超顺磁性的MnFe_2O_4和Fe_3O_4纳米粒子的制备及其磁共振成像和磁传感应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性纳米材料,特别是超顺磁性的纳米材料,由于其特有的物理和化学性质而受到人们的重视,并因此在机械、电学、光学、磁学、化学和生物学领域有着广泛的应用前景。特别是近年来,磁性纳米粒子在磁共振成像(MRI)领域的研究更是人们关注的重点。MRI技术能对细胞或人体组织进行“无创的”、清晰的3D成像,提供精确的解剖学信息,因此在许多领域发挥了重要作用。磁性纳米粒子在MRI领域中常常作为造影剂使用,以此提高MRI图像的对比度和清晰度。磁性纳米粒子的发展对MRI技术的发展带来新的活力和进展。
     本论文分为两个部分,分别研究了MnFe_2O_4和Fe_3O_4磁性纳米粒子在磁共振成像领域的一些应用。第一部分是对MnFe_2O_4磁性纳米粒子形貌和磁学性质的研究。实验以Fe(acac)3和Mn(acac)2为前驱体,以油酸、油胺和1, 2-十六烷二醇及其混合物为表面活性剂,在有机溶液中,用高热分解法制备铁酸锰纳米粒子。实验研究了各种表面活性剂对铁酸锰纳米粒子的粒径大小、形态和磁学性质的影响。通过配体交换,使油溶性的铁酸锰磁性纳米粒子表面带有亲水性分子——多巴胺(Dopamine),使得纳米粒子具有水溶性,进一步研究了材料对于HeLa细胞的磁共振成像实验。第二部分研究了Fe_3O_4磁性纳米粒子对Hg~(2+)的MR传感效应。我们先用Fe(acac)3为前驱体,以油胺为表面活性剂,用高热分解法制备Fe_3O_4纳米粒子,然后分别用两种方法对其进行表面修饰。第一种方法采用配体交换法,使纳米粒子表面带有亲水基团——氨基,使材料具有水溶性。然后通过共价修饰接,接上胸腺嘧啶(Thymine),合成Fe_3O_4 @Dopamine@Thymine (Fe_3O_4 @DA@T)纳米材料。第二种方法对材料进行包二氧化硅和氨基化的修饰,通过共价键接上Thymine,合成了Fe_3O_4 @SiO2@Thymine (Fe_3O_4 @ SiO2@T)纳米材料。通过各种表征手段研究两种纳米粒子的大小、形态、表面官能团和磁性以及材料在Hepes缓冲溶液中对Hg~(2+)的传感效应。实验证明,两种材料都可以作为Hg~(2+)的MR传感器使用,但是用第二种方法合成的该材料对汞离子的灵敏度和选择性都比第一种材料好。
     总之,我们合成了一些铁酸盐纳米粒子,分别研究了它们作为磁共振成像造影剂在Hela细胞成像和汞离子传感方面的应用,取得了较为理想的效果。
Magnetic nanomaterials, especially superparamagnetic nanomaterials, are paid more attention on by people because of their special physical and chemical properties, and therefore they have a broad prospect of application in mechanical, electrical, optical, magnetism, chemical and biological field, especially in recent years, more people have been intrested in magnetic resonance imaging (MRI). MRI technology frequently can realize "non-inasie", clear 3D imaging of the cells or human tissue, so it plays an important role in many fields. Magnetic nanoparticles are often used as the contrast agent in the field of MRI, and improve the contrast and clarity of MRI images. The development of magnetic nanoparticles brings new vitality and progress to the MRI technology.
     The experiments are divided into two parts, and we separately studied some applications of MnFe_2O_4 and Fe_3O_4 magnetic nanoparticles in MRI fields. The first part is the research of morphology and magnetic properties of MnFe_2O_4 magnetic nanoparticles. We used Fe(acac)3 and Mn(acac)2 as precursors; oleic acid, oleylamine and 1,2-hexadecane glycol and their mixture as surfactant. In organic solution, we synthesised the MnFe_2O_4 magnetic nanoparticles by high thermal decomposition. We studied the effect of various surfactants on the size of MnFe_2O_4 magnetic nanoparticles, shape and magnetic properties. Through the ligand exchange, exchange oil-soluble surfactants on iron acid manganese magnetic nanoparticles surface with hydrophilic molecules—dopamine, make nanoparticles is water-soluble, the materials were used for the further research on magnetic resonance imaging experiments of HeLa cells. The second part is Hg~(2+) MR sensing effect of Fe_3O_4 magnetic nanoparticles. First, we use Fe(acac)3 as precursors, oleylamine as surfactant, in organic solution, with high thermal decomposition to synthesis Fe_3O_4 magnetic nanoparticles. Then, the experiments were divided into two parts. The first method was ligand exchange, which made hydrophilic groups—amino on the surface of nanoparticles, then the material became soluble in aqueous solution. Through covalent modifition with Thymine, we synthesized Fe_3O_4@DA@T nanomaterials. The second method was to coat the shell of silica and modify amino on the surface of tne materials, and then we connected thymine through covalent bond, Fe_3O_4@SiO2@T nanomaterials were prepared at last. We conducted characterizations about size, shape, surface functional groups and magnetic and effect of Hg~(2+) selective—MR nanosensor in Hepes buffer solution of two nanoparticles through various methods. Experiments proved that two kinds of materials could be used as Hg~(2+) selective—MR nanosensor, but the materials synthesed by the second method was more selective and sensitivite as nanosensor than the other nanoparticles.
     In conclusion, we synthesized some iron chromate salt nanoparticles, separately studied them as MRI applications in Hela cells imaging and mercury ion sensing, and achieved the ideal effect.
引文
[1]张志馄,崔作林.纳米材料与纳米技术(第四版)[M].北京:国防工业出版社,2001,4-6.
    [2]张立德,牟季美.纳米材料与纳米结构(第二版)[M].北京:科学出版社,2001,2-3.
    [3] Shyh-Dar Li and Leaf Huang. Pharmacokinetics and Biodistribution of Nanoparticles[J]. Mol. Pharmaceutics., 2008, 5: 496–504.
    [4] Huong T. Le, Gururaj A. Rao, Aaron C. Hirko, and Jeffrey A. Hughes. Polymeric Nanoparticles Containing Conjugated Phospholipase A2 for Nonviral Gene Delivery[J]. Mol. Pharmaceutics., 2010, 7, 1090–1097.
    [5] Christopher E. Bunker, Marcus J. Smith, K. A. Shiral Fernando, Barbara A. Harruff, William K. Lewis, Joseph R. Gord, Elena A. Guliants, and Donald K. Phelps. Spontaneous Hydrogen Generation from Organic-Capped Al Nanoparticles and Water [J]. ACS Appl. Mater. Interfaces., 2010, 2, 11–14.
    [5] Sellmyer David J, Liu Yi and Shindo Daisuke. Handbook of advanced magnetic materials [M]. Tinghua University Press, 2005.
    [7]杨文胜,高明远,白玉白.纳米材料与生物技术[汇编] [M].化学工业出版社,2005.
    [8] Chenjie Xu and Shouheng Sun. Monodisperse Magnetic Nanoparticles for Biomedical Applications [J]. Polymer International., 2007, 56, 821-826.
    [9] Hongkun He and Chao Gao, Supraparamagnetic, Conductive, and Processable Multifunctional Graphene Nanosheets Coated with High-Density Fe3O4 Nanoparticles [J]. ACS Appl. Mater. Interfaces., 2010, 2, 3201–3210.
    [10] Li Leo Ma, Marc D. Feldman, Jasmine M. Tam, Amit S. Paranjape, Kiran K. Cheruku, Timothy A. Larson, Justina O. Tam, Davis R. Ingram, Vidia Paramita, Joseph W. Villard, James T. Jenkins, Tianyi Wang, Geoffrey D. Clarke, Reto Asmis, Konstantin Sokolov, Bysani Chandrasekar, Thomas E. Milner, and Keith P. Johnston, Small Multifunctional Nanoclusters (Nanoroses) for Targeted Cellular Imaging and Therapy [J]. ACS Nano., 2009, 3, 2686-2696.
    [11]李东风.低温液相合成纳米级软磁铁氧体材料MnFe2O4 [J].微电子技术,2003,1:19-24.
    [12] Shouheng Sun, Hao Zeng, David B. Robinson,Simone Raoux, Philip M. Rice, Shan X. Wang, and Guanxiong Li. Monodisperse MFe2O4 (M=Fe, Co, Mn) Nanoparticles [J]. J. Am. Chem. Soc., 2004, 126, 273-279.
    [13] Taeghwan Hyeon, Su Seong Lee, Jongnam Park, Yunhee Chung, and Hyon Bin Na. Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without aSize-Selection Process [J]. J. Am. Chem. Soc., 2001, 123, 12798-12801.
    [14] Zhichuan Xu, Chengmin Shen, Yanglong Hou, Hongjun Gao, and Shouheng Sun. Oleylamine as Both Reducing Agent and Stabilizer in a Facile Synthesis of Magnetite Nanoparticles [J]. Chem. Mater., 2009, 21, 1778-1780.
    [15] Sophie Laurent, Delphine Forge, Marc Port, Alain Roch, Caroline Robic, Luce Vander Elst, and Robert N. Muller. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization. Physicochemical Characterizations, and Biological Applications [J]. Chem. Rev., 2008, 108, 2064–2110.
    [16] Chen D, Xu R. Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powders [J]. Materials Research Bulletin., 1998, 33, 1015-1021.
    [17]刘辉,魏雨,张艳峰,贾振斌.纳米铁酸盐的制备-低温催化相转化法合成纳米级铁酸锌及表征[J].无机材料学报,2002,17,56-60.
    [18]付云芝,牟敏仁,向伟,李津如.共沉淀法合成小粒径单分散Fe3O4纳米颗粒[J].广东化工,2009,9,2-3.
    [19] Tadao Sugimoto.Formation of Monodispersed Nano- and Micro-particles Controlled in Size, Shape, and Internal Structure [J]. Chem. Eng. Technol., 2003, 26, 313-321.
    [20] Schwarzer H.-C., Peukert W. Tailoring Particle Size through Nanoparticle Precipitation [J]. Chem Eng Comm., 2004, 191, 580-606.
    [21]李成魁,严彪,杜春风,赵慎强.PEI包覆磁性Fe3O4纳米颗粒的制备及性能研究[J].金属功能材料,2010,17,41-44.
    [22] Pedro Tartaj, Maria P. Morales, Sabino Veintemillas-Verdaguer, Teresita Gonzalez-Carre?o and Carlos J. Serna. Synthesis, properties and biomedical applications of magnetic nanoparticles [J]. Handbook of Magnetic Materials., 2006, 16, 403-482.
    [23] Young-wook Jun, Jung-wook Seo and Jinwoo Cheon. Nanoscaling Laws of Magnetic Nanoparticles and Their Applicabilities in Biomedical Sciences [J]. Acc. Chem. Res., 2008, 41, 179–189.
    [24] Vikas Nandwana, Kevin E. Elkins, Narayan Poudyal, Girija S. Chaubey, Kazuaki Yano, and J. Ping Liu. Size and Shape Control of Monodisperse FePt Nanoparticles [J]. J. Phys. Chem. C., 2007, 111, 4185-4189.
    [25] Young-wook Jun, Jae-Hyun Lee, and Jinwoo Cheon. Chemical Design of NanoparticleProbes for High-Performance Magnetic Resonance Imaging [J]. Angew. Chem. Int. Ed., 2008, 47, 5122-5135.
    [26] Baoyou Geng, Jinzhu .Ma and Jiahui You. Controllable Synthesis of Single-Crystalline Fe3O4 Polyhedra Possessing the Active Basal Facets [J]. Cryst. Growth Des., 2008, 8, 1443-1447.
    [27] Joon-rak Choi, Sang Jun Oh, Honglyoul Ju, and Jinwoo Cheon. Massive Fabrication of Free-Standing One-Dimensional Co/Pt Nanostructures and Modulation of Ferromagnetism via a Programmable Barcode Layer Effect [J]. Nano letters., 2005, 5, 2179-2183.
    [28] Jong-Il Park, Min Gyu Kim, Young-wook Jun, Jae Sung Lee, Woo-ram Lee, and Jinwoo Cheon. Characterization of Superparamagnetic“Core?Shell”Nanoparticles and Monitoring Their Anisotropic Phase Transition to Ferromagnetic“Solid Solution”Nanoalloys [J]. J. Am. Chem. Soc., 2004, 126, 9072-9078.
    [29] Seon Oh Hwang, Chang Hyun Kim, Yoon Myung, Seong-Hun Park, Jeunghee Park, Joondong Kim, Chang-Soo Han and Jae-Young Kim. Synthesis of Vertically Aligned Manganese-Doped Fe3O4 Nanowire Arrays and Their Excellent Room-Temperature Gas Sensing Ability [J]. J. Phys. Chem. C., 2008, 112, 13911-13916.
    [30] Hai-Ming Fan, Jia-Bao Yi, Yi Yang, Kiang-Wei Kho, Hui-Ru Tan, Ze-Xiang Shen, Jun Ding, Xiao-Wei Sun, Malini Carolene Olivo and Yuan-Ping Feng. Single-Crystalline MFe2O4 Nanotubes/Nanorings Synthesized by Thermal Transformation Process for Biological Applications [J]. ACS Nano., 2009, 3, 2798–2808.
    [31] Sheng Peng, Chao Wang, Jin Xie, and Shouheng Sun. Synthesis and Stabilization of Monodisperse Fe Nanoparticles [J]. J. Am. Chem. Soc., 2006, 128, 10676-10677.
    [32] Shouheng Sun, C. B. Murray, Dieter Weller, Liesl Folks and Andreas Moser. Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices [J]. Science., 2000, 287, 1989-1992.
    [33] Mikhail G. Shapiro, Jerzy O. Szablowski, Robert Langer, and Alan Jasanoff. Protein Nanoparticles Engineered to Sense Kinase Activity in MRI [J]. J. Am. Chem. Soc., 2009, 131, 2484-2486.
    [34]邢伟.MRI的基本原理与临床应用及进展[J].常州实用医学,2009,25,70-71.
    [35] Tapan K. Jain, Marco A. Morales, Sanjeeb K. Sahoo, Diandra L. Leslie-Pelecky, and Vinod Labhasetwa. Iron Oxide Nanoparticles for Sustained Delivery of Anticancer Agents [J].Molecular pharmaceutics., 2005, 2, 194–205.
    [36] Igor Chourpa, Laurence Douziech-Eyrolles, Lazare Ngaboni-Okassa, Jean-Fran?ois Fouquenet, Simone Cohen-Jonathan, Martin Soucé, HervéMarchais and Pierre Dubois. Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy [J]. Analyst., 2005, 130, 1395-1403.
    [37] Jinhao Gao, Wei Zhang, Pingbo Huang, Bei Zhang, Xixiang Zhang, and Bing Xu. Intracellular Spatial Control of Fluorescent Magnetic Nanoparticles. [J]. J. Am. Chem. Soc. 2008, 130, 3710-3711.
    [38]申宝忠主编.分子影像学(第一版)[M].北京:人民卫生出版社.2007,12.
    [39] Jinwoo Cheon and Jae-Hyun Lee. Synergistically Integrated Nanoparticles as Multimodal Probes for Nanobiotechnology [J]. Acc. Chem. Res., 2008, 41 (12), 1630-1640.
    [40] Peter A. Rinck著,宋英儒译.医学磁共振(第一版)[M].北京:人民卫生出版社.2007,8.
    [41] Angana Senpan, Shelton D. Caruthers, Ilsu Rhee, Nicholas A. Mauro, Dipanjan Pan, Grace Hu, Michael J. Scott, Ralph W. Fuhrhop, Patrick J. Gaffney, Samuel A. Wickline, and Gregory M. Lanza. Conquering the Dark Side: Colloidal Iron Oxide Nanoparticles [J]. Acs Nano., 2009, 3, 3917-3926.
    [42] Esben K. U. Larsen, Thomas Nielsen, Thomas Wittenborn, Henrik Birkedal, Thomas Vorup-Jensen, Mogens H. Jakobsen, Leif Ostergaard, Michael R. Horsman, Flemming Besenbacher, Kenneth A. Howard and Jorgen Kjems. Size-Dependent Accumulation of PEGylated Silane-Coated Magnetic Iron Oxide Nanoparticles in Murine Tumors [J]. Acs Nano., 2009, 3, 1947-1951.
    [43] Kathryn M. L. Taylor, Jason S. Kim, William J. Rieter, Hongyu An, Weili Lin, and Wenbin Lin. Mesoporous Silica Nanospheres as Highly Efficient MRI Contrast Agents [J]. J. Am. Chem. Soc., 2008, 130, 2154-2155.
    [44] Jiaqi Wan, Wei Cai, Xiangxi Meng, Enzhong and Enzhong Liu. Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging [J]. Chem.Commun., 2007, 5004-5006.
    [45] Weissleder R. and Mahmood U. Molecular imaging [J]. Radiology., 2001, 219, 316-333.
    [46] Enzo Terreno, Daniela Delli Castelli, Alessandra Viale, and Silvio Aime. Challenges forMolecular Magnetic Resonance Imaging [J]. Chem. Rev., 2010, 110, 3019–3042.
    [47] Andre E. Merbach , Eva Toth. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging[M]. New York: John Wiley & Sons, Ltd. 2001.
    [48]张坤毅.核磁共振(MRI)的成像原理与临床应用[J].中国区疗设备[临床影像技术], 2008,23,101-103.
    [49] Tapan K. Jain, Maram K. Reddy, Marco A. Morales, Diandra L. Leslie-Pelecky and Vinod Labhasetwar. Biodistribution, Clearance, and Biocompatibility of Iron Oxide Magnetic Nanoparticles in Rats [J]. Mol. Pharmaceutics., 2008, 5, 316–327.
    [50]雷皓,魏黎,刘买利.磁共振波谱及成像技术在纳米尺度物质生物效应研究中的应用[J].物理-纳米材料的生物效应和技术专题,2006,35,294-298.
    [51] Jeyarama S. Ananta, Michael L. Matson, Annie M. Tang, Trinanjana Mandal, Stephen Lin, Kelvin Wong, Stephen T. Wong, and Lon J. Wilson. Single-Walled Carbon Nanotube Materials as T2-Weighted MRI Contrast Agents [J]. J. Am. Chem. Soc., 2009, 113, 19369-19372.
    [52] Serena A. Corr, Stephen J. Byrne, Renata Tekoriute, Carla J. Meledandri, Dermot F. Brougham, Marina Lynch, Christian Kerskens, Laurence O’Dwyer, and Yurii K. Gun’ko. Linear Assemblies of Magnetic Nanoparticles as MRI Contrast Agents [J]. J. Am. Chem. Soc., 2008, 130, 4214-4215.
    [53] Bjorn Gustafsson, Susan Youens, and Angelique Y. Louie. Development of Contrast Agents Targeted to Macrophage Scavenger Receptorsfor MRI of Vascular Inflammation [J]. Bioconjugate Chem., 2006, 17, 538-547.
    [54] Chan KW-Y, Wong W-T. Small molecular gadolinium(III) complexes as MRI contrast agents for diagnostic imaging [J]. Coord. Chem. Rev., 2007, 251, 2428-2451.
    [55] Mauro Vaccaro, Antonella Accardo, Diego Tesauro, Gaetano Mangiapia, David Lof, Karin Schillen, Olle Soderman, Giancarlo Morelli, and Luigi Paduano. Supramolecular Aggregates of Amphiphilic Gadolinium Complexes as Blood Pool MRI/MRA Contrast Agents: Physicochemical Characterization [J]. Langmuir., 2006, 22, 6635-6643.
    [56] Guodong Zhang, Rui Zhang, Xiaoxia Wen, Li Li, and Chun Li. Micelles Based on Biodegradable Poly(L-glutamic acid)-b-Polylactide with Paramagnetic Gd Ions Chelated to the Shell Layer as a Potential Nanoscale MRI-Visible Delivery System [J].Biomacromolecules., 2008, 9, 36-42.
    [57] Myung Ju Baek, Ja Young Park, Wenlong Xu, Krishna Kattel, Han Gyeol Kim, Eun Jung Lee, Anilkumar Kantilal Patel, Jae Jun Lee, Yongmin Chang, Tae Jeong Kim, Ji Eun Bae, Kwon Seok Chae, and Gang Ho Lee. Water-Soluble MnO Nanocolloid for a Molecular T1 MR Imaging: A Facile One-Pot Synthesis, In vivo T1 MR Images, and Account for Relaxivities [J]. ACS Appl Mater Interfaces., 2010, 2, 2949-2955.
    [58] Jin-sil Choi, Jae-Hyun Lee, Tae-Hyun Shin, Ho-Taek Song, Eung Yeop Kim, and Jinwoo Cheon, Self-Confirming“AND”Logic Nanoparticles for Fault-Free MRI [J]. J. Am. Chem. Soc., 2010, 132, 11015-11017.
    [59] Elizabeth K. Wilson. Hyperpolarized Gases Set NMR World Spinning: Chemical applications of laser polarization include improved NMR sensitivity [J]. Chem. Eng. News., 1996, 74, 21–24.
    [60] Carlos F. G. C. Geraldes and Sophie Laurent. Classification and basic properties of contrast agents for magnetic resonance imaging [J]. Contrast Media Mol. Imaging., 2009, 4, 1–23.
    [61] Randy De Palma, Sara Peeters, Margriet J. Van Bael, Heidi Van den Rul, Kristien Bonroy, Wim Laureyn, Jules Mullens, Gustaaf Borghs and Guido Maes. Silane Ligand Exchange to Make Hydrophobic Superparamagnetic Nanoparticles Water-Dispersible [J]. Chem. Mater., 2007, 19, 1821-1831.
    [62] Conroy Sun, Kim Du, Chen Fang, Narayan Bhattarai, Omid Veiseh, Forrest Kievit, Zachary Stephen, Donghoon Lee, Richard G. Ellenbogen, Buddy Ratner and Miqin Zhang. PEG-Mediated Synthesis of Highly Dispersive Multifunctional Super-paramagnetic Nanoparticles: Their Physicochemical Properties and Function In Vivo [J]. Acs Nano., 2010, 4, 2402-2410.
    [63] Jin Xie , Kai Chen, Jing Huang , Seulki Lee , Jinhua Wang , Jinhao Gao , Xingguo Li, and Xiaoyuan Chen. PET/NIRF/MRI triple functional iron oxide nanoparticles [J]. Biomaterials., 2010, 31, 3016–3022.
    [64] Miriam Colombo , Silvia Ronchi , Diego Monti , Fabio Corsi , Emilio Trabucchi , and Davide Prosperi. Femtomolar detection of autoantibodies by magnetic relaxation nanosensors [J]. Analytical Biochemistry., 2009, 392, 96–102.
    [65] Dipanjan Pan, Angana Senpan, Shelton D. Caruthers,Todd A. Williams, Mike J. Scott, PatrickJ. Gaffney, Samuel A. Wickline and Gregory M. Lanza, Sensitive and efficient detection of thrombus with fibrin-specific manganese nanocolloidsw [J]. Chem. Commun., 2009, 3234-3236.
    [66] Taeho Kim, Eric Momin, Jonghoon Choi, Kristy Yuan, Hasan Zaidi, Jaeyun Kim, Mihyun Park, Nohyun Lee, Michael T. McMahon, Alfredo Quinones-Hinojosa, Jeff W. M. Bulte, Taeghwan Hyeon, and Assaf A. Gilad. Mesoporous Silica-Coated Hollow Manganese Oxide Nanoparticles as Positive T1 Contrast Agents for Labeling and MRI Tracking of Adipose-Derived Mesenchymal Stem Cells [J]. J. Am. Chem. Soc., 2011, 133, 2955–2961.
    [67] Rodrigo M. Petoral, Jr.,Fredrik Soderlind, Anna Klasson, Anke Suska, Marc A. Fortin, Natalia Abrikossova, Linne′a Seleg?rd, Per-Olov Kall, Maria Engstrom, and Kajsa Uvdal. Synthesis and Characterization of Tb3+-Doped Gd2O3 Nanocrystals: A Bifunctional Material with Combined Fluorescent Labeling and MRI Contrast Agent Properties [J]. J. Phys. Chem. C., 2009, 113, 6913–6920.
    [68] Emily L. Que and Christopher J. Chang. A Smart Magnetic Resonance Contrast Agent for Selective Copper Sensing [J]. J. Am. Chem. Soc., 2006, 128, 15942-15943.
    [69] Xiao-an Zhang, Katherine S. Lovejoy, Alan Jasanoff, and Stephen J. Lippard. Water-soluble porphyrins as a dual-function molecular imaging platform for MRI and fluorescence zinc sensing [J]. Proc. Natl. Acad. Sci. USA., 2007, 104, 10780-10785.
    [70]Tatjana Atanasijevic, Maxim Shusteff, Peter Fam, and Alan Jasanoff. Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin [J]. Proc. Natl. Acad. Sci. USA., 2006, 103, 14707-14712.
    [71] Mehmet Veysel Yigit, Debapriya Mazumdar, and Yi Lu. MRI Detection of Thrombin with Aptamer Functionalized Superparamagnetic Iron Oxide Nanoparticles [J]. Bioconjugate Chem., 2008, 19, 412-417.
    [72] Shanrong Zhang, Matthew Merritt, Donald E. Woessner, Robert E. Lenkinski, and A. Dean Sherry. PARACEST Agents: Modulating MRI Contrast via Water Proton Exchange [J]. Acc. Chem. Res., 2003, 36, 783-790.
    [73] Emily L. Que, Eliana Gianolio, Suzanne L. Baker,§Audrey P. Wong, Silvio Aime, and Christopher J. Chang. Copper-Responsive Magnetic Resonance Imaging Contrast Agents [J]. J. Am. Chem. Soc., 2009, 131, 8527-8536.
    [74] Ana C. Esqueda, Jorge A. Lopez, Gabriel Andreu-de-Riquer, Jose C. Alvarado-Monzon, James Ratnakar, Angelo J. M. Lubag, A. Dean Sherry and Luis M. De Leon-Rodriguez. A New Gadolinium-Based MRI Zinc Sensor [J]. J. Am. Chem. Soc., 2009, 131, 11387-11391.
    [75] Kenjiro Hanaoka, Kazuya Kikuchi, Yasuteru Urano and Tetsuo Nagano. Selective sensing of zinc ions with a novel magnetic resonance imaging contrast agent [J]. J. Chem. Soc., Perkin Trans. 2. 2001, 1840-1843.
    [76] Robert Trokowski, Jimin Ren, Ferenc Krisztian Kalman, and A. Dean Sherry. Selective Sensing of Zinc Ions with a PARACEST Contrast Agent [J]. Angew. Chem., 2005, 117, 7080 -7083.
    [77] Major J L, Parigi G, Luchinat C, Meade TJ. The synthesis and in vitro testing of a zinc- activated MRI contrast agent [J]. Proc. Natl. Acad. Sci. USA., 2007, 104, 13881-13886.
    [78] Jin-sil Choi, Hyuck Jae Choi, Dae Chul Jung, Joo-Hyuk Lee and Jinwoo Cheon. Nanoparticle assisted magnetic resonance imaging of the early reversible stages of amyloidβself-assembly [J]. Chem. Commun., 2008, 2197–2199.
    [79] Shin Mizukami, Rika Takikawa, Fuminori Sugihara, Yuichiro Hori, Hidehito Tochio, Markus W?lchli, Masahiro Shirakawa, and Kazuya Kikuchi. Paramagnetic Relaxation-Based 19F MRI Probe To Detect Protease Activity [J]. J. Am. Chem. Soc., 2008, 130, 794–795.
    [80] Manuel Querol, David G. Bennett, Christopher Sotak Dr., Hye Won Kang, Alexei Bogdanov Jr. Dr. A Paramagnetic Contrast Agent for Detecting Tyrosinase Activity [J].ChemBioChem., 2007, 8, 1637-1641.
    [81] J. Manuel Perez, F. Joseph Simeone, Yoshinaga Saeki, Lee Josephson, and Ralph Weissleder. Viral-Induced Self-Assembly of Magnetic Nanoparticles Allows the Detection of Viral Particles in Biological Media [J]. J. Am. Chem. Soc., 2003, 125, 10192-10193.
    [82] Charalambos Kaittanis, Saleh A. Naser, and J. Manuel Perez. One-Step, Nanoparticle- Mediated Bacterial Detection with Magnetic Relaxation [J]. Nano Lett., 2007, 7, 380–383.
    [83] Mehmet Veysel Yigit, Debapriya Mazumdar, Hee-Kyung Kim, Jung Heon Lee, Boris Odintsov, and Yi Lu. Smart“Turn-on”Magnetic Resonance Contrast Agents Based on Aptamer-Functionalized Superparamagnetic Iron Oxide Nanoparticles [J]. ChemBioChem., 2007, 8, 1675– 1678.
    [84] Lee Josephson, J. Manuel Perez, and RalphWeissleder. Magnetic Nanosensors for theDetection of Oligonucleotide Sequences [J]. Angew. Chem., 2001, 113, 3304-3305.
    [85] Sonia Taktak, David Sosnovik, Michael J. Cima, Ralph Weissleder, and Lee Josephson, Magnetic relaxation switches capable of sensing molecular interactions [J]. Anal. Chem., 2007, 79, 8863-8869.
    [86] Kristi L. Hultman, Anthony J. Raffo, Adrienne L. Grzenda, Paul E. Harris, Truman R. Brown, and Stephen O’Brien. Magnetic Resonance Imaging of Major Histocompatibility Class II Expression in the Renal Medulla Using Immunotargeted Superparamagnetic Iron Oxide Nanoparticles [J]. ACS Nano., 2008, 2, 477-484.
    [87] Shang-Wei Chou, Yu-Hong Shau, Ping-Ching Wu, Yu-Sang Yang, Dar-Bin Shieh, and Chia-Chun Chen. In Vitro and in Vivo Studies of FePt Nanoparticles for Dual Modal CT/MRI Molecular Imaging [J]. J. Am. Chem. Soc., 2010, 132, 13270–13278.
    [88] Kheireddine El-Boubbou, David C. Zhu, Chrysoula Vasileiou, Babak Borhan, Davide Prosperi, Wei Li and Xuefei Huang. Magnetic Glyco-Nanoparticles: A Tool To Detect, Differentiate, and Unlock the Glyco-Codes of Cancer via Magnetic Resonance Imaging [J]. J. Am. Chem. Soc., 2010, 132, 4490–4499.
    [89] Charalambos Kaittanis, Santimukul Santra and J. Manuel Perez. Role of Nanoparticle Valency in the Nondestructive Magnetic-Relaxation-Mediated Detection and Magnetic Isolation of Cells in Complex Media [J]. J. Am. Chem. Soc., 2009, 131, 12780–12791.
    [1] Young-wook Jun, Jung-wook Seo and Jinwoo Cheon. Nanoscaling Laws of Magnetic Nanoparticles and Their Applicabilities in Biomedical Sciences [J]. Acc. Chem. Res., 2008, 41, 179-189.
    [2] Jinwoo Cheon and Jae-Hyun Lee. Synergistically Integrated Nanoparticles as Multimodal Probes for Nanobiotechnology [J]. Acc. Chem. Res., 2008, 41, 1630-1640.
    [3] Angelique Louie. Multimodality Imaging Probes: Design and Challenges [J]. Chem. Rev., 2010, 110 (5), 3146-3195.
    [4] Hong Yang, Yeming Zhuang, He Hu, Xiaoxia Du, Cuixia Zhang, Xiangyang Shi, Huixia Wu and Shiping Yang. Silica-coated manganese oxide nanoparticles as a platform for targeted magnetic resonance and fluorescence imaging of cancer cells [J]. Adv. Funct. Mater., 2010, 20, 1733-1741.
    [5] Hong Yang, Cuixia Zhang, Xiangyang Shi, He Hu, Xiaoxia Du, Yong Fang, Yanbin Ma, Huixia Wu, Shiping Yang, Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging [J]. Biomaterials., 2010, 31, 3667-3673.
    [6] Lee Jae-Hyun, Huh Yong-Min, Jun Young-wook, Seo Jung-wook, Jang Jung-tak, Song Ho-Taek, Kim Sungjun, Cho Eun-Jin, Yoon Ho-Geun, Suh Jin-Suck and Cheon Jinwoo. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging [J]. Nat. Med., 2007, 13, 95-99.
    [7] Ulrich I. Tromsdorf, Nadja C. Bigall, Michael G. Kaul, Oliver T. Bruns, Marija S. Nikolic, Birgit Mollwitz, Ralph A. Sperling, Rudolph Reimer, Heinz Hohenberg, Wolfgang J. Parak, Stephan F?rster, Ulrike Beisiegel, Gerhard Adam, and Horst Weller. Size and Surface Effects on the MRI Relaxivity of Manganese Ferrite Nanoparticle Contrast Agents [J]. Nano Lett., 2007, 7, 2422-2427.
    [8] Rui Hao, Ruijun Xing, Zhichuan Xu, Yanglong Hou, Song Gao and Shouheng Sun. Synthesis, Functionalization, and Biomedical Applications of Multifunctional Magnetic Nanoparticles [J]. Adv. Mater., 2010, 22, 2729-2742.
    [9] Maksym V. Kovalenko, Maryna I. Bodnarchuk, Rainer T. Lechner, Günter Hesser, Friedrich Sch?ffler, and Wolfgang Heiss. Fatty Acid Salts as Stabilizers in Size- and Shape-ControlledNanocrystal Synthesis: The Case of Inverse Spinel Iron Oxide [J]. J. Am. Chem. Soc., 2007,129, 6352-6353.
    [10] Young-wook Jun, Jin-sil Choi and Jinwoo Cheon. Shape Control of Semiconductor and MetalOxide Nanocrystals through Nonhydrolytic Colloidal Routes [J]. Angew. Chem. In. Ed., 2006,45, 3414-3439.
    [11] Jongnam Park, Jin Joo, Soon Gu Kwon, Youngjin Jang and Taeghwan Hyeon. Synthesis ofMonodisperse Spherical Nanocrystals [J]. Angew. Chem. In. Ed., 2007, 46, 4630-4660.
    [12] Park Jongnam, An Kwangjin, Hwang Yosun, Park Je-Geun, Noh Han-Jin, Kim Jae-Young,Park Jae-Hoon, Hwang Nong-Moon andHyeon Taeghwan. Ultra-large-scale syntheses ofmonodisperse nanocrystals [J]. Nat. Mater., 2004, 3, 891-895.
    [13] Young-wook Jun, Yong-Min Huh, Jin-sil Choi, Jae-Hyun Lee, Ho-Taek Song, Sungjun Kim,Sungjun Kim, Sarah Yoon, Kyung-Sup Kim, Jeon-Soo Shin, Jin-Suck Suh, and JinwooCheon. Nanoscale Size Effect of Magnetic Nanocrystals and Their Utilization for CancerDiagnosis via Magnetic Resonance Imaging [J]. J. Am. Chem. Soc., 2005, 127, 5732-5733.
    [14] Alejandro G. Roca, Jose F. Marco, María del Puerto Morales, and Carlos J. Serna. Effect ofNature and Particle Size on Properties of Uniform Magnetite and Maghemite Nanoparticles[J]. J. Phys. Chem. C., 2007, 111, 18577-18584.
    [15] Hongwei Duan, Min Kuang, Xiaoxia Wang, Y. Andrew Wang, Hui Mao and Shuming Nie.Reexamining the Effects of Particle Size and Surface Chemistry on the Magnetic Propertiesof Iron Oxide Nanocrystals: New Insights into Spin Disorder and Proton Relaxivity [J]. J.Phys. Chem. C., 2008, 112, 8127-8131.
    [16] Qing Song, Yong Ding, Zhong Lin Wang, and Z. John Zhang. Tuning the Thermal Stability ofMolecular Precursors for the Nonhydrolytic Synthesis of Magnetic MnFe2O4 SpinelNanocrystals [J]. Chem. Mater., 2007, 19, 4633-4638.
    [17] Hao Zeng, Philip M. Rice, Shan X. Wang, and Shouheng Sun. Shape-Controlled Synthesisand Shape-Induced Texture of MnFe2O4 Nanoparticles [J]. J. Am. Chem. Soc., 2004, 126,11458-11459.
    [18] Shouheng Sun, Hao Zeng, David B. Robinson, Simone Raoux, Philip M. Rice, Shan X. Wang,and Guanxiong Li. Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles [J]. J. Am. Chem.Soc., 2004, 126, 273-279.
    [19] He Hu, Zhigang Chen, Tianye Cao, Qiang Zhang, Mengxiao Yu, Fuyou Li, Tao Yi and Chunhui Huang. Hydrothermal synthesis of hexagonal lanthanide-doped LaF3 nanoplates with bright upconversion luminescence [J]. Nanotechnology., 2008, 19, 375702-375710.
    [20] Guardia P., Batlle-Brugal B., Roca A. G., Iglesias O., Morales M. P., Serna C. J., Labarta A., Batlle X. Surfactant effects in magnetite nanoparticles of controlled size [J]. J. Magn. Magn. Mater., 2007, 316, e756-e759.
    [21] David Serantes, Marina Spasova, Daniel Baldomir, Michael Farle and Veronica Salgueirino. Magnetic Hardness of Fe60Pt40 Nanoparticles Controlled by Surface Chemistry [J]. Chem. Mater., 2010, 22, 4103-4110.
    [22] Kodama R. H., Berkowitz A. E., McNiff E. J. Jr, Foner S. Surface Spin Disorder in NiFe2O4 Nanoparticles [J]. Phys. Rev. Lett., 1996, 77, 394-397.
    [23] Jin Xie, Chenjie Xu, Zhichuan Xu, Yanglong Hou, Kaylie L. Young, S. X. Wang, N. Pourmand, and Shouheng Sun. Linking Hydrophilic Macromolecules to Monodisperse Magnetite (Fe3O4) Nanoparticles via Trichloro-s-triazine [J]. Chem. Mater., 2006, 18, 5401-5403.
    [24] Chenjie Xu, Keming Xu, Hongwei Gu, Rongkun Zheng, Hui Liu, Xixiang Zhang, Zhihong Guo, and Bing Xu. Dopamine as A Robust Anchor to Immobilize Functional Molecules on the Iron Oxide Shell of Magnetic Nanoparticles [J]. J. Am. Chem. Soc., 2004, 126, 9938-9939.
    [25] Roca A. G., Morales M. P., O’Grady K., Serna C. J. Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors [J]. Nanotechnology., 2006, 17, 2783-2788.
    [1] Hugh H. Harris, Ingrid J. Pickering, Graham N. George. The Chemical Form of Mercury in Fish [J]. Scienc., 2003, 301: 1203.
    [2] Gutknecht J. Inorganic mercury (Hg2+) transport through lipid bilayer membranes [J]. J. Membr. Biol., 1981, 61, 61-66.
    [3] Hiroshi Tanaka, Yuki Iwata, Daisuke Takahashi, Masaatsu Adachi, and Takashi Takahashi. Efficient Stereoselective Synthesis ofγ-N-Glycosyl Asparagines by N-Glycosylation of Primary Amide Groups [J]. J. Am. Chem. Soc., 2005, 127, 1630–1631.
    [4] (a) Danhong Wu, Qing Zhang, Xia Chu, Haibo Wang, Guoli Shen,and Ruqin Yu.Ultrasensitive electrochemical sensor for mercury (II) based on target-induced structure-switching DNA [J]. Biosens. Bioelectron., 2010, 25, 1025-1031; (b) JoséM. Lloris, Ramón Martínez-Má?ez, Miguel E. Padilla-Tosta, Teresa Pardo, Juan Soto, Paul D. Beer, James Cadman and David K. Smith. Cyclic and open-chain aza–oxa ferrocene-functionalised derivatives as receptors for the selective electrochemical sensing of toxic heavy metal ions in aqueous environments [J]. J. Chem. Soc., Dalton Trans.1999, 14, 2359-2370; (c) S.-J. Liu, H.-G. Nie, J.-H. Jiang, G.-L. Shen and R.-Q. Yu. Electrochemical Sensor for Mercury(II) Based on Conformational Switch Mediated by Interstrand Cooperative Coordination [J]. Anal. Chem., 2009, 81, 5724-5730.
    [5] (a) Dayu Wu, Wei Huang, Zhihua Lin, Chunying Duan, Cheng He, Shuo Wu and Dehui Wang. Highly Sensitive Multiresponsive Chemosensor for Selective Detection of Hg2+ in Natural Water and Different Monitoring Environments [J]. Inorg. Chem., 2008, 47, 7190–7201; (b) Cheng-Yan Lin, Cheng-Ju Yu, Yen-Hsiu Lin and Wei-Lung Tseng. Colorimetric Sensing of Silver(I) and Mercury(II) Ions Based on an Assembly of Tween 20-Stabilized Gold Nanoparticles [J]. Anal. Chem., 2010, 82, 6830-6837; (c) El-Safty SA. Organic-inorganic hybrid mesoporous monoliths for selective discrimination and sensitive removal of toxic mercury ions [J]. J. Mater. Sci., 2009, 44, 6764-6774.
    [6] (a) Liangqia Guo, Hong Hu, Ruiqing Sun, and Guonan Chen. Highly sensitive fluorescent sensor for mercury ion based on photoinduced charge transfer between fluorophore and π-stacked T–Hg(II)–T base pairs [J]. Talanta., 2009, 79, 775-779; (b) Kadriye Ertekin, Ozlem Oter, Mustafa Ture, Serpil Denizalti and Engin Cetinkaya. A Long Wavelength Excitable Fluorophore; Chloro Phenyl Imino Propenyl Aniline (CPIPA) for Selective Sensing of Hg (II) [J]. J. Fluoresc., 2010, 20, 533-540; (c) Bishnu Prasad Joshi, Chuda Raj Lohani and Keun-Hyeung Lee. A highly sensitive and selective detection of Hg(II) in 100% aqueous solution with fluorescent labeled dimerized Cys residues [J]. Org. Biomol. Chem., 2010, 8, 3220-3226; (d) Faidjiba Loe-Mie, Gilles Marchand, Jean Berthier, Nicolas Sarrut, MathieuPucheault, Mireille Blanchard-Desce, Franoise Vinet, and Michel Vaultier. Towards an Efficient Microsystem for the Real-Time Detection and Quantification of Mercury in Water Based on a Specifically Designed Fluorogenic Binary Task-Specific Ionic Liquid [J]. Angew. Chem. Int. Ed., 2010, 49, 424-427.
    [7] (a) Youngje Cho, Shim Sung Lee and Jong Hwa Jung. Recyclable fluorimetric and colorimetric mercury-specific sensor using porphyrin-functionalized Au@SiO2 core/shell nanoparticles [J]. Analyst., 2010, 135, 1551-1555; (b) Jianping Xie, Yuangang Zheng and Jackie Y. Ying. Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+–Au+ interactions [J]. Chem. Commun., 2010, 46, 961-963; (c) Jingming Gong, Ting Zhou, Dandan Song, Lizhi Zhang and Xianluo Hu. Stripping Voltammetric Detection of Mercury(II) Based on a Bimetallic Au?Pt Inorganic?Organic Hybrid Nanocomposite Modified Glassy Carbon Electrode [J]. Anal. Chem., 2010, 82, 567-573; (d) Gopala Krishna Darbha, Anandhi Ray and Paresh Chandra Ray. Gold Nanoparticle-Based Miniaturized Nanomaterial Surface Energy Transfer Probe for Rapid and Ultrasensitive Detection of Mercury in Soil, Water, and Fish [J]. ACS Nano., 2007, 1, 208-214.
    [8] (a) Bruno B. Campos, Manuel Algarra, Beatriz Alonso, Carmen M. Casado and Joaquim C. G. Esteves da Silva. Mercury(II) sensing based on the quenching of fluorescence of CdS–dendrimer nanocomposites [J]. Analyst., 2009, 134, 2447-2452; (b) Bingyan Han, Jipei Yuan and Erkang Wang. Sensitive and Selective Sensor for Biothiols in the Cell Based on the Recovered Fluorescence of the CdTe Quantum Dots?Hg(II) System [J]. Anal. Chem., 2009, 81, 5569-5573; (c) Chao Wang, Jianwu Zhao, Yan Wang, Nan Lou, Qiang Ma, Xingguang Su. Sensitive Hg (II) ion detection by fluorescent multilayer films fabricated with quantum dots [J]. Sensor Actuat B-Chem., 2009, 139, 476-482; (d) Haibing Li, Yan Zhang, Xiaoqiong Wang and Zhinong Gao. A luminescent nanosensor for Hg(II) based on functionalized CdSe/ZnS quantum dots [J]. Microchim. Acta., 2008, 160, 119-123.
    [9] Jody L. Major, Giacomo Parigi, Claudio Luchinat, and Thomas J. Meade, The synthesis and in vitro testing of a zinc-activated MRI contrast agent, Proc. Natl. Acad. Sci. USA, 2007, 104, 13881-13886.
    [10] (a) Sophie Laurent, Delphine Forge, Marc Port, Alain Roch, Caroline Robic, Luce VanderElst and Robert N. Muller. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization,Vectorization, Physicochemical Characterizations, and Biological Applications [J]. Chem.Rev., 2008, 108, 2064-2110; (b) Faraji M., Yamini Y. and Rezaee M. MagneticNanoparticles: Synthesis, Stabilization, Functionalization, Characterization, and Applications[J]. J. Iran. Chem. Soc., 2010, 7, 1-37.
    [11] Jae-Seung Lee, Min Su Han and Chad A. Mirkin. Colorimetric Detection of Mercuric Ion(Hg2+) in Aqueous Media using DNA-Functionalized Gold Nanoparticles [J]. Angew. Chem.Int. Ed., 2007, 46, 4093-4096.
    [12] (a) Rodney A. Brooks. T2-shortening by strongly magnetized spheres: A chemical exchangemodel [J]. Magn. Reson. Med., 2002, 47, 388-391; (b) Pierre Gillis, Francis Moiny andRodney A. Brooks. On T2-shortening by strongly magnetized spheres: A partial refocusingmodel [J]. Magn. Reson. Med., 2002, 47, 257-263.
    [13] (a) Mehmet Veysel Yigit, Debapriya Mazumdar, Hee-Kyung Kim, Jung Heon Lee, BorisOdintsov and Yi Lu. Smart“Turn-on”Magnetic Resonance Contrast Agents Based onAptamer-Functionalized Superparamagnetic Iron Oxide Nanoparticles [J]. ChemBioChem.,2007, 8, 1675-1678; (b) J. Manuel Perez, Lee Josephson and Ralph Weissleder. Use ofMagnetic Nanoparticles as Nanosensors to Probe for Molecular Interactions [J].ChemBioChem., 2004, 5, 261-264; (c) Perez J. Manuel, Josephson Lee, O'Loughlin Terrence,H?gemann Dagmar and Weissleder Ralph. Magnetic relaxation switches capable of sensingmolecular interactions [J]. Nat Biotech., 2002, 20, 816-820.
    [14] (a) Dipanjan Pan, Angana Senpan, Shelton D. Caruthers, Todd A. Williams, Mike J. Scott,Patrick J. Gaffney, Samuel A. Wickline and Gregory M. Lanza. Sensitive and efficientdetection of thrombus with fibrin-specific manganese nanocolloids [J]. Chem. Commun.,2009, 3234-3236; (b) Grace Y. Kim, Lee Josephson, Robert Langer and Michael J. Cima.Magnetic Relaxation Switch Detection of Human Chorionic Gonadotrophin [J]. BioconjugateChem., 2007, 18, 2024-2028; (c) Mehmet Veysel Yigit, Debapriya Mazumdar and Yi Lu.MRI Detection of Thrombin with Aptamer Functionalized Superparamagnetic Iron OxideNanoparticles [J]. Bioconjugate Chem., 2008, 19, 412-417; (d) Mikhail G. Shapiro, Jerzy O.Szablowski, Robert Langer and Alan Jasanoff. Protein Nanoparticles Engineered to SenseKinase Activity in MRI [J]. J. Am. Chem. Soc., 2009, 131, 2484-2486; (e) Jin-sil Choi, Young-wook Jun, Soo-In Yeon, Hyoung Chan Kim, Jeon-Soo Shin, and Jinwoo Cheon. Biocompatible Heterostructured Nanoparticles for Multimodal Biological Detection [J]. J. Am. Chem. Soc., 2006, 128, 15982-15983; (f) Sonia Taktak, David Sosnovik, Michael J. Cima, Ralph Weissleder, and Lee Josephson. Multiparameter Magnetic Relaxation Switch Assays [J]. Anal. Chem., 2007, 79, 8863-8869; (g) Lee Josephson, J. Manuel Perez and Ralph Weissleder. Magnetic Nanosensors for the Detection of Oligonucleotide Sequences [J]. Angew. Chem. Int. Ed., 2001, 40, 3204-3206.
    [15]. J. Manuel Perez, F. Joseph Simeone, Yoshinaga Saeki, Lee Josephson, and Ralph Weissleder. Viral-Induced Self-Assembly of Magnetic Nanoparticles Allows the Detection of Viral Particles in Biological Media [J]. J. Am. Chem. Soc., 2003, 125, 10192-10193.
    [16]. Tatjana Atanasijevic, Maxim Shusteff, Peter Fam, and Alan Jasanoff. Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin [J]. Proc. Natl. Acad. Sci. USA., 2006, 103, 14707-14712.
    [17]. Shouheng Sun, Hao Zeng, David B. Robinson, Simone Raoux, Philip M. Rice, Shan X. Wang, and Guanxiong Li. Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles [J]. J. Am. Chem. Soc., 2003, 126, 273-279.
    [18] Hong Yang, Yeming Zhuang, He Hu, Xiaoxia Du, Cuixia Zhang, Xiangyang Shi, Huixia Wu and Shiping Yang. Silica-Coated Manganese Oxide Nanoparticles as a Platform for Targeted Magnetic Resonance and Fluorescence Imaging of Cancer Cells [J]. Adv. Funct. Mater., 2010, 20, 1733-1741.
    [19] (a) J.-J. Yuan and S. P. Armes, Y. Takabayashi and K. Prassides, C. A. P. Leite and F. Galembeck, A. L. Lewis. Synthesis of Biocompatible Poly[2-(methacryloyloxy)ethyl phosphorylcholine]-Coated Magnetite Nanoparticles [J]. Langmuir., 2006, 22, 10989- 10993; (b) Qu-Li Fan, Koon-Gee Neoh, En-Tang Kang, Borys Shuter, Shih-Chang Wang. Solvent-free atom transfer radical polymerization for the preparation of poly(poly (ethyleneglycol) monomethacrylate)-grafted Fe3O4 nanoparticles: Synthesis, characteriza- tion and cellular uptake [J]. Biomaterials., 2007, 28, 5426-5436.
    [20] (a) Akira Ono and Humika Togashi. Highly Selective Oligonucleotide-Based Sensor for Mercury(II) in Aqueous Solutions [J]. Angew. Chem. Int. Ed., 2004, 43, 4300-4302; (b)Yanli Tang, Fang He, Minghui Yu, Fude Feng, Lingling An, Huan Sun, Shu Wang, Yuliang Li and Daoben Zhu. A Reversible and Highly Selective Fluorescent Sensor for Mercury(II) Using Poly(thiophene)s that Contain Thymine Moieties [J]. Macromol. Rapid Commun., 2006, 27, 389-392.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.