革兰氏阳性中度嗜盐菌响应渗透胁迫的差异蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
达坂喜盐芽孢杆菌(Halobacillus dabanensis)D-8~T是一株分离自新疆达坂湖的革兰氏阳性中度嗜盐菌,能在0.5%~23%盐浓度的SW培养基上生长,最适生长盐浓度是3%~15%。为揭示革兰氏阳性中度嗜盐菌的耐盐机制,利用差异蛋白质组学研究技术,得到了高分辨率的双向电泳图谱。在电泳胶上清晰地分离出大约700个蛋白点,分子量为17.5~66kDa,等电点范围为3.5~5.9,表明D-8~T菌株中的蛋白质大多数属于酸性蛋白质。此外,大量的高丰度蛋白质集中在4.5~5.0的极窄范围的等电点区域,大多数的低丰度蛋白质分布在图谱的其他部分。
     利用蛋白质组学技术研究了D-8~T菌株受到剧烈的高盐冲击时的差异表达蛋白谱,鉴定了一些与高盐冲击相关的蛋白质。采用双向电泳分离技术和ImageMasterTM 2D Platinum图像软件分析方法,对在1%盐浓度下生长的D-8~T菌株(培养18h)和受到25%盐浓度的瞬间冲击5min和50min后的蛋白质表达谱进行比较研究的结果表明,高盐冲击后总计有74个蛋白点表达量显著改变,其中24个蛋白点在高盐下表达量明显增加,8个高盐诱导的新蛋白点,以及42个表达量显著下降的蛋白点.利用MALDI-TOF/MS检测肽质指纹谱和MASCOT检索蛋白质数据库,初步鉴定了7个高盐冲击后表达量增加的蛋白质,它们涉及信号传导途径(类CheY接受器)、能量代谢途径(草酰乙酸脱羧酶、烯醇酶)、热激蛋白和分子伴侣(Ⅰ类热激蛋白,有伴侣活性的ATP酶以及ClpC ATP酶)和抗逆蛋白(烯醇酶)等。此外,ClpC ATP酶是首次鉴定存在于革兰氏阳性中度嗜盐菌中。
     为了探讨D-8~T菌株受到低渗沖击时的差异表达蛋白,对生长在20%盐度下的D-8~T曲株(培养18h)受到剧烈的低渗冲击(0%盐度)5min和50min后的蛋白质表达谱进行了比较分析。结果显示,总计有39个蛋白点的表达量发生了明显改变,其中21个蛋白点的表达量明显增加(包括低渗冲击诱导出现的6个新蛋白点),18个蛋白点表达量受到抑制。经过质谱分析和数据库搜索,初步鉴定了5个低渗冲击后表达量增加的蛋白质,分别为形态检测蛋白、青霉素结合蛋白、DnaK、ClpC ATP酶和EPSPS等。此外,热激蛋白是首次鉴定在细菌受到低渗冲击时表达量增加的蛋白质。
     研究了D-8~T菌株在不同盐浓度下的蛋白质表达谱,发现133个蛋白点的表达量发生了明显改变。88个蛋白点在10%和20%的高盐度下表达量显著增加,包括26个高盐诱导出现的新蛋白点;45个蛋白点在高盐度下的表达量明显下降,其中包括20个表达消失的蛋白点(有16个蛋白点只是在1%盐度中生长的细胞中才表达)。从质谱分析和蛋白质数据库匹配结果来看,D-8~T菌株在高盐浓度下生长时,表达量明显增加的蛋白质主要有以下几类:与能量代谢相关的蛋白质、参与细胞生存和增殖的蛋白质、作为全局胁迫调节子适应多种胁迫条件的蛋白质、与亲和性溶质如海藻糖和甜菜碱可能相关的蛋白质等。
Halobacillus dabanensis D-8~T, a Gram-positive moderately halophilic bacterium, was isolated from the saline deposits of Daban lake in the Xinjiang Uygur Autonomous Region of China. It can grow in the complex medium containing 0.5% to 23% salt with the optimum growth salinity ranging from 3% to 15%. To investigate the salt tolerant mechanisms of the Gram-positive moderately halophilic bacterium D-8~T, the differential proteome techniques was employed and the high resolution 2-D PAGE maps were obtained. About 700 protein spots with the molecular weight between 17.5~66kDa were visualized in the gels, which were spread in the gel of the isoelectric point 3.5 to 5.9. Plenty of high abundance proteins were mainly clustered in the narrow region with the isoelectric point between 4.5 and 5.0, but most of low abundance proteins were in the other region dispersedly. These indicate that the most proteins in the strain D-8~T would be acidic.Some proteins related to salt shock were identified by applying the proteome techniques to analyze the differential protein expression files of the strain D-8~T exposed to severe salt shock. Comparative analysis of the protein expression files was carried out between the strain incubated in the 1% salinity medium (18h) and the ones shocked immediately with high salinity (25%) for 5min and 50min, respectively. There were 74 protein spots expressed differently. Among them, the expression of 24 protein spots were increased markedly while 8 protein spots were induced by salt stress, and the other 42 protein spots were decreased obviously. After hyperosmotic challenge, 7 up-regulated protein spots were identified through MALDI-TOF/MS and MASCOT. They were involved in CheY-like receiver in signal transduction pathways, oxaloacetate decarboxylase and enolase in energy metabolism pathways, heat shock protein and molecular chaperone such as class I heat shock protein, ATPases with chaperone activity, ClpC ATPase et al, and anti-adversity protein such as enolase. It was the first time that ClpC ATPase was identified in Gram-positive moderately halophilic bacteria.To study differential expression protein files of moderately halophilic bacteria subjected to hypoosmotic shock, comparative analysis of the protein expression files was carried out between the strain incubated in the 20% salinity medium (18h) and the ones shocked immediately with low salinity (0%) for 5min and 50min, respectively. There were 39 protein spots expressed differently. Among them, the expression of 21 protein spots were up-regulated clearly involving 6 new induced protein spots and the other 18 protein spots were decreased obviously. After hypoosmotic stress, 5 up-regulated protein spots were identified through MALDI-TOF/MS and MASCOT. They were similar to chaperone protein DnaK, rod shape-determining protein, 5-enolpyruvoylshikimate- 3-phosphate synthase, penicillin-binding protein and ClpC ATPase, respectively. It was the first time that heat shock proteins were found to be induced in bacterium after a shift to low-osmolarity.
    By means of differential proteomic approach, differential expression protein files of moderately halophilic bacteria grew in different salinity medium was studied, and some proteins related to high salinity were identified. It was found that 133 protein spots expressed differently. In comparison with the sample in 1% salinity, the expression of 88 protein spots was up-regulated remarkably when the strain D-8~T responded to long-term high salt stress between 10% and 20%. Among them, 26 new protein spots were induced by high salt. In addition, 45 protein spots were depressed evidently, among which 20 protein spots disappeared in high salinity. From the results of mass spectrum analyzing and protein databases matching, when the strain D-8~T grew in high salt overexpressed proteins were shown as follows: related to energy-producing pathway, involved in the cell growth and propagation, response to many kinds of stress like global stress regulators and concerned with compatible solutes including trehalose and beta
引文
Ajouz B., Berrier C., Garrigues A., et al. Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of Escherichia coli cells. J. Biol. Chem., 1999, 273: 26670-26674
    Akbar S., Gaidenko T. A., Kang C. M., et al. New family of regulators in the environmental signaling pathway which activates the general stress transcription factor sigma(B) of Bacillus subtilis. J. Bacteriol., 2001, 183: 1329-1338
    Akbar S., Price C. W. Isolation and characterization of csbB, a gene controlled by Bacillus subtilis general stress transcription factor sigma B. Gene, 1996, 177: 123-128
    Andersen J. S., Lyon C. E., Fox A. H., et al. Directed proteomic analysis of the human nucleolus. Curr. Biol., 2002, 1: 1-11
    Antelmann H., Bernhardt J., Schmid R., et al. A gene at 333 degrees on the Bacillus subtilis chromosome encodes the newly identified sigma B-dependent general stress protein GspA. J. Bacteriol., 1995, 177: 3540-3545
    Antelmann H., Engelmann S., Schmid R., et al. Expression of a stress-and starvationinduced dps/pexB-homologous gene is controlled by the alternative sigma factor sigma B in Bacillus subtilis. J. Bacteriol., 1997, 179: 7251-7256
    Antelmann H., Scharf C., Hecker M. Phosphate Starvation-Inducible Proteins of Bacillus subtilis: Proteomics and Transcriptional Analysis. Journal of Bacteriology, 2000, 182(16): 4478-4490
    Antonio V., Joaquin J. N., Aharon O. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev., 1998, 2: 504-544
    Armitage J. P. Behavioural responses of bacteria to light and oxygen. Arch. Microbiol., 1997, 168: 249-261
    Arnold R. J., Reilly J. P. Analysis of methylation and acetylation of E. coli ribosomal proteins. In: Kannicht C., ed. Post-translational modifications of proteins: Tools for functional proteomics. Totowa: Humana Press, 2002, 205-210
    Arons S., Bnehrieser C., Folio P., et al. Global analysis of gene expression in an rpoN mutant of Listeria monocytogenes. Microbiology, 2004, 150(5): 1581-1590
    Asoh S., Matsnzawa H., Matsnhashi M., et al. Molecular cloning and characterization of the genes (pbpA and rodA) responsible for the rod shape ofEscherichia coli K-12: analysis of gene expression with transposon Tn5 mutagenesis and protein synthesis directed by constructed plasmids. J. Bacteriol., 1983, 154(1): 10-16
    Babst M., Henneeke H., Fischer H. M. Two different mechanisms are involved in the heat-shock regulation of chaperonin gene expression in Bradyrhizobium japonicum. Mol. Microbiol., 1996, 19: 827-839
    Bai L. H., Qiao D. R., Zheng M., et al. Cloning enolase gene of Dunaliella salina with modified degenerate PCR technology. Journal of Beijing Forestry University, 2004, 26: 25-29
    Baird P. N., Hall L. M., Coates A. R. Cloning and sequence analysis of the 10 kDa antigen gene of Mycobacterium tuberculosis. J. Gen. Microbiol., 1989, 135(4): 931-939
    Barak R., Eisenbach M., Co-regulation of acetylation and phosphorylation of CheY, A response regulator in chemotaxis of Escherichia coli. J. Mol. Biol., 2004, 342: 375-381
    Barak R., Prasad K., Shainskaya A., et al. Acetylation of the chemotaxis response regulator
    Barbirz S., Jakob U., Glocker M. O. Mass spectrometry unravels disulfide bond formation as the mechanism that activates a molecular chaperone. J. Biol. Chem., 2000, 275: 18759-18766
    Bartlett J. L., Levin G., Blount P. An in vivo assay identifies changes in residue accessibility on mechanosensitive channel gating. Proc. Natl. Acad. Sci. USA, 2004, 101(27): 10161-10165; Epub 2004, Jun 28
    Beier D., Spohn G., Rappuoli R., et al. Identification and characterization of an operon of Helicobacter pylori that is involved in motility and stress adaptation. Journal of Bacteriology, 1997, 179: 4676-4683
    Bernhardt J., Volker U., Volker A., et al. Specific and general stress proteins in Bacillus subtilis-a two-dimensional protein electrophoresis study. Microbiology, 1997, 143: 999-1017
    Bernhardt J., Volker U., Volker A., et al. Specific and general stress proteins in Bacillus subtilis—A two-dimensional protein electrophoresis study. Microbiology, 1997, 143: 999-1017
    Binzai P. A., Muller M., Walther D., et al. A molecular scanner to automate proteomic research and to display proteome images. Anal. Chem., 1999, 71: 4981-4988
    Bjellqvist B., Sanchez J. C., Hochstrasser D. F., et al. Micropreparative two dimensional electrophoresis allowing the separation of samples containing milligram amounts of proteins. Electrophoresis, 1993, 14: 1375-1378
    Blackstock W. P., Weir M. P. Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol., 1999, 17: 121-127
    Blatch G. L., Lassie M. The tetratricopeptide repeat: a structural motif mediating protein-protei interactions. Bioessays, 1999, 21: 932-939
    Blom E., van de Vrugt H. J., de Vries Y., et al. Multiple TPR motifs characterize the Fanconi anemia FANCG protein. DNA Repair (Amst), 2004, 3(1): 77-84
    Blount P., Sukharev S. I., Schroeder M. J., et al. Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli. Proc. Natl. Acad. Sci. USA, 1996, 93: 11652-11657
    Boch J., Kempf B., Schmid R., et al. Synthesis of the osmoprotectant glycine betaine in Bacillus subtilis: characterization of the gbsAB genes. J. Bacteriol., 1996, 178: 5121-5129
    Boorstein W. R., Ziegelhoffer T., Craig E. A. Molecular evolution of the HSP70 multigene family. J. Mol.Evol., 1994,38: 1-17
    Booth I. R., Higgins C. F. Enteric bacteria and osmotic stress: intracellular potassium glutamate as a secondary signal of osmotic stress. FEMS Microbiol. Rev., 1990, 75: 239-246
    Booth I. R., Louis P. Managing hypoosmotic stress: aquaporins and mechanosensitive channels in Escherichia coli. Curr. Opin. Microbiol., 1999, 2(2): 166-169
    Born T. L., Blanchard J. S. Enzyme-catalyzed acylation of homoserine: mechanistic characterization of the Escherichia coli metA-encoded homoserine transsuccinylase. Biochemistry, 1999, 38(43): 14416-14423
    Botsford J. L. Analysis of protein expression in response to osmotic stress in Escherichia coli. FEMS Microbiol. lett., 1990, 72: 355-360
    Bouche S., Klauck E., Fischer D., et al. Regulation of RssB-dependent proteolysis in Escherichia coli: A role for acetyl phosphate in a response regulator-controlled process. Mol. Microbiol., 1998, 27: 787-795
    Bren A., Eisenbach M. How signals are heard during bacterial chemotaxis: protein-protein interactions in sensory signal propagation. J. Bacteriol., 2000, 182: 6865-6873
    Brow A. D. Aspects of bacterial response to the ionic environment. Bacteriol. Rev., 1964, 28: 296-329
    Brown A. D. Microbial water stress physiology: principles and perspectives. Chichester, England:. Wiley and Sons Ltd., 1990
    Bucca G., Brassington A. M., Schonfeld H. J., et al. The HspR regulon of Streptomyces coelicolor: A role for the DnaK chaperone as a transcriptional co-repressordagger. Mol. Microbiol., 38: 1093-1103
    Bucca G., Ferina G., Puglia A. M., et al. The dna Koperon of Streptomyces coelicolor encodes a novel heat-shock protein, which binds to the promoter region of the operon. Mol. Microbiol., 1995, 17: 663-674
    Bucca G., Hindle Z., Smith C. P. Regulation of the dnaK operon of Streptomyces coelicolor A3(2) is governed by HspR, an autoregulatory repressor protein. J. Bacteriol., 1997, 179: 5999-6004
    Burgess R. R., Anthony L. How sigma docks to RNA polymerase and what sigma does. Curr. Opin. Microbiol., 2001,4: 126-131
    Buttner K., Bernhardt J., Scharf C, et al. A comprehensive two-dimensional map of cytosolic proteins of Bacillus subtilis. Electrophoresis, 2001, 22: 2908-2935
    Cagney G., Emili A. De novo peptide sequencing and quantitative profiling of complex protein mixtures using mass coded abundance tagging. Nature Biotech., 2002, 20(2): 163-170
    Cai Y., Jin Z, Florens L., et al. The mammalian YL1 protein is a shared subunit of the TRRAP/TIP60 histone acetyltransferase and SRCAP complexes. J. Biol. Chem., 2005, Jan 11
    Caldas T. D., Yaagouhi A. E., Richarme G. Chaperone properties of bacterial elongation factor EF-Tu. J. Biol. Chem., 1998, 273: 11478-11482
    Canovas D., Vargas C., Csonka L. N., et al. Osmoprotectants in Halomonas elongate: high-affinity betaine transport system and choline-betaine pathway. J. Bacteriol., 1996, 178: 7221-7226
    Canovas D., Vargas C., F.Iglesias-Guerra, et al. Isolation and characterization of salt-sensitive mutants of the moderate halophile Halomonas elongate and cloning of the ectoine synthesis genes. J. Biol. Chem., 1997, 272: 25794-25801
    Carolyn Wrobel Emmett V. Schmidt and Michael Polymenis. CDC64 Encodes Cytoplasmic Alanyl-tRNA Synthetase, Alalp, of Saccharomyces cerevisiae. J. Bacteriol., 1999, 181(24): 7618-7620
    Carper S. W., Willis D. G., Manning K. A., et al. Spermidine acetylation in response to a variety of stresses Escherichia coli. J. Biol. Chem., 1991, 266: 12439-12441
    Cash P. Characterisation of bacterial proteomes by two-dimensional electrophoresis. Anai.Chim.Acta., 1998, 372: 121-145
    Castellanos Serra L. R., Fernandez Patron C., Huerta V., et al. A procedure for protein elution from reverse stained polyacrylamide gels applicable at the preparation of low abundance proteins for microanalysis. Electrophoresis, 1996, 17: 1564-1572
    Caylay S., Lewis B. A., Guttman H. J., et al. Characterisation of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity. J. Mol. Biol., 1991, 222: 281-300
    Chang G., Spencer R. H., Lee A. T., et al. Structurre of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science, 1998, 282: 2220-2226
    Chevallet M., Santoni V., Rabilloud T., et al. New zwitterionica detergents improve the analysis of membrane proteins by two dimensional electrophoresis. Electrophoresis, 1998, 19: 1901-1909
    Cho C. W., Lee S. H., Choi J., et al. Improvement of the two-dimensional gel electrophoresis analysis for the proteome study of Halobacterium salinarum. Proteomics, 2003, 3(12): 2325-2329
    D'Andrea L. D., Regan L. TPR proteins: the versatile helix. Trends Biochem. Sci., 2003, 28(12): 655-662
    Harst A., Lin H., Obermann W. M. Ahal competes with Hop, p50 and p23 for binding to the molecular chaperone Hsp90 and contributes to kinase and hormone receptor activation. Biochem. J., 2004, Dec 7;
    Klein C., Garcia R. C., Bisle B., et al. The membrane proteome of Halobacterium salinarum Proteomics, 2005, 5(1): 180-197
    Cho C. W., Lee S. H., Choi J., et al. Improvement of the two-dimensional gel electrophoresis analysis for the proteome study of Halobacterium salinarum. Proteomics, 2003, 3(12): 2325-2329
    Craig E. A. The heat-shock response. CRC Crit. Rev. Biochem., 1985, 18: 239-280
    Csonka L. N. Physiological and genetic responses of bacteria to osmotic stress. MICROBIOL. REV., 1989, 53(1): 121-147
    Csonka L. N. Regulation of cytoplasmic proline levels in Salmonella typhimurium: effect of osmotic stress on synthesis, degradation, and cellular retention of proline. J. Bacteriol., 1988, 170: 2374-2378
    Csonka L. N., Hanson A. D. Prokaryotic osmoregulation: Genetics and physiology. ANNU. REV. MICROB1OL., 1991, 45: 569-606
    Daniel R. A., Errington J. Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell, 2003, 113(6): 767-776
    Dartois V., Debarbouille M., Kunst F., et al. Characterization of a novel member of the DegS-DegU regulon affected by salt stress in Bacillus subtilis. J. Bacteriol., 1998, 180: 1855-1861
    David T. W., Yvonne E. L., Pierre C., et al. Identification of trehalose and glycine betaine as compatible solutes in the moderately halophilic sulfate reducing bacterium, Desulfovibrio halophilus. FEMS Microbiology Letters, 1996, 140: 203-207
    Davis R. H., Ristnw J. L. Osmotic effects on the polyamine pathway of Neurospora crassa. Exp. Mycol., 1995, 19(4): 314-319
    De Pedro M. A., Donaehie W. D., Holtje J. V. Constitutive septal murein synthesis in Escherichia coli with impaired activity of the morphogenetic proteins RodA and penicillin-binding protein 2. J. Bacteriol., 2001, 183: 4115-4126
    De Qin Feng, Bo Zhang, Bai Sun Zhao, et al. A proteomic analysis of gram-positive moderately halophilic bacterium Halobacillus dabanensis D-8T under salt shock conditions. (revised)
    De Qin Feng, Bo Zhang, Bai Sun Zhao, et al. A proteomic analysis of gram-positive moderately halophilic bacterium Halobacillus sp. D-8T under salt shock conditions. (submitted)
    De Qin Feng, Li Shi Xie, Xiao Hung Li, et al. A Proteomic Analysis of Gram-positive Moderately Halophilic Bacterium Halobacillus dabanensis D-8T under Hypoosmotic Stress Conditions. (revised)
    Derre I., Rapoport G., Devine K., et al. ClpE, a novel type of HSP100 ATPase, is part of the CtsR heatshock regulon of Bacillus subtilis. Mol. Microbiol., 1999, 32: 581-593
    Derre I., Rapoport G., Msadek T. CtsR, a novel regulator of stress and heat-shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria. Mol. Microbiol., 1999, 31: 117-131
    Dinnbier U., Limpinsel E., Sehmid R., et al. Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch. Microbiol., 1988, 150: 348-357
    Dougherty T. J., Pueci M. J. Penicillin-binding proteins are regulated by RpoS during transitions in growth states of Escherichia coli. Antimicrob. Agents Chemother, 1994, 38: 205-210
    Duche O., Tremoulet F., Glaser P., et al. A postgenomic appraisal ofosmotolerance in Listeria monocytogenes. Appl. Environ. Microbiol., 2002, 68, 1491-1498
    Dunn M. Two-dimensional polyacrylamide gel electrophoresis. In: Advances in Electrophoresis, Vol. 1. New York: VCH Publishers, 1987, 4-109
    Economou A., Roussis A., Milioni D. Patterns of protein synthesis in the moderately halophilic bacterium Deloya halophila in response to sudden changes in external salinity. FEMS Microbiol. Ecol., 1989, 62: 103-110
    Edward C. E., Troy H., et al. Isolation protocol for two-dimensional polyacrylamide gel electrophoresis analysis of Haloferax volcanii proteome. Bio. Techniques, 2003, 35: 478-482
    Emili A. Q., Cagney G. Large scale functional analysis using peptide or protein arrays. Nat. Biotechnol., 2000, 18: 393-397
    Engelmann S., Lindner C., Hecker M. Cloning, nucleotide sequence, and regulation of katE encoding a sigma B-dependent catalase in Bacillus subtilis. J. Bacteriol., 1995, 177: 5598-5605
    Epstein W. Osmoregulation by potassium transport in Escherichia coli. FEMS Microbiol. Rev., 1986, 39: 73-78
    Erhard B., Reinhard K. Bacterial shock Responses. Washington. D. C.: ASM Press, 2000, 79-97
    Erwin A. G., Hans G. T. Microbial behaviour in salt-stressed ecosystem. FEMS Microbiology Reviews, 1994, 15: 95-108
    Esvan H., Minet J., Laclie C., et al. Protein variations in Listeria monocytogenes exposed to high salinities, Int. J. Food Microbiol., 2000, 55: 151-155
    Eymann C., Dreisbach A., Albrecht D., et al. Two main proteome fractions (pⅠ 4-7 and zoom gel pⅠ 4.5-5.5) should be sufficient for such high-throughput physiological. Proteomics, 2004, 4: 2849-2876
    Eymann C., Hecker M. Induction of sigma(B)-dependent general stress genes by amino acid starvation in a spo0H mutant 2000. of Bacillus subtilis. FEMS Microbiol. Lett., 2001, 199: 221-227
    Figge R. M., Divakaruni A. V., Gober J. W. MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol. Microbiol., 2004, 51(5): 1321-1332
    Flahaut S., Hartke A., Giard J. C., et al. Relationship between stress response towards bile salts, acid and heat treatment in Enterococcus faecalis. FEMS Microbiol. Lett., 1996, 138: 49-54
    Fonnesbech V. B., Huss H. H., Ojeniyi B., et al. Elucidation of Listeria monocytogenes contamination routes in cold-smoked salmon processing plants detected by DNA-based typing methods. Appl. Environ. Microbiol., 2001, 67: 2586-2595
    Fraser K. R., Harvie D., Coote P. J., et al. Identification and characterization of an ATP binding cassette L-carnitine transporter in Listeria monocytogenes. Appl. Environ. Microbiol., 2000, 66: 4696-4704
    Galinski E. A., Truper H. G.. Microbial behaviour in salt-shocked ecosystems. FEMS Microbiol. Rev., 1994, 15: 95-108
    Galperin M. Y., Nikolskaya A. N., Koonin E. V. Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol. Lett., 2001, 203: 11-21
    Gerhardt P. N., Smith L. T., Smth G. M. Osmotic and chill activation ofglycine betaine porter Ⅱ in Listeria monocytogenes membrane vesicles. J. Bacteriol., 2000, 182: 2544-2550
    Germer J., Muffler A., Henge-Aronis R. Trehalose is not relevant for in vivo activity of σ~S-containing RNA polymerase in Escherichia coli. J. Bacteriol., 1998, 180: 1603-1606
    Gerth U., Kriiger E., Derre I., et al. Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance. Mol. Microbiol., 1998, 28: 787-802
    Gnanou B. N., Brissonnet F. D., Lafarge V., et al. Effect of various environmental parameters on the recovery of sublethally salt-damaged and acid-damaged Listeria monocytogenes. J. Appl. Microbiol., 2000, 89: 944-950
    Goebl M., Yanagida M. The TPR snap helix: a novel protein repeat motif from mitosis to transcription. Trends Biochem. Sci., 1991, 16: 173-177
    Gorg A., Obermaier C., Madjar J. J. Very alkaline immobilized pH gradients for two dimensional electrophoresis of ribosomal and nuclear proteins. Electrophoresis, 1997, 18: 328-337
    Gorg A., Postel W., Domscheit A., et al. Two-dimensional electrophoresis with immobilized pH gradients of leaf proteins from barley (Hordeum vulgate): Method, reproducibility, and genetic aspects. Electrophoresis, 1988, 9: 681-692
    Gorg A., Postel W., Gunther S. Thecurrent state of two dimensional electrophoresis with immobilized pH gradient. Eiectrophoresis, 1988, 9: 531-546
    Gottesman S. Proteases and their targets in Escherichia coll. Annu. Rev. Genet., 1996, 30: 465-506
    Gottesman S. Regulation by proteolysis: Developmental switches. Curr. Opin. Microbiol., 1999, 2: 142-147
    Gottesman S., Maurizi M. R. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol. Rev., 1992, 56: 592-621
    Gottesman S., Squires C., Piehersky E., et al. Conservation of the regulatory subunit for the Clp ATP-dependent protease in prokaryotes and eukaryotes. Proc. Natl. Acad. Sci. USA, 1990, 87: 3513-3517
    Graumann P., Schroder K., Schmid R., et al. Cold shock stress-induced proteins in Bacillus subtilis. Journal of Bacteriology, 1996, 178: 4611-4619.
    Griffin T. J., Han D. K., Gygi S. P., et al. Toward a high-throughput approach to quantitative proteomic analysis: Expression-dependent protein identification by mass spectrometry. J. Am. Soc. Mass Spectrom., 2001, 12: 1238-1246
    Griffin T. J., Gygi S. P., Rist B., et al. Quantitative proteomic analysis using a MALDI quadrupole-time-of-flight mass spectrometer. Anal. Chem., 2001, 73 (5): 978-986
    Gupta R. S. Evolution of the chaperonin families (Hsp60, Hsp10, and Tcp-1) of proteins and the origin of eukaryotic cells. Mol. Microbiol., 1995, 15: 1-11
    Gygi S. P., Rist B., Gerber S. A., et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol., 1999, 17: 994-999
    Gygi S. P., Rochon Y., Franza B., et al. Correlation between protein and mRNA abundance in yeast. Mol. Biol., 1999, 19(3): 1720-1730
    Gygi S., Rist B., Gerber S., et al. Quantitative analysis of complex protein mixtures using isotope coded affinity tags. Nature Biotech., 1999, 17(10): 994-999
    Hagemann M., Richter S., Mikkat S. The ggtA gene encodes a subunit of the transport system for the osmoprotective compound glucosylglycerol in Synechocystis sp. strain PCC 6803. J. Bacteriol., 1997, 179(3): 714-720
    Haugstetter J., Blicher T., Ellgaard L. Identification and characterization of a novel thioredoxin-related transmembrane protein of the endoplasmic reticulum. J. Biol. Chem., 2004, Dec 28;
    Hebraud M., Guzzo J. The main cold shock protein of Listena monocytogenes belongs to the family of ferritin-like proteins. FEMS Microbiol. Lett., 2000, 190: 29-34
    Hecker M., Heim C., Volker U., et al._Induction of stress proteins by sodium chloride treatment in Bacillus subtilis. Arch. Microbiol., 1988, 150: 564-566.
    Hecker M., Schumann W., Volker U. Heat-shock and general stress response in Bacillus subtilis. Mol. Microbiol, 1996, 19: 417-428
    Hecker M., Volker U. Non-specific, general, and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the sigmaB regulon. Mol. Microbiol., 1998, 29: 1129-1136
    Helmann J. D. Anti-sigma factors. Curr. Opin. Microbiol., 1999, 2: 135-141
    Hengge-Aronis R. Back to log phase: sigma S as a global regulator in the osmotic control of gene expression in Escherichia coli. Mol. Microbiol., 1996, 21: 887-893
    Hengge-Aronis R. The general stress response in Escherichia coli. In: Torz G., Hengge-Aronis R., eds. Bacterial Stress Responses. Washington DC: ASM Press, 2000, 161-178
    Henzel W. J., Billeci T. M., Stults J. T., et al. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc. Natl. Acad. Sci. USA, 1993, 90: 5011-5015
    Higgins C. F., Cairney J., Stirling D. A., et al. Osmotic regulation of gene expression: ionic strength as an intracellular signal? Trends Biochem. Sci., 1987, 12: 339-344
    Hilden I., Krath B. N., Hove-Jensen B. Tricistronic operon expression of the genes gcaD (tms), which encodes N-acetylglucosamine 1-phosphate uridyltransferase, prs, which encodes phospghoribosyl diphosphate synthetase, and ctc in vegetative cells of Bacillus subtilis. J. Bacteriol., 1995, 177: 2403-2407
    Hipkiss A. P., Armstrong D. W., Kushner D. J. Protein turnover in a moderately halophilic bacterium. Can. J. Microbiol., 1980, 26: 196-203
    Hocb J. A. Two-component and phosphorelay signal transduction. Curr. Opin. Microbiol., 2000, 3: 165-170
    Horlacher R., Uland K., Klein W., et al. Characterization of a cytoplasmic trehalase of Escherichia coli. J. Bacterial., 1996, 178: 6250-6257
    Hrkal Z., Sb Lek. On the way to functional genomics.2003, 104: 217-222. ncbi.nlm.nih.gov
    Hubbard J. A., MacLachlan L. K., King G. W., et al. Nuclear magnetic resonance spectroscopy reveals the functional state of the signalling protein CheY in vivo in Escherichia coli. Mol. Microbiol., 2003, 49: 1191-2000
    Humphery S., Cordwell S. J., Blackstock W. P. Proteome research: complementarity and limitation swith respect to the RNA and DNA worlds. Electrophoresis, 1997, 18: 1217-1242
    Ishihama A. Functional modulation of Escherichia coli RNA polymerase. Annu. Rev. Microbiol., 2000, 54:499-518
    James P., Quadroni M., Carafoli E., et al. Protein identification by mass profile fingerprinting. Biochem. Biophys. Res. Commun., 1993, 195: 58-64
    James P., Quadroni M., Carafoli E., et al. Protein identification in DNA databases by peptide mass fingerprinting. Protein Sci., 1994, 3: 1347-1350
    Jebbar M., Talibart R., Gioux K., et al. Osmoprotection of Escherichia coli by ectoine: uptake and accumulation characteristics. J. Bacteriol., 1992, 174: 5027-5035
    Jensen P. K., Pasa-Tolic L., Peden K. K., et al. Mass spectrometric detection for capillary isoelectric focusing separations of complex protein mixtures. Electrophoresis, 2000, 21 (7): 1372-1380
    Jiang J. Q., Wei W., Du B. H., et al. Salt-tolerance genes involved in cation effux and osmoregulation of Sinorhizobium fredii RT19 detected by isolation and characterization of Tn5 mutants FEMS Microiol. Let., 2004, 239: 139-146
    Joo W. A., Kim C. W. Proteomics of Halophilic archaea. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci., 2005, 815(1-2): 237-250
    Jorg B., Volker U., Volker A., et al. Specific and general stress proteins in Bacillus subtilis—a two-deimensional protein electrophoresis study. Microbiology, 1997, 143: 999-1017
    Jungblut P. R., Bumann D., Haas G., et al. Comparative proteome analysis of Helicobacter pylori. Mol. Microbiol., 2000, 36: 710-725
    Juri R., Matthias M. What does it mean to identify a protein in Proteomics? Trends in Biochemical Sciences, 2002, 27(2): 74-78
    Kaan T., Jurgen B., Schweder T. Regulation of the expression of the cold shock proteins CspB and CspC in Bacillus subtilis. Mol. Gen. Genet., 1999, 262: 351-354
    Kamila G., Nathalif P., Vianney P., et al. Disaccharides as a new class of nonaccumulated osmoprotectants for Sinorhizobium meliloti. Appl. Environ. Microbiol., 1999:1491-1500
    Kandror O., Busconi L., Sherman M., et al. Rapid degradation of an abnormal protein in Escherichia coli involves the chaperones GroEL and GroES. J. Biol. Chem., 1994, 269: 23575-23582
    Kappes R. M., Kempf B., Kneip S., et al. Two evolutionary closely related ABC transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in Bacillus subtilis. Mol. Microbiol., 1999, 32: 203-216
    Karadzic I. M., Maupin-Fnrlow J. A. Improvement of two-dimensional gel electrophoresis proteome maps of the haloarchaeon Haloferax volcanii. Proteomics, 2005, 5(2): 354-359
    Karamanou S., Katinakis P. Heat shock proteins in the moderately halophilic bacterium Deleya halophila: protective effect of high salt concentration against thermal shock. Ann. Microbiol., 1988, 139: 505-514
    Karamanou S., Katinakis P. Heat shock proteins in the moderately halophilic bacterium Deleya halophila: protective effect of high salt concentration against thermal shock. Ann. Inst. Pasteur Microbiol., 1988, 139(5): 505-514
    Karas M., Hillenkamp F. Laser desorption ionization of proteins with molecular mass execeeding 10 000 daltons. Anal. Chem., 1988, 60: 2299-2301
    katinakis P. The pattern of protein synthesis induced by heat-shock of the moderately halophilic bacterium Chromobacterium marismortui: protective effect of high salt concentration against the thermal shock. Microbiologica, 1989, 12(1): 61-67
    Katinakis, P. The pattern of protein synthesis induced by heat-shock of the moderately halophilic bacterium Chromobacterium marismortui: protective effect of high salt concentration against the thermal shock. Microbiologica., 1989, 12: 61-67
    Kempf B., Bremer E. Uptake and synthesis of compatible solutes as microbial stress-responses to high-osmolality environments. Arch. Microbiol., 1998, 170: 319-330
    Kilstrup M., Jacobsen S., Hammer K., et al. Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis. Appl. Environ. Microbiol. 1997, 63: 1826-1837
    Klein C., Garcia-Rizo C., Bisle B., et al. The membrane proteome of Halobacterium salinarum. Proteomics, 2005, 5(1): 180-197
    Ko R., Smith L. T., Smith G. M. Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes. J. Bacteriol., 1994, 176:426-431
    Koch A. L., Woeste S. Elasticity of the sacculus of Escherichia coli. J. Bacteriol., 1992, 174: 4811-4819
    Kohler T., Cayrol J. M., Ramos J. L., et al. Nucleotide and deduced amino acid sequence of the RpoN sigma factor of Pseudomonas putida. Nucleic Acids Res., 1989, 17: 10125
    Kristensen O., Laurberg M., Gajhede M. Crystallization of a stringent response factor from Aquifex aeolicus. Acta Crystallogr. D. Biol. Crystallogr., 2002, 58(7): 1198-1200; Epub 2002 Jun 20
    Kruger E., Msadek T., Hecker M. Alternate promoters direct stress-induced transcription of the Bacillus subtilis clpC operon. Mol. Microbiol., 1996, 20: 713-723
    Kruger E., Volker U., Hecker M. Stress induction of clpC in Bacillus subtilis and its involvement in stress tolerance. Journal of Bacteriology, 1994, 176(11): 3360-3367
    Kruger E., Volker U., Hecker M. Stress induction of clpC in Bacillus subtilis and its involvement in stress tolerance. J. Bacteriol., 1994, 176: 3360-3367
    Krutchinsky A. N., Zhang W., Chait B.T. Rapidly switchable MALDI and electrospray quadrupole-time-of-flight mass spectrometry for protein identification. J. Am. Soc. Mass Spectrom .2000, 11: 493-504
    Kunst F., Rapoport G. Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J. Bacteriol. 1995, 177: 2403-2407
    Kustu S., Santero E., Keener J., et al. Expression of sigma 54 (ntrA)-dependent genes is probably united by a common mechanism. Microbiol. Rev., 1989, 53: 367-376
    Lai E. M., Nair U., Phadke N. D., et al. Proteomic screening and identification of differentially distributed membrane proteins in Escherichia coli. Mol. Microbiol., 2004, 52(4): 1029-1044
    Laloi C., Mestres-Ortega D., Marco Y., et al. The Arabidopsis cytosolic thioredoxin h5 gene induction by oxidative stress and its W-box-mediated response to pathogen elicitor. Plant Physiol., 2004, 134(3): 1006-1016; Epub 2004 Feb 19
    Lamark T., Kaasen I., Eshoo M.W., et al. DNA sequences and analysis of the bet genes encoding the osmoregulatory cholineglycine betaine pathway of Escherichia coli. Mol. Microbiol., 1991, 5: 1049-1064
    Lamark T., Rokenes T. P., McDougall J., et al. The complex bet promoters of Escherichia coli: regulation by oxygen (AreA), choline (BetI), and osmotic stress. J. Bacteriol. , 1996, 178: 1655-1662
    Landfald B., Strom A. R. Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J. Bacteriol., 1986, 165: 849-855
    Lanyi J. K. Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol. Rev., 1974, 38(3): 272-290
    Larsen H. Halophilism. In: Gunsalus I. C. , and Stanier R. Y. , eds. The bacteria, vol.4. New York: Academic Press Inc., 1962, 29-342
    Larsen, H. Biochemical aspects of extreme halophilism. In: Rose A. H., and Wilkinson J. F. eds. Advances in microbial physiology, vol. 1. New York: Academic Press Inc., 1967, 97-132
    Le Dain A. C. , Saint N., Kloda A., et al. Mechanosensitive ion channels of the archaeon Haloferax volcanii. J. Biol. Chem., 1998, 273: 12116-12119
    Leboerf C. , Leblane L, Auffray Y. Characterization of the ccpA Gene of Enterococcus faecalis: Identification of Starvation-Inducible Proteins Regulated by CcpA. Journal of Bacteriology, 2000, 182(20): 5799-5806
    Lewis R. J. , Muehova K, Brannigan J. A, et al. Domain swapping in the sporulation response regulator SpoOA. J. Mol. Biol., 2000, 297: 757-770
    Li H. , Yang S. S. Osmoregulation of fast-growing soybea rhizobium subjected to salt shock. Acta Microbiologica Sinica, 1995, 35: 1-7
    Lim J. M., Jeon C. O. , Song S. M. , et al. Pontibacillus chungwhensis gen. nov., sp. nov., a moderately halophilic Gram-positive bacterium from a solar saltern in Korea. Int. J. Syst. Evol. Microbioi., 2005, 55: 165-170
    Limsuwun K., Jones EG. Spermidine acetyltransferase is required to prevent spermidine toxicity at low temperatures in Escherichia coli. J. Bacteriol., 2000, 182: 5373-5380
    Link A. J. , Eng J. , Schieltz D. M. , et al. Direct analysis of protein complexes using mass spectrometry. Nature Biotechnoi., 1999, 17: 676-682
    Liu X, H. , Qian L. J, Gong J. B. , et al. Proteomic analysis of mitochondrial proteins in cardiomyocytes from chronic stressed rat. Proteomics, 2004, 4(10): 3167-3176
    Liu W. Y. , Zheng J. , Dou Y. T. , Yang S. S. Halobacillus dabanensis sp. nov. and Halobacillus aidingensis sp. nov., isolated from salt lakes in Xingjiang, China. Int. J. Syst. Evol. Microbiol., 2005 (accepted).
    Lu W. D. , Zhao B. S. , Feng D. Q. , et al. Cloning and characterization of the Halobacillus trueperi betH gene, encoding the transport system for the compatible solute glycine betaine. FEMS Microiol. Let., 2004, 235: 393-399
    Mahr K. , Hillen W., Titgemeyer F. Carbon catabolite repression in Lactobacillus pentosus: analysis of the ccpA region. Appl. Environ. Microbiol., 2000, 66: 277-283
    Mannazzu L., Guerra E., Ferretti R., et al. Biochimicaet. Biophysica. Acta., 2000, 1475: 151-156
    Matsuhashi M., Nakagawa J., Ishino F., et al. Pencillin-binding proteins: their nature and functions in the cellular duplication and mechanism of action of, β-Iactam antibiotics in Escherichia coli. In: Mitsuhashi S., ed. Beta-lactam antibiotics. Tokyo: Japan Scientific Societies Press, 1981,203-223
    Maul B., Volker U., Riethdorf S., et al. Sigma B-dependent regulation of gsiB in response to multiple stimuli in Bacillus subtilis. Mol. Gen. Genet., 1995, 248: 114-120
    Maurizi, M. R. Proteases and protein degradation in Escherichia coli. Experientia., 1992, 48: 178-201
    McClure P. J., Roberts T. A., Oguru P. O. Comparison of the effects of sodium chloride, pH and temperature on the growth of Listoria rnonocytogenes on gradient plates and liquid medium. Lett. Appl. Microbiol., 1989, 9: 95-99
    McGrath J. A. Biologic lessons from mutations in the Kreb's cycle enzyme, fumarate hydratase. J. Invest. Dermatol., 2003, 121 (4): ⅶ
    McLaggan D., Naprstek J., Buurman E. T., et al. Interdependence of K~+ and glutamate accumulation during osmotic adaptation of Escherichia coli. J. Biol. Chem., 1994, 269: 1911-1917
    Medzihradszky K. F., Campbell J. M., Baldwin M. A., et al. The characteristics of peptide collisioninduced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal. Chem., 2000, 72: 552-558
    Merrick M. J., Stewart W. D. P. Studies on the regulation and function of the Klebsiella pncumoniae ntrA gene. Gene, 1985, 35: 297-303
    Merrick, M. J. In a class of its own—the RNA polymerase sigma factor sigma 54 (sigma N). Mol. Microbiol., 1993, 10: 903-909
    Meury J., Kohiyama M. Role of heat shock protein Dnak in osmotic adaption ofEscherichia coli. J. Bacteriol., 1991, 173: 4404-4410
    Michaud S., Marin R., Tanguay R. M. Regulation of heatshock gene induction and expression during Drosophila development. Cell Mol. Life .Sci., 1997, 53:104-113
    Mogk A., Homuth G., Scholz C., et al. The GroE chaperonin machine is a major modulator of the CIRCE heat-shock regulon of Bacillus subtilis. Embo. J., 1997, 16: 4579-4590
    Mojica F. J. M., Cisneros E., Ferrer C., et al. Osmotically induced response in representatives of halophilic prokaryotes: the bacterium Halomonas elongata and the archaeon Haloferax volcanii. Am. Sci. Microbiol., 1997, 179, 5471-5481
    Morbach S., Kramer R. Body shaping under water stress: osmosensing and osmoregulation of solute transport in bacteria. Chembiochem., 2002, 3(5): 384-397
    Msadek T, Kunst F, Rapoport G. MecB of Bacillus subtilis, a member of the ClpC ATPase family, is a pleiotropic regulator controlling competence gene expression and growth at high temperature. Proc Natl Acad Sci USA, 1994, 91: 5788-5792
    Msadek T., Kunst F., Rapoport G. MecB of Bacillus subtilis, a member of the ClpC ATPase family, is a pleiotropic regulator controlling competence gene expression and growth at high temperature. Proc. Natl. Acad. Sci. USA, 1994, 91: 5788-5792
    Mueller J. P., Bukusoglu G., Sonenshein A. L. Transcriptional regulation of Bacillus subtilis glucose starvation-inducible genes: Control of gsiA by the ComP-ComA signal transduction system. J. Bacteriol., 1992, 174: 4361-4373
    Munchbach M., Dainese P., Staudenmann W., et al. Proteome analysis of heat shock protein expression in Bradyrhizobium japonicum. E. J. Biochemistry, 1999, 264: 1, 39-48; 37
    Mylona, P., Katinakis P. Oxidative stress in the moderately halophilic bacterium Deleya halophila: effect of NaCl concentration. Experientia., 1992, 48: 54-57
    Nair S., Derre I., Msadek T., et al. CtsR controls class Ⅲ heat-shock gene expression in the human pathogen Listeria monocytogenes. Mol. Microbiol., 2000, 35: 800-811
    Narberhaus F. Negative regulation of bacterial heat-shock genes. Mol. Microbiol., 1999, 31: 1-8
    Navarre W. W., Scheneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev., 1999, 63: 174-229
    Neidhardt F. C., VanBogelen R. A. Proteomic analysis of bacterial stress responses. In: Storz G., Hennecke H., eds. Bacterial stress responses. Washington, D.C: ASM Press, 2000, 445-452
    Neidhardt F. C., Phillips T. A., VanBogelen R. A., et al. Identity of the B56.5 protein, the A-protein, and the groE gene product of Escherichia coli. J. Bacteriol., 1981, 145:513-520
    Neil R. S., Heath D. M. A role for mechanosensitive channels in survival of stationary phase: Regulation of channel expression by RpoS. Proc. Natl. Acad. Sci. USA, 2003, 100(26): 15959-15964
    Nelson R. W., Krone J. R. Advances in surface plasm on resonance bimolecular interaction analysis mass spectrometry(BIA/MS). J. Mol. Recognit., 1999, 12(2): 77-93
    Nilsen T., Ghosh A. S., Goldberg M. B., et al. Branching sites and morphological abnormalities behave as ectopic poles in shape-defective Escherichia coli. Mol. Microbiol., 2004, 52(4): 1045-1054
    Nystrom T., Olsson R. M., Kjelleberg S. Survival, stress resistance, and alterations in protein expression in the marine Vibrio sp. strain S 14 during starvation for different individual nutrients. Appl. Environ. Microbiol., 1992, 58: 55-65
    O'Farrel L. P. H. High-resolution two-dimensions electrophoresis of proteins. J. Biol. Chem., 1975, 250: 4007-4021
    Obis D., Guillot A., Gripon J., et al. Genetic and biochemical characterization of a high-affinity betaine uptake system (BusA) in Lactococcus lactis reveals a new functional organization within bacterial A BC transporters. J. Bacteriol., 1999, 181 (20): 6238-6246
    O'Connor C. D., Phillip A., Peter A., et al. The analysis of microbial proteomes: Strategies and data exploitation. Electrophoresis, 2000, 21 (6): 1178-1186
    Ogura T., Wilkinson A. J. AAA+ superfamily ATPases: common structure-diverse function. Genes to Cells, 2001, 6: 575-597
    Ophelie D., Frederic T., Philippe G., et al. Salt stress proteins induced in Listeria monocytogenes. Appl. Environ. Microbiol., 2002, 68: 1491-1498
    Patton W. F. A thousand points of light: The application of fluorescence detection technologies to two dimensional gel electrophoresis and proteomics. Electrophoresis, 2000, 21 (6): 1123-1144
    Patton W., Lim M., Shepro D. Protein detection using reversible metal chelate stains. In: Link A., ed. Methods in Molecular Biology, Vol. 112, 2-D Proteome Analysis Protocols. Totowa NJ, Humana Press, 1999, 331-339
    Paweletz C., Trock B., Pennanen M., et al. Proteomic patterns of nipple aspirate fluids obtained by SELDI-TOF: potential for new biomarkers to aid in the diagnosis of breast cancer. Dis. Marker, 2001, 17(4): 301-307
    Peter H., Burkovski A., Kraemer R. Osmo-sensing by N-and C-terminal extensions of the glycine betaine uptake system BetP of Corynebacterium glutamicum. J. BIOL. CHEM., 1998, 273(5): 2567-2574
    Petersohn A., Brigulla M., Haas S., et al. Global analysis of the general stress response of Bacillus subtilis. J. Bacteriol., 2001, 183: 5617-5631
    PhanThanh L., Gormon T. Stress proteins in Listeria monocytogenes. Electrophoresis, 1997, 18: 1464-1471
    Poolman B., Glaasker E. Regulation of compatible solute accumulation in bacteria. Microbiol. Mol. Biol. Rev., 1998, 29:397-407
    Poolman B., Konings W. N. Secondary solute transport in bacteria. Biochim. Biophys. Acta, 1993, 1183: 5-39
    Prasad J., MeJarrow P., Gopal P._Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability after drying. Appl. Environ. Microbiol., 2003, 69: 917-925
    Qi Suwei, Yang Pingfang, Jing Yuxiang, et al. A proteomic analysis of bacterial strain Sinorhizobium fredii RT19 subjected to salt shock. Chinese Science Bulletin, 2004, 49: 1828-1833
    Rabilloud T. Use of thiourea to increase the solubility of membrane proteins in two dimensional electrophoresis. Electrophoresis, 1998, 19: 758-760
    Rabilloud T., Adessi C., IUNARDIj, et al. Improvement of the solubilization of proteins in two dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 1997, 18: 307-316
    Rabilloud T., Hubert M., Tarroux P. Procedures for two dimensional electrophoretic analysis of nuclear proteins. Journal of Chromatograpgy, 1986, 351: 77-89
    Rabilloud T., Valette C., Lawrence J. J. Sample application by in gel rehydration improve stheresolution of two dimensional electrophoresis with immoblilized pH gradients in the first dimension. Electrophoresis, 1994, 15: 1552-1558
    Ramsey A. J., Russell L C., Whitt S. R., et al. Overlapping sites of tetratricopeptide repeat protein binding and chaperone activity in heat shock protein 90. J. Biol. Chem., 2000, 275(23): 17857-17862
    Ran R., Dorte B., Knut B., et al. Probing the active site of homoserine trans-succinylase. FEBS Letters, 2004, 577: 386-392
    Rao R. U., Mehta K. Transglutaminases, thioredoxins and protein disulphide isomerase: diverse enzymes with a common goal of cross-linking proteins in lower organisms. Indian J. Exp. Biol., 2004, 42(3): 235-243
    Richard J. S., Donna S. D. Cancer Proteomics: from signaling networks to tumor markers. Trends in Biotechnology, 2001, 19(10): 40-47
    Richter A., Hecker M. Heat-shock proteins in Bacillus subtilis. A two dimensional gel electrophoresis study. FEMS Microbiol. Lett., 1986, 36: 69-71
    Roberts R. C., Toochinda C., Avedissian M., et al. Identification of a Caulobacter crescentus operon encoding hrcA, involved in negatively regulating heat-inducible transcription, and the chaperone gene grpE. J. Bacteriol., 1996, 178:1829-1841
    Rodriguez-Valers, F. The ecology and taxonomy of acrobic chemoorganotrophic halophilic eubacteria. FEMS Microiol. Rev., 1986, 3: 17-22
    Ronson C. W., Nixon, B. T., Albright L. M., et al. Rhizobium meliloti ntrA gene is required for diverse metabolic functions. J. Bacteriol., 1987, 169: 2424-2431
    Rosen R., Biran D., Gur E., et al. Protein aggregation in Escherichia coli: role of proteases. FEMS Microbiol. Lett., 2002, 207:9-12
    Rosen R., Buttner K., Becher D., et al. Heat-shock proteome of Agrobacterium tumefaciens: Evidence for new control systems. J. Bacteriol., 2002, 184:1772-1778
    Roth W. G., Leckie M. P., Dietzler D. N. Osmotic stress drastically inhibits active transport of carbohydrates by Escherichia coli. BIOCHEM. BIOPHYS. RES. COMMUN., 1985, 126(1): 434-441
    Rouquette C., de Chastellier C., Nair S., et al. The ClpC ATPase of Listeria monocytogenes is a general stress protein required for virulence and promoting early bacterial escape from the phagosome ofmacrophages. Mol. Microbiol. Mar., 1998, 27, 1235-1245
    Rouquette C., Ripio M. T., Pellegrini E., et al. Identification of a ClpC ATPase required for stress tolerance and in vivo survival ofListeria monocytogenes. Mol. Microbiol., 1996, 21:977-987
    Rowlands M. G., Newbatt Y. M., Prodromou C., et al. High-throughput screening assay for inhibitors of heat-shock protein 90 ATPase activity. Anal. Biochem. 2004,327, 176-183
    Ruebenhagen R., Morbach S., Kraemer R. The osmoreactive betaine carrier BetP from Corynebacterium glutamicum is a sensor for cytoplasmic K super(+).EMBO. J. 2001, 20( 19): 5412-5420
    Ruebenhagen R., Roensch H., Jung H., et al. Osmosensor and osmoregulator properties of the betaine carrier BetP from Corynebacterium glutamicum in proteoliposomes. J. Biol. Chem. 2000, 275(2): 735-741
    Ruepp A., Muller H. N., Lottspeich F., et al. Catabolic ornithine transcarbamylase of Halobacterium halobium (salinarium): purification, characterization, sequence determination, and evolution. J. Bacteriol., 1995, 177(5): 1129-1136
    Ruffert S., Berrier C, Kraemer R., et al. Identification of mechanosensitive ion channels in the cytoplasmic membrane of Corynebacterium glutamicum. J. Bacteriol., 1999, 181(5): 1673-1676
    Ruffert S., Lambert C, Peter H., et al. Efflux of compatible solutes in Corynebacterium glutamicum mediated by osmoregulated channel activity. Eur. J. Biochem., 1997, 247(2): 572-580
    Ruzal S. M., Lopez C, Rivas E., et al. Osmotic strength blocks sporulation at stage II by impeding activation of early sigma factors in Bacillus subtilis. Curr. Microbiol., 1998, 36: 75-79
    Saito Y., Ishii Y., Hayashi H., et al. Cloning of genes coding for L-sorbose and L-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-L-gulonate, a precursor of L-ascorbic acid, in a recombinant G. oxydans strain. Appl. Environ. Microbiol., 1997, 63(2): 454-460
    Saito Y., Ishii Y., Hayashi H., et al. Direct fermentation of 2-keto-L-gulonic acid in recombinant Gluconobacter oxydans. Biotechnol. Bioeng., 1998, 58(2-3): 309-315
    Sandra S., Christine L. G, John J. L., et al.. Proteomics to display lovastatin-induced protein and pathway regulation in rat liver. Electrophoresis, 2000, 21(11): 2129-2137
    Sandra D. R., Tolstykh T., Wolanin P. M., et al. Genetic analysis of response regulator activation in bacterial chemotaxis suggests an intermolecular mechanism. Protein Science, 2002, 11: 2644-2654
    Scharf C, Riethdorf S., Ernst H., et al. Thioredoxin is an essential protein induced by multiple stresses in Bacillus subtilis. J. Bacteriol., 1998, 180: 1869-1877
    Schaumburg J., Diekmann O., Hagendouff P. The cell wall subproteome of Listeria monocytogenes. Proteomics, 2004, 4: 2991-3006
    Schirmer E. C, Glover J. R., Singer M. A., et al. HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem. Sci., 1996, 21, 289-296
    Schulz A., Tzschaschel B., Schumann W. Isolation and analysis of mutants of the dnaK operon of Bacillus subtilis. Mol. Microbiol., 1995, 15: 421-429
    Servant P., Mazodier P. Heat induction of hspl8 gene expression in Streptomyces albus G: Transcriptional and post-transcriptional regulation. J. Bacteriol., 1996, 178: 7031-7036
    Servant P., Rapoport G., Mazodier P. RheA, the repressor of hsp18 in Streptomyces albus G. Microbiology, 1999, 145:2385-2391
    Shevchenko A, Loboda A, Ens W et al. MALDI quadrupole time-of-flight mass spectrometry: a powerful tool for proteomic research. Anal. Chem., 2000, 72: 2132-2141
    Siranosian K. J., Ireton K., Grossman A. D. Alanine dehydrogenase (aM) is required for normal sporulation in Bacillus subtilis. J. Bacteriol., 1993, 175: 6789-6796
    Sleator R. D., Wouters J., Gahan C. G. M. et al. Analysis of the role of OpuC, an osmolyte transport system, in salt tolerance and virulence potential of Listeria monocytogenes. Appl. Environ. Microbiol., 2001, 67: 2692-2698
    Smith D. F. Tetratricopeptide repeat cochaperones in steroid receptor complexes. Cell Stress Chaperones, 2004, 9(2): 109-121
    Squires C., Squires C. L The Clp proteins: proteolysis regulators or molecular chaperones? J. Bacteriol., 1992, 174, 1081-1085
    Srivastava P. Roles of heat-shock proteins in innate and adaptive immunity. Nature Rev. Immunol., 2002, 2: 185-194
    Stefan Hohmann. Osmotic stress signaling and osmoadaptation in yeasts Microbiology and Molecular Biology Reviews, 2002, 66(2): 300-372
    Stefan M., Uta E., Martin H. Uptake and use of the osmoprotective compounds trehalose, glucosylglycerol, and sucrose by the cyanobacterium Synechocystis sp. PCC6803. Arch. Microbiol., 1997, 167:112-118
    Stock A. M., Robinson V. L., Goudreau P. N. Two-component signal transduction. Annu. Rev. Biochem., 2000, 69: 183-215
    Strum A. R., Kaasen I. Trehalose metabolism in Escherichia coli: stress protection and stress regulation ofgene expression. Mol. Microbiol., 1993, 8: 205-210
    Strupat K., Karas M., Hillenkamp F., et al. Matrix-assisted laser desorption ionization mass spectrometry of proteins electroblotted after polyacrylamide gel electrophoresis. Anal. Chem., 1994, 66:464-470
    Sugiura A., Hirokawa K., Nakashima K., et al. Signal-sensing mechanisms of the putative osmosensor KdpD in Escherichia coli. Mol. Microbiol., 1994, 14: 929-938
    Sukharev S. I., Blount P., Martinac B., et al. Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Annu. Rev. Physiol., 1997, 59: 633-657
    Taiz L. Plant cell expansion: regulation of cell wall mechanical properties. Annu. Rev. Plant Physiol., 1984, 35:585-657
    Takami H., Takaki Y., Uchiyama I., Genome sequence of Oceanobacillus iheyensis isolated from the lheya Ridge and its unexpected adaptive capabilities to extreme environments. Nucleic Acids Res., 2002, 30, 3927-3935
    Tebbe A., Klein C, Bisle B., et al. Analysis of the cytosolic proteome of Halobacterium salinarum and its implication for genome annotation. Proteomics, 2005, 5(1): 168-179
    Tebbe A., Klein C, Bisle B., et al. Analysis of the cytosolic proteome of Halobacterium salinarum and its implication for genome annotation. Proteomics, 2005, 5(1): 168-179
    Terence C. W., Philip J. J. Proteome analysis and its impact on the discovery of serological tumor markers. Clinica Chimica Acta., 2001,313: 213-239
    Thomas K., Jakob Moller-Jensen, Anders Lobner-Olesen et al. Dysfunctional MreB inhibits chromosome segregation in Escherichia coli The EMBO Journal, 2003, 22(19): 5283-5292
    Timpeman A. T., Aebersold R. Peptide electroextraction for direct coupling of in gel digest swith capillary LC MS/MS for protein identification and sequencing. Anal. Chem., 2000, 72:4115
    Tomoyasu T., Mogk A., Langen H., et al Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol. Microbiol., 2001, 40: 397-413
    Tonge R., Shaw J., Middleton B., et al. Validation and development of fluorescence two dimensional differential gel electrophoresis proteomics technology. Proteomics, 2001, 1(3): 377-396
    Tremoulet F., Duche O., Namane A., et al. The European Listeria Genome Consortium. Comparison of protein patterns of Listeria monocytogenes grown in biofilm or in planktonic mode by proteomic analysis. FEMS Microbiology Letters, 2002, 210(l):25-31
    Turgay K., Persuh M., Hahn J., et al. Roles of the two ClpC ATP binding sites in the regulation of competence and the stress response. Molecular Microbiology, 2001, 42:717-727
    Ueki T., Inouye S. Transcriptional activation of a heat-shock gene, lonD, of Myxococcus xanthus by a two component histidine-aspartate phosphorelay system. J. Biol. Chem., 2002, 277: 6170-6177
    Urquhart B. L., Atsalos T. E., Humphery S., et al. "Proteomic contigs " of My cobacterium tuberculosis and my cobacterium bovis(BCG)using novel immobilized pH gradients. Electrophoresis, 1997, 18:1384-1392
    van A. M., Simons A., Visser H., et al. Cloning, nucleotide sequence, and regulatory analysis of the Lactococcus lactis dnaJ gene. J. Bacteriol., 1993, 175: 1637-1644
    Van S., Cervantes J.C.E., Wong C.H., et al. Sequence and analysis of the rpoN sigma factor gene of Rhizobium sp. strain NGR234, a primary coregulator of symbiosis. J.Bacteriol., 1990, 172: 5563-5574
    VanBogelen R. A., Kelley P. M., Neidhardt F. C. Differential induction of heat-shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli. J. Bacteriol., 1987, 169: 26-32
    Varon D., Boylan S. A., Okamoto K., et al. Bacillus subtilis gtaB encodes UDP-glucose
     pyrophosphorylase and is controlled by stationary-phase transcription factor sigma B. J Bacteriol., 1993, 175: 3964-3971
    Varon D., Brody M. S., Price C. W. Bacillus subtilis operon under the dual control of the general stress transcription factor sigmaBand the sporulation transcription factor sigma H. Mol. Microbiol., 1996, 20: 339-350
    Ventosa A., Nieto J., Oren A. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev., 1998, 62: 504-544
    Voalkner P., Puppe W., Aitendof K. Characterization of the KdpD protein, the sensor kinase of the K~+-translocation Kdp system ofEscherichia coli. Eur. J. Biochem., 1993, 217: 1019-1026
    Volker U., Engelmann S., Maul B, et al. Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology, 1994, 140(4): 741-752
    yon B. C., Kempf B., Kappes R. M., et al. Osmostress response in Bacillus subtilis: Characterization of a praline uptake system (OpuE) regulated by high osmolarity and the alternative transcription factor sigma B. Mol. Microbiol., 1997, 25: 175-187
    Vreeland R. H., Anderson R., Murray R. G. Cell wall and phospholipid composition and their contribution to the salt tolerance ofHalomonas elongata. J. Bacteriol., 1984, 160, 879-883
    Wachi M., Matsuhashi M. Negative control of cell division by mreB, a gene that functions in determining the rod shape of Escherichia coil cells. J. Bacteriol., 1989, 171 (6): 3123-3127
    Walker S. J., Archer P., Banks J. G. Growth of Listeria monocytogenes at refrigeration temperatures. J. Appl. Bacteriol., 1990, 68: 157-162
    Warskulat U., Reinen A., Grether-Beck S. The osmolyte strategy of normal human keratinocytes in maintaining cell homeostasis. J. Invest Dermatol., 2004, 123(3): 516-521
    Washburn M. P., Wolters D., Yates Ⅲ J. R. Large scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnoi., 2001, 19: 242-247
    Wei W., Jiang J. Q. Mutagenesis and complementation of relA from Sinorhizobium meliloti 042BM as a salt tolerance involvement gene. Annals of microbiology, 2004, 54: 317-324
    Wei W., Jiang J. Q., Li X. H., et al. Isolation of salt-sensitive mutants from Sinorhizobium meliloti and characterization of genes involved in salt tolerance. Letters in Applied Microbiology, 2004, 39: 278-283
    Weihong Hsing, Thomas J. S. Function of conserved Histidine-234 in phosphotase activity of Envz, the sensor for porin osmoregulation in Escherichia coli. J. Bacterioi., 1997, 179: 3729-3735
    Whatmore A. M., Chudek J. A., Reed R. H. The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. J.Gen. Microbiol., 1990, 136: 2527-2535
    Wigge P. A., Jensen O. N., Holmes S., et al. Analysis of the saccharomyces spindle pole by matrix-assisted laser desorption/ionization(MALDI) mass spectrometry. J. Cell Biol., 1998, 4:967-977
    Wilkins M. R., Gasteiger E., Bairoch A., et al. Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol., 1999, 112: 531-552
    Wilkins M. R., Lindskog L, Gasteiger E., et al.. Detailed peptide characterization using PEPTIDEMA SS- a World-Wide-Web-accessible tool. Electrophoresis, 1997, 18: 403-408
    Wilkins M. R., Sanchez J. C., Gooley A. A., et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol. Genet. Eng. Rev. 1995, 13: 19-50
    Wilkins M. R., Williams K. L., Hohstrasser D. F., et al. Proteome research: New frontiers In: Functional Genomics. New York: Springer, 1997
    Wirth P. J., Hoang T. N., Benjamin T. Micropreparative immobilized pH gradient two dimensional electrophoresis in combination with protein microsequencing for the analysis of human liver proteins. Electrophoresis, 1995, 16: 1946-1960
    Wohlfarth A., Severin J., Galinski E. A. The spectrum of compatible solutes in heterotrophic haiophilic eubacteria of the family Halomonadaceae. J. Gen. Microbiol., 1990, 136: 705-712
    Won-A Joo, Chan-Wha Kim. Proteomics of Halophilic archaea. Journal of Chromatography B, 2005, 815: 237-250
    Wood, J. M. Osmosensing by bacteria: signals and membranebased sensors. Mol. Biol. Rev., 1999, 63: 230-262
    Yamagishi N., Ishihara K., Hatayama T. Hsp105alpha suppresses Hsc70 chaperone activity by inhibiting Hsc70 ATPase activity. J Biol Chem., 2004, 279, 41727-41733
    Yang J., Roe S. M., Cliff M. J., et al. Molecular basis for TPR domain-mediated regulation of protein phosphatase 5. EMBO. J., 2005, 24: 1-10; Epub 2004 Dec 02
    Yang X., Kang C. M., Brody M. S., et al. Opposing pairs of serine protein kinases and phosphatases transmit signals of environmental stress to activate a bacterial transcription factor. Genes, 1996, 10: 2265-2275
    Yates J. R. Ⅲ, Morgan S. E, Gatlin C. L., et al. Method to compare collision-induced dissociation spetra of peptides: potential for library searching and subtractive analysis. Anal. Chem. 1998, 70: 3557-3565
    Yonggang W., Takeshi S., Eishi N., et al. Hamster Temperature-Sensitive Alanyl-tRNA Synthetase Mutant Causes Degradation of Cell-Cycle Related Proteins and Apoptosis. J. Biochem., 2004, 135: 7-16
    Yoon J. H., Kang K. H., Oh T. K., et al. Halobacillus locisalis sp. nov., a halophilic bacterium isolated from a marine solar saltern of the Yellow Sea in Korea. Extremophiles, 2004, 8: 23-28
    Yoon J. H., Kang K. H., Park Y. H. Halobacillus salinus sp. nov., isolated from a salt lake on the coast of the East Sea in Korea. Int. J. Syst. Evol. Microbiol., 2003, 53: 687-693
    Yuan G, Wong S. L. Isolation and characterization of Bacillus subtilis groE regulatory mutants: Evidence for orf39 in the dnaKoperon as a repressor gene in regulating the expression of both groE and dnaK. J. Bacteriol., 1995, 177: 6462-6468
    Yuan G., Wong S. L. Regulation of groE expression in Bacillus subtilis: The involvement of the sigma A-like promoter and the roles of the inverted repeat sequence (CIRCE). J. Bacteriol., 1995, 177: 5427-5433
    Zhang S., Scott J. M., Haldenwang W. G. Loss of ribosomal protein Lll blocks stress activation of the Bacillus subtilis transcription factor sigma(B). J. Bacteriol., 2001, 183:2316-2321
    Zhou Y., Gottesman S., Hoskins J. R. The RssB response regulator directly targets sigma(S) for degradation by ClpXP. Genes Dev., 2001, 15: 627-637
    Zuber U., Schumann W. CIRCE, a novel heat-shock element involved in regulation of heat-shock operon dnaK of Bacillus subtilis. J. Bacteriol., 1994, 176: 1359-1363
    廖翔,应天翼,王恒梁。考马斯亮蓝染色双向电泳凝胶胶内酶切方法的改进。生物技术通讯。2003,14(6),509-511
    曾静,窦岳坦,杨苏声。新疆地区盐湖的中度嗜盐菌的数值分类.微生物学报.2002,29(3),8-13
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.