Yates JR 3rd, et al. (2002). Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298:611-15.
    Verma R, Chen S, Feldman R, Schieltz D, Yates J, et al. (2000). Proteasomal proteomics: Identification of nucleotidesensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell 11:3425-39.
    Vierstra, R.D. (2003). The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci. 8: 135-142.
    Volker Haake, Daniel Cook, JoseLuis Riechmann, Omaira Pineda, Michael F. Thomashow, and James Z. Zhang. (2002). Transcription Factor CBF4 Is a Regulator of Drought Adaptation in Arabidopsis. Plant Physiology 130, 639-648.
    Wang, KL., Yoshida, H., Lurin, C., and Ecker, JR. (2004) .Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428, 945-950.
    Wang, L., Dong, L., Zhang, Y. E., Zhang, Y., Wu, W., Deng, X. W., Xue, Y. (2004) Genome-wide analysis of S-locus F-box-like genes in Arabidopsis thaliana. Plant Mol Biol 56:929-945
    Wang, Y., Wang, X., Skirpan, A.L. and Kao, T.H. (2003). S-RNase-mediated self-incompatibility. J. Exp. Bot. 54,115-22.
    Wangxia Wang ,Basia Vinocur ,Arie Altman. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218: 1-14.
    Ward JM, Pei Z-M, Schroeder JI. (1995). Roles of ion channels in initiation of signal transduction in higher plants. Plant Cell 7:833-44.
    Wilkinson M, Silva ED, Zachgo S, Saedler H, Schwarz-Sommer Z. (2000). CHORIPETALA and DESPENTEADO: general regulators during plant development and potential floral targets of FIMBRIATA-mediated degradation. Development 127:3725-34.
    Woo HR, Chung KM, Park JH, Oh SA, Ahn T, Hong SH, Jang SK, Nam HG. (2001). ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. 13: 1779-1790.
    Xie, Q., Guo, HS., Dallman, G., Fang, S., Weissman, AM., and Chua, N. H. (2002). SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419, 167-170.
    Xue. (2004). Genome-wide analysis of S-Locus F-box-like genes in Arabidopsis thaliana Plant Molecular Biology 56: 929-945.
    Xu L, Liu F, Lechner E, Genschik P, Crosby WL, Ma H, Peng W, Huang D and Xie D. (2002). The SCF~(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14: 1919-1935.
    Yamane, H., Ikeda, K., Ushijima, K., Sassa, H. and Tao R. (2003). A pollen-expressed gene for a novel protein with an F-box motif that is very tightly linked to a gene for S-RNase in two species of cherry, Prunus cerasus and P. avium. Plant Cell Physiol. 44: 764-9.
    Yanagawa Y, Hasezawa S, Kumagai F, Oka M, Fujimuro M, et al. (2002). Cellcycle dependent dynamic change of 26S proteasome distribution in tobacco BY-2 cells. Plant Cell Physiol. 43:604-13.
    Yang M, Hu Y, Lodhi M, McCombie WR, Ma H. (1999). The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation. Proc. Natl. Acad. Sci. USA 96: 11416-21.
    Yah J, Wang J, Li Q, Hwang J-R, Patterson C, Zhang H. (2003). AtCHIP, a U-Box-containing E3 ubiquitin ligase, plays a critical role in temperature stress tolerance in Arabidopsis. Plant Physiol 132:1-9.
    Zhao DZ, Yu QL, Chert M, Ma H. (2001) .The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis. Development 128:2735-46.
    Zhizhong Gong, Teresa Morales-Ruiz, Rafael R. Ariza,Teresa Rolda' n-Arjona, Lisa David, and Jian-Kang Zhu.(2002). ROS1, a Repressor of Transcriptional Gene Silencing in Arabidopsis, Encodes a DNA Glycosylase/Lyase. Cell 111: 803-814.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.