影响水牛精子分离和冷冻后精子质量相关因素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
性别控制技术可以推动家畜育种进程和加快繁殖人们所期望的性别后代。尽管分离水牛X和Y精子性别控制技术体系已经建立,但分离精子用于体外受精后的囊胚发育率和人工授精后的受胎率仍低于未分离精子。精子分离及冷冻过程伴随着精液的高倍稀释、精子核染色、紫外激光照射和冷冻保存等处理程序,这些程序可能对精子的活力、质膜完整性、顶体完整性、线粒体膜电位、DNA完整性和凋亡等产生影响。本研究探讨了水牛精子分离及冷冻程序不同处理对(新鲜、染色、分离和冷冻)精子细胞器的损伤,旨在优化水牛精子分离及冷冻程序,以期提高分离精子的质量,为水牛品种改良提供有力的技术保障。具体研究内容包括以下几个部分:
     1.探讨水牛精子分离过程中不同处理(新鲜、染色、分离和冷冻)精子的活力、质膜完整性、凋亡和DNA完整性的变化。结果表明,分离组和冷冻组的精子活力比新鲜组和染色组低(54.72%,52.38%vs.98.07%,96.41%,P<0.05)。荧光显微镜法和流式细胞仪法检测精子质膜完整性的试验结果均表明,新鲜组、染色组和分离组的精子质膜完整率差异不显著(P>0.05),但均显著高于冷冻组(72.12%,69.39%,77.26%vs.58.45%;64.74%,63.69%,66.25%vs.36.98%,P<0.05).精子凋亡方面,荧光显微镜法和流式细胞仪法检测的试验结果均表明,新鲜组的凋亡率最低,显著低于分离组和冷冻组(8.11%vs.13.23%,18.74%;7.56%vs.12.86%,22.4%,P<0.05)。精子染色质扩散试验(SCD)和精子染色质结构分析法(SCSA)检测精子DNA损伤率的试验结果均表明,分离组精子的DNA损伤率最低,显著低于新鲜组、染色组和冷冻组(0.47%vs.2.23%,2.25%,2.26%;0.51%vs.2.55%,2.64%,2.15%,P<0.05).
     2.研究冷冻保存的不同公牛个体分离精子与未分离精子的活力、质膜完整性、凋亡和DNA完整性的变化。精子图像分析仪检测结果表明,3头尼里拉菲水牛分离精子的活力均显著低于未分离精子,分别为38.9%vs.59.6%;35.8%vs.58.1%;34%vs.59.1%(P<0.05).染色质结构分析法检测结果表明,3头尼里拉菲水牛分离精子的DNA损伤率均比未分离精子低(1.86%vs.2.47%,2.05%vs.3.0%,3.45vs.4.38%,P<0.05),其中3号公牛分离精子和未分离精子的DNA损伤率均高于其它两头公牛。荧光显微镜法检测结果表明,3头尼里拉菲水牛分离精子的质膜完整率均比未分离精子高(55.3%vs.42.4%,52.7%vs.41.7%,51.6%vs.43.3%,P<0.05).荧光显微镜法检测结果表明,3头尼里拉菲水牛分离精子的凋亡率均比未分离精子高(28.3%vs.21.1%,31.5%vs.23.6%,32%vs.23%,P<0.05),其中3号公牛分离精子的凋亡率高于其它两头公牛。
     3.研究水牛精子分离及冷冻程序各稀释液(染色液、收集液和冷冻液)中添加叶酸或谷胱甘肽对精子的活力、质膜完整性、凋亡和DNA完整性的影响。试验结果表明,在水牛精子分离及冷冻程序各稀释液(染色液、收集液和冷冻液)中添加叶酸或谷胱甘肽后精子的活力、质膜完整性和DNA损伤率与对照组相比差异不显著(P>0.05)。在冷冻液中添加叶酸或谷胱甘肽后均显著降低了精子凋亡率(P<0.05)。
     4.本研究旨在建立激光光镊拉曼光谱技术检测水牛分离精子的试验平台。水牛精子分离及冷冻程序不同处理的精子(新鲜、染色、分离和冷冻)拉曼光谱检测结果表明,与新鲜组相比,代表磷酸骨架(O-P-O)的788cm-1在分离组和冷冻组分别位移到783cm-1和785cm-1,代表脱氧核糖C-O伸缩振动的1010cm-1在染色组、分离组和冷冻组分别位移到1004cm-1、1005cm-1和1005cm-1。水牛精子分离及冷冻程序不同处理的精子(新鲜、染色、分离和冷冻)原始拉曼光谱经标准化处理后,主成分分析的试验结果表明,可以有效的将不同处理组的精子分开。
     5.研究在水牛分离精子的染色液、收集液和冷冻液中分别添加叶酸或谷胱甘肽后对精子拉曼光谱的影响。结果表明:(1)代表脱氧核糖振动的谱线从新鲜组的1010cm-1位移到染色组的1004cm-1,在染色液中分别添加叶酸或谷胱甘肽后从对照组的1004cm-1分别位移到1008cm-1(叶酸)和1005cm-1(谷胱甘肽),冷冻液中分别添加叶酸或谷胱甘肽后从对照组的1004cm-1分别位移到1008cm-1(叶酸)和1010cm-1(谷胱甘肽)。代表碱基谱线信息的682cm-1、1341cm-1、1379cm-1和1557cm-1等也存在不同程度的位移。而分别在染色液、收集液和冷冻液中添加叶酸或谷胱甘肽后,代表磷酸骨架(O-P-O)的788cm-1及代表O=P=O对称伸缩振动的1094cm-1仅出现了特征峰强度的不同。(2)在水牛精子分离及冷冻程序的染色液、收集液和冷冻液中添加叶酸或谷胱甘肽后的拉曼光谱与对照组的差异谱线中发现了代表过氧化氢的880cm-1的存在。(3)对分离精子的拉曼光谱进行标注化处理后,主成分分析法可以对不同精子处理组进行识别和判断。
     6.本研究探讨(1)不同公牛个体分离精子和未分离精子体外受精后胚胎的发育能力;(2)X精子和Y精子体外受精后的胚胎发育能力(3)精子分离及冷冻程序各稀释液中添加抗氧化剂(叶酸或谷胱甘肽)对胚胎发育的影响。结果表明:(1)3头尼里拉菲水牛分离精子体外受精后的囊胚发育率均显著低于未分离精子,分别为11.6%vs.21.8%,11.9%vs.22.6%,9.2%vs.16.4%(P<0.05)。(2)X精子和Y精子体外受精后的分裂率、囊胚率及囊胚发育速度的差异均不显著(P>0.05)。(3)在分离及冷冻程序各稀释液中添加叶酸后分离精子体外受精后的分裂率和囊胚率与对照组相比差异不显著(P>0.05),而在精子分离及冷冻程序各稀释液中添加谷胱甘肽后分离精子体外受精后的囊胚率显著高于对照组(P<0.05)。
     7.研究水牛精子分离及冷冻程序各稀释液(染色液、分离液和冷冻液)中分别添加叶酸或谷胱甘肽后对分离精子人工授精受胎率的影响。结果表明:(1)在精子分离及冷冻程序各稀释液中添加叶酸后分离精子人工授精后的受胎率与对照组相比差异不显著(P>0.05),但流产率显著低于对照组(P<0.05)。(2)在精子分离及冷冻程序各稀释液中添加谷胱甘肽后分离精子人工授精后的受胎率显著高于对照组(P<0.05),但流产率与对照组相比差异不显著(P>0.05)。
Flow-cytometric sorting of X-and Y-sperm is a promising technology for accelerating the genetic improvement and altering the sex ratio of buffalo. Though the technology of buffalo sperm sorting had been established, however, the blastocyst development rate after IVF and the conception rate after AI with sorted sperm were still lower than that with unsorted sperm. There were potential damages inflicted on sperm during the flow sorting procedure involves high levels of dilution, nuclear staining, exposure to UV lasers, cooling and cryopreservation which affected on sperm quality such as motility, plasma membrane, acrosomal integrity, mitochondrial membrane potential, DNA integrity, apoptosis. The objectives of this study were to detect the sperm damage in the different stages of flow sorting process (fresh, stained, sorted and frozen), so as to optimize the sorting procedure, improve sperm quality and finally accelerate buffalo breed improvement. A series of experiments were carried out in this study as follows:
     1. Evaluation of sperm quality, such as motility, plasma membrane integrity, apoptosis and DNA integrity was studied during the flow sorting procedure including four different stages (fresh, stained, sorted and frozen). The results indicated that sperm motility of sorted and frozen semen samples was significantly lower than that of fresh and stained samples (54.72%,52.38%vs.98.07%,96.41%, P<0.05). The percentage of sperm with plasma membrane integrity was higher in fresh, stained and sorted samples compared to the frozen samples by fluorescence microscopy (72.12%,69.39%,77.26%vs.58.45%) and by flow cytometry64.74%,63.69%,66.25%vs.36.98%, P<0.05). The percentage of apoptosis was significantly increased in sorted and frozen samples compared to the fresh samples by fluorescence microscopy (13.23%,18.74%vs.8.11%) and by flow cytometry (12.86%,22.4%vs.7.56%, P<0.05). The percentage of DNA fragment was much lower in the sorted sample than those of in fresh, stained and frozen samples by sperm chromatin dispersion test (SCD,0.47%vs.2.23%,2.25%,2.26%) and by sperm chromatin structure assay (SCSA,0.51%vs.2.55%,2.64%,2.15%, P<0.05).
     2. Sperm motility, plasma membrane integrity, apoptosis and DNA integrity of sorted frozen and unsorted frozen sperm from three Nili-Ravi buffalo bulls were evaluated. The percentage of sperm motility was significantly lower in sorted frozen sperm than unsorted frozen sperm by computer assisted sperm analysis system (CASA,59.6%vs.38.9%;58.1%vs.35.8%;59.1%vs.34%, P<0.05. for bull No.1,2and3, respectively). The DNA fragment index (DFI) was much lower in the sorted group than that in the unsorted one by sperm chromatin structure assay (SCSA,1.86%vs.2.47%,2.05%vs.3.0%,3.45 vs.4.38%, P<0.05), however, bull3had higher DFI than the other two bulls regardless of sorted or unsorted sperm. The percentage of sperm with plasma membrane integrity from sorted group was higher than that from unsorted group by fluorescence microscopy (55.3%vs.42.4%,52.7%vs.41.7%,51.6%vs.43.3%, P<0.05). The percentage of apoptosis was significantly increased in the sorted sperm compared to that of unsorted sperm by fluorescence microscopy (28.3%vs.21.1%,31.5%vs.23.6%,32%vs.23%, P<0.05). The percentage of apoptosis from sorted sperm was significantly higher in bull3than the other two bulls.
     3. Effects on buffalo sperm motility, plasma membrane integrity, apoptosis, DNA integrity of different antioxidant substances (folic acid and GSH) supplemented in the semen stained, sorted and frozen semen extenders were evaluated. The results of the study indicated that sperm motility, membrane integrity and DNA fragment were no significant differences (P>0.05) either with or without folic acid or GSH supplemented in the semen extender (stained, sorted and frozen). The percentage of apoptosis was much lower in frozen semen supplemented with folic acid or GSH in the extender compared to that in the control (P<0.05).
     4. A detection system based on laser tweezers Raman spectroscopy of sorted buffalo sperm was established. The results of the study indicated that the band assigned to PO2diester symmetric stretching shifted from788cm-1to783,785cm-1in fresh group compared to that in sorted and frozen groups. The band assigned to C-O stretching at1010cm-1shifted to1004,1005and1005cm-1in fresh group compared to that in stained, sorted and frozen groups. The scatter plots of principal component analysis could be distinguished the buffalo sperm from fresh, stained, sorted and frozen stages after the normalization of original Raman spectrum.
     5. Effects of different antioxidant substances (folic acid and GSH) supplemented to the semen stained, sorted and frozen extenders on sperm Raman spectrum were evaluated. The results showed that:(1) The band assigned to C-O stretching at1010cm-1in the fresh group shifted to1004cm-1in the stained group. When supplemented with folic acid or GSH in stained extender, the band assigned to C-O stretching at1004cm-1in control group shifted to1008cm-1(folic acid) and1005cm-1(GSH) in treatment groups, while for the frozen semen the C-O stretching from1004cm-1in the control semen shifted to1008cm-1(folic acid) and1010cm-1(GSH). The band assigned to PO2diester symmetric stretching at788cm-1and the PO2-group symmetric stretching band at1094cm-1only had different Raman peak intensity in the stained, collected and frozen semen supplemented with folic acid or GSH.(2) There was a peak of880cm-1considered as characteristic frequency of H2O2which was only existed when differential Raman spectrum was subtracted between the control and the stained, collected and frozen semen supplemented folic acid or GSH.(3) The scatter plots of principal component analysis (PCA) could be indentified from different semen treatments after the normalization of original Raman spectrum.
     6. Three experiments were conducted to evaluate in vitro embryonic development after IVF with (1) sorted and unsorted sperm from three Navi-Ravi buffalo bulls;(2) X-and Y-sperm and (3) sorted sperm treated with folic acid or GSH in the stained, sorted and frozen semen extender. The results showed that (1) the rates of cleavage and blastocyst after IVF were much lower (P<0.05) for sorted sperm than that for unsorted sperm (11.6%vs.21.8%,11.9%vs.22.6%,9.2%vs.16.4%, for the three Navi-Ravi buffalo bulls, respectively).(2) there were no significant differences (P>0.05) in cleavage and blastocyst rates and the percentage of blastocyst developed on Day6, Day7, Day8after insemination with X sperm and Y sperm.(3) there were no defferences (P>0.05) in cleavage and blastocyst rates between the control and the sperm treated with folic acid in the stained, sorted and frozen semen extender after IVF. However, the blastocyst rate was increased (P<0.05) when the sperm was treated with GSH in the stained, sorted and frozen semen extender after IVF compared to the control group.
     7. Pregnant rate was investigated after AI with X sperm treated with folic aicd or GSH in the stained, sorted and frozen semen extenders. The results showed that (1) There were no significant difference (P>0.05) in conception rate after AI with X sperm between the folic acid treatment and control groups, but the abortion rate for the treatment group was much lower (P<0.05) than that for the control.(2) A significant higher conception rate was found in X sperm treated with GSH than that in the control (P<0.05), but no differerence in abortion rate (P>0.05).
引文
[1]Gledhill B L, Selection and separation of X-and Y-chromosome-bearing mammalian sperm[J]. Gamete Res,1988.20(3):377-95.
    [2]Lu Y, Zhang M, Lu S, et al., Sex-preselected buffalo (Bubalus bubalis) calves derived from artificial insemination with sexed sperm[J]. Anim Reprod Sci,2010.119(3-4): 169-71.
    [3]Guyer M F, Accessory Chromosomes of Man[J]. Science,1914.39(1017):941-2.
    [4]Charles Zeleny,Faust E C, Size dimorphism in the spermatozoa from single testes.[J]. Journal of Experimental Zoology,1915.18(2):187-204.
    [5]Ericsson R J, Langevin C N, and Nishino M, Isolation of fractions rich in human Y sperm[J]. Nature,1973.246(5433):421-4.
    [6]Barlow P,Vosa C Q The Y chromosome in human spermatozoa[J]. Nature,1970. 226(5249):961-2.
    [7]Sumer A T, Robinson J A, and Evans H J, Distinguishing between X, Y and YY-bearing Human Spermatozoa by Fluorescence and DNA Content[J]. nature new biology,1971.24(229):231-233.
    [8]Moruzzi J F, Selecting a mammalian species for the separation of X-and Y-chromosome-bearing spermatozoa[J]. J Reprod Fertil,1979.57(2):319-23.
    [9]Johnson L A, Flook J P, and Hawk H W, Sex preselection in rabbits:live births from X and Y sperm separated by DNA and cell sorting[J]. Biol Reprod,1989.41(2): 199-203.
    [10]Rens W, Welch G R, and Johnson L A, A novel nozzle for more efficient sperm orientation to improve sorting efficiency of X and Y chromosome-bearing sperm[J]. Cytometry,1998.33(4):476-81.
    [11]Kaneko S, Oshio S, Kobayashi T, et al., Human X- and Y-bearing sperm differ in cell surface sialic acid content[J]. Biochem Biophys Res Commun,1984.124(3):950-5.
    [12]Goldberg E H, Boyse E A, Bennett D, et al., Serological demonstration of H-Y (male) antigen on mouse sperm[J]. Nature,1971.232(5311):478-80.
    [13]Hoppe PC,GC. K, Reacting mouse sperm with monoclonal H-Y antibodies does not influence sex ratio of eggs fertilized in vitro. [J]. J Reprod Immunol,1984.6(1):1-9.
    [14]Seidel G E, Jr., Overview of sexing sperm[J]. Theriogenology,2007.68(3):443-6.
    [15]Hilwig I,Gropp A, Staining of constitutive heterochromatin in mammalian chromosomes with a new fluorochrome[J]. Exp Cell Res,1972.75(1):122-6.
    [16]Garner D L, Hoechst 33342:the dye that enabled differentiation of living X-and Y-chromosome bearing mammalian sperm[J]. Theriogenology,2009.71(1):11-21.
    [17]Fried J, Doblin J, Takamoto S, et al., Effects of Hoechst 33342 on survival and growth of two tumor cell lines and on hematopoietically normal bone marrow cells[J]. Cytometry,1982.3(1):42-7.
    [18]Loken M R, Simultaneous quantitation of Hoechst 33342 and immunofluorescence on viable cells using a fluorescence activated cell sorter[J]. Cytometry,1980.1(2): 136-42.
    [19]Lalande M E, Ling V, and Miller R G, Hoechst 33342 dye uptake as a probe of membrane permeability changes in mammalian cells[J]. Proc Natl Acad Sci U S A, 1981.78(1):363-7.
    [20]Boe-Hansen G B, Morris I D, Ersboll A K, et al., DNA integrity in sexed bull sperm assessed by neutral Comet assay and sperm chromatin structure assay[J]. Theriogenology,2005.63(6):1789-802.
    [21]Burvenich C, Paape M J, Hoeben D, et al., Modulation of the inflammatory reaction and neutrophil defense of the bovine lactating mammary gland by growth hormone[J]. Domest Anim Endocrinol,1999.17(2-3):149-59.
    [22]Morton K M, Herrmann D, Sieg B, et al., Altered mRNA expression patterns in bovine blastocysts after fertilisation in vitro using flow-cytometrically sex-sorted sperm[J]. Mol Reprod Dev,2007.74(8):931-40.
    [23]Morrell J M,Dresser D W, Offspring from inseminations with mammalian sperm stained with Hoechst 33342, either with or without flow cytometry[J]. Mutat Res, 1989.224(2):177-83.
    [24]S.L.Catt, D.Sakkas, D.Bizzaro, et al., Hoechst staining and exposure to U V laser during flow cytometric sorting does not affect the frequency of detected endogenous DNA nicks in abnormal and normal human spermatozoa[J]. Molecular Human Reproduction,1997.3:821-25.
    [25]Hollinshead F K, Evans G, Evans K M, et al., Birth of lambs of a pre-determined sex after in vitro production of embryos using frozen-thawed sex-sorted and re-frozen-thawed ram spermatozoa[J]. Reproduction,2004.127(5):557-68.
    [26]Abeydeera L R, Johnson L A, Welch G R, et al., Birth of piglets preselected for gender following in vitro fertilization of in vitro matured pig oocytes by X and Y chromosome bearing spermatozoa sorted by high speed flow cytometry[J]. Theriogenology,1998.50(7):981-8.
    [27]Martinez E A, Vazquez J M, Roca J, et al., Successful non-surgical deep intrauterine insemination with small numbers of spermatozoa in sows[J]. Reproduction,2001. 122(2):289-96.
    [28]B.R. Buchanan, GE. Seidel J, McCue P M, et al., Insemination of mares with low numbers of either unsexed or sexed spermatozoa[J]. Theriogenology,2000.53: 1333-44.
    [29]Lindsey A C, Schenk J L, Graham J K, et al., Hysteroscopic insemination of low numbers of flow sorted fresh and frozen/thawed stallion spermatozoa[J]. Equine Vet J, 2002.34(2):121-7.
    [30]Fugger E F, Clinical experience with flow cytometric separation of human X-and Y-chromosome bearing sperm[J]. Theriogenology,1999.52(8):1435-40.
    [31]Lu Y Q, Liang X W, Zhang M, et al., Birth of twins after in vitro fertilization with flow-cytometric sorted buffalo (Bubalus bubalis) sperm[J]. Anim Reprod Sci,2007. 100(1-2):192-6.
    [32]Johnson L A,Welch G R, Sex preselection:high-speed flow cytometric sorting of X and Y sperm for maximum efficiency[J]. Theriogenology,1999.52(8):1323-41.
    [33]Suh T K, Schenk J L, and Seidel G E, Jr., High pressure flow cytometric sorting damages sperm[J]. Theriogenology,2005.64(5):1035-48.
    [34]L.F. Campos-Chillon, Torre J F d 1, and Jr. G E S, Effect of Concentration of Sexed Bovine Sperm Sorted at 40 and 50 psi on Developmental Capacity of In-Vitro Produced Embryos[J]. Theriogenology,2003.59:506.
    [35]Lu Y Q, Zhang M, Meng B, et al., Identification of X-and Y-chromosome bearing buffalo (Bubalus bubalis) sperm[J]. Anim Reprod Sci,2006.95(1-2):158-64.
    [36]Cran D G, Johnson L A, Miller N Q et al., Production of bovine calves following separation of X-and Y-chromosome bearing sperm and in vitro fertilisation[J]. Vet Rec,1993.132(2):40-1.
    [37]Johnson L A, Welch G R, Keyvanfar K, et al., Gender preselection in humans? Flow cytometric separation of X and Y spermatozoa for the prevention of X-linked diseases[J]. Hum Reprod,1993.8(10):1733-9.
    [38]Rath D, Johnson L A, Dobrinsky J R, et al., Production of piglets preselected for sex following in vitro fertilization with X and Y chromosome-bearing spermatozoa sorted by flow cytometry[J]. Theriogenology,1997.47(4):795-800.
    [39]Schenk J L, Suh T K, Cran D G, et al., Cryopreservation of flow-sorted bovine spermatozoa[J]. Theriogenology,1999.52(8):1375-91.
    [40]Seidel G E, Jr., Schenk J L, Herickhoff L A, et al., Insemination of heifers with sexed sperm[J]. Theriogenology,1999.52(8):1407-20.
    [41]Garner D L,Seidel G E, Jr., History of commercializing sexed semen for cattle[J]. Theriogenology,2008.69(7):886-95.
    [42]Andersson M, Taponen J, Kommeri M, et al., Pregnancy rates in lactating Holstein-Friesian cows after artificial insemination with sexed sperm[J]. Reprod Domest Anim,2006.41(2):95-7.
    [43]Wang A W, Zhang H, Ikemoto I, et al., Reactive oxygen species generation by seminal cells during cryopreservation[J]. Urology,1997.49(6):921-5.
    [44]Chatterjee S, de Lamirande E, and Gagnon C, Cryopreservation alters membrane sulfhydryl status of bull spermatozoa:protection by oxidized glutathione[J]. Mol Reprod Dev,2001.60(4):498-506.
    [45]Alvarez J G,Storey B T, Evidence for increased lipid peroxidative damage and loss of superoxide dismutase activity as a mode of sublethal cryodamage to human sperm during cryopreservation[J]. J Androl,1992.13(3):232-41.
    [46]Brouwers J F,Gadella B M, In situ detection and localization of lipid peroxidation in individual bovine sperm cells[J]. Free Radic Biol Med,2003.35(11):1382-91.
    [47]Garner D L, Gledhill B L, Pinkel D, et al., Quantification of the X-and Y-chromosome-bearing spermatozoa of domestic animals by flow cytometry[J]. Biol Reprod,1983.28(2):312-21.
    [48]Ashworth PJ, Harrison RA, Miller NG, et al., Survival of ram spermatozoa at high dilution:protective effect of simple constituents of culture media as compared with seminal plasma.[J]. Reproduction,fertility,and development,1994.6(2):173-80.
    [49]Rath D,Johnson L A, Application and commercialization of flow cytometrically sex-sorted semen[J]. Reprod Domest Anim,2008.43 Suppl 2:338-46.
    [50]Parrilla I, Vazquez J M, Oliver-Bonet M, et al., Fluorescence in situ hybridization in diluted and flow cytometrically sorted boar spermatozoa using specific DNA direct probes labelled by nick translation[J]. Reproduction,2003.126(3):317-25.
    [51]Vazquez J M, Parrilla I, Roca J, et al., Sex-sorting sperm by flow cytometry in pigs: issues and perspectives[J]. Theriogenology,2009.71(1):80-8.
    [52]Garcia E M, Vazquez J M, Parrilla I, et al., Improving the fertilizing ability of sex sorted boar spermatozoa[J]. Theriogenology,2007.68(5):771-8.
    [53]Vazquez J M, Martinez E A, Parrilla I, et al., Motility characteristics and fertilizing capacity of boar spermatozoa stained with Hoechst 33342[J]. Reprod Domest Anim, 2002.37(6):369-74.
    [54]Guthrie H D, Johnson L A, Garrett W M, et al., Flow cytometric sperm sorting:effects of varying laser power on embryo development in swine[J]. Mol Reprod Dev,2002. 61(1):87-92.
    [55]Maxwell W M, Welch G R, and Johnson L A, Viability and membrane integrity of spermatozoa after dilution and flow cytometric sorting in the presence or absence of seminal plasma[J]. Reprod Fertil Dev,1996.8(8):1165-78.
    [56]Caballero I, Vazquez J M, Centurion F, et al., Comparative effects of autologous and homologous seminal plasma on the viability of largely extended boar spermatozoa[J]. Reprod Domest Anim,2004.39(5):370-5.
    [57]Johnson L A, Sexing mammalian sperm for production of offspring:the state-of-the-art[J]. Anim Reprod Sci,2000.60-61:93-107.
    [58]Bathgate R, Morton K M, Eriksson B M, et al., Non-surgical deep intra-uterine transfer of in vitro produced porcine embryos derived from sex-sorted frozen-thawed boar sperm[J]. Anim Reprod Sci,2007.99(1-2):82-92.
    [59]Bathgate R, Grossfeld R, Susetio D, et al., Early pregnancy loss in sows after low dose, deep uterine artificial insemination with sex-sorted, frozen-thawed sperm[J]. Anim Reprod Sci,2008.104(2-4):440-4.
    [60]Bathgate R, Functional integrity of sex-sorted, frozen-thawed boar sperm and its potential for artificial insemination[J]. Theriogenology,2008.70(8):1234-41.
    [61]Vazquez J M, Roca J, Gil M A, et al., Low-dose insemination in pigs:problems and possibilities[J]. Reprod Domest Anim,2008.43 Suppl 2:347-54.
    [62]Hollinshead F K, O'Brien J K, Maxwell W M, et al., Production of lambs of predetermined sex after the insemination of ewes with low numbers of frozen-thawed sorted X-or Y-chromosome-bearing spermatozoa[J]. Reprod Fertil Dev,2002.14(7-8): 503-8.
    [63]de Graaf S P, Evans Q Maxwell W M, et al., In vitro characteristics of fresh and frozen-thawed ram spermatozoa after sex sorting and re-freezing[J]. Reprod Fertil Dev, 2006.18(8):867-74.
    [64]Hollinshead F K, Gillan L, O'Brien J K, et al., In vitro and in vivo assessment of functional capacity of flow cytometrically sorted ram spermatozoa after freezing and thawing[J]. Reprod Fertil Dev,2003.15(6):351-9.
    [65]de Graaf S P, Beilby K H, Underwood S L, et al., Sperm sexing in sheep and cattle: the exception and the rule[J]. Theriogenology,2009.71(1):89-97.
    [66]Robeck T R, Steinman K J, Yoshioka M, et al., Estrous cycle characterisation and artificial insemination using frozen-thawed spermatozoa in the bottlenose dolphin (Tursiops truncatus)[J]. Reproduction,2005.129(5):659-74.
    [67]O'Brien J K,Robeck T R, Development of sperm sexing and associated assisted reproductive technology for sex preselection of captive bottlenose dolphins (Tursiops truncatus)[J]. Reprod Fertil Dev,2006.18(3):319-29.
    [68]Graham J K, Kunze E, and Hammerstedt R H, Analysis of sperm cell viability, acrosomal integrity, and mitochondrial function using flow cytometry[J]. Biol Reprod, 1990.43(1):55-64.
    [69]Garner D L, Johnson L A, Yue S T, et al., Dual DNA staining assessment of bovine sperm viability using SYBR-14 and propidium iodide[J]. J Androl,1994.15(6):620-9.
    [70]Garner D L,Johnson L A, Viability assessment of mammalian sperm using SYBR-14 and propidium iodide[J]. Biol Reprod,1995.53(2):276-84.
    [71]Mattioli M, Barboni B, Lucidi P, et al., Identification of capacitation in boar spermatozoa by chlortetracycline staining[J]. Theriogenology,1996.45(2):373-81.
    [72]Gillan L, Evans G, and Maxwell W M, Capacitation status and fertility of fresh and frozen-thawed ram spermatozoa[J]. Reprod Fertil Dev,1997.9(5):481-7.
    [73]Rodriguez-Martinez H,Barth A D, In vitro evaluation of sperm quality related to in vivo function and fertility[J]. Soc Reprod Fertil Suppl,2007.64:39-54.
    [74]Bianchi P G, Manicardi G C, Bizzaro D, et al., Effect of deoxyribonucleic acid protamination on fluorochrome staining and in situ nick-translation of murine and human mature spermatozoa[J]. Biol Reprod,1993.49(5):1083-8.
    [75]Correa J R, Pace M M, and Zavos P M, Relationships among frozen-thawed sperm characteristics assessed via the routine semen analysis, sperm functional tests and fertility of bulls in an artificial insemination program[J]. Theriogenology,1997.48(5): 721-31.
    [76]Hallap T, Nagy S, Jaakma U, et al., Mitochondrial activity of frozen-thawed spermatozoa assessed by MitoTracker Deep Red 633[J]. Theriogenology,2005.63(8): 2311-22.
    [77]Khan D R, Ahmad N, Anzar M, et al., Apoptosis in fresh and cryopreserved buffalo sperm[J]. Theriogenology,2009.71(5):872-6.
    [78]Martin Q Sabido O, Durand P, et al., Cryopreservation induces an apoptosis-like mechanism in bull sperm[J]. Biol Reprod,2004.71(1):28-37.
    [79]Fernandez J L, Muriel L, Goyanes V, et al., Simple determination of human sperm DNA fragmentation with an improved sperm chromatin dispersion test[J]. Fertil Steril, 2005.84(4):833-42.
    [80]Fernandez J L, Muriel L, Rivero M T, et al., The sperm chromatin dispersion test:a simple method for the determination of sperm DNA fragmentation[J]. J Androl,2003. 24(1):59-66.
    [81]Gillan L, Kroetsch T, Maxwell W M, et al., Assessment of in vitro sperm characteristics in relation to fertility in dairy bulls[J]. Anim Reprod Sci,2008. 103(3-4):201-14.
    [82]Schurmann A, Axer H, Scheepers A, et al., The glucose transport facilitator GLUT8 is predominantly associated with the acrosomal region of mature spermatozoa[J]. Cell Tissue Res,2002.307(2):237-42.
    [83]Burant C F,Davidson N O, GLUT3 glucose transporter isoform in rat testis: localization, effect of diabetes mellitus, and comparison to human testis[J]. Am J Physiol,1994.267(6 Pt 2):R1488-95.
    [84]Mukai C,Okuno M, Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement[J]. Biol Reprod,2004.71(2): 540-7.
    [85]Nagy S, Jansen J, Topper E K, et al., A triple-stain flow cytometric method to assess plasma-and acrosome-membrane integrity of cryopreserved bovine sperm immediately after thawing in presence of egg-yolk particles[J]. Biol Reprod,2003. 68(5):1828-35.
    [86]Correa J R,Zavos P M, The hypoosmotic swelling test:Its employment as an assay to evaluate the functional integrity of the frozen-thawed bovine sperm membrane[J]. Theriogenology,1994.42(2):351-60.
    [87]Jeyendran R S, Van der Ven H H, Perez-Pelaez M, et al., Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics[J]. J Reprod Fertil,1984.70(1):219-28.
    [88]Drevius L O,Eriksson H, Osmotic swelling of mammalian spermatozoa[J]. Exp Cell Res,1966.42(1):136-56.
    [89]Schrader S M, Platek S F, Zaneveld L J, et al., Sperm viability:a comparison of analytical methods[J]. Andrologia,1986.18(5):530-8.
    [90]Silva P F,Gadella B M, Detection of damage in mammalian sperm cells[J]. Theriogenology,2006.65(5):958-78.
    [91]Nicholls D Q Mitochondrial membrane potential and aging[J]. Aging Cell,2004.3(1): 35-40.
    [92]Evenson D P, Darzynkiewicz Z, and Melamed M R, Simultaneous measurement by flow cytometry of sperm cell viability and mitochondrial membrane potential related to cell motility[J]. J Histochem Cytochem,1982.30(3):279-80.
    [93]Smiley S T, Reers M, Motto la-Hartshorn C, et al., Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1[J]. Proc Natl Acad Sci U S A,1991.88(9):3671-5.
    [94]Fuentes-Mascorro G, Serrano H, and Rosado A, Sperm chromatin[J]. Arch Androl, 2000.45(3):215-25.
    [95]Balhorn R, Brewer L, and Corzett M, DNA condensation by protamine and arginine-rich peptides:analysis of toroid stability using single DNA molecules[J]. Mol Reprod Dev,2000.56(2 Suppl):230-4.
    [96]Dooher G B,Bennett D, Fine structural observations on the development of the sperm head in the mouse[J]. Am J Anat,1973.136(3):339-61.
    [97]Cho C, Jung-Ha H, Willis W D, et al., Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice[J]. Biol Reprod,2003.69(1):211-7.
    [98]Spano M, Kolstad A H, Larsen S B, et al., The applicability of the flow cytometric sperm chromatin structure assay in epidemiological studies. Asclepios[J]. Hum Reprod,1998.13(9):2495-505.
    [99]Boe-Hansen G B, Christensen P, Vibjerg D, et al., Sperm chromatin structure integrity in liquid stored boar semen and its relationships with field fertility[J]. Theriogenology, 2008.69(6):728-36.
    [100]Hendricks K E, Penfold L M, Evenson D P, et al., Effects of airport screening X-irradiation on bovine sperm chromatin integrity and embryo development[J]. Theriogenology,2009.73(2):267-72.
    [101]Evenson D P, Jost L K, Marshall D, et al, Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic[J]. Hum Reprod, 1999.14(4):1039-49.
    [102]Benchaib M, Braun V, Lornage J, et al., Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique[J]. Hum Reprod,2003.18(5): 1023-8.
    [103]Ahmadi A,Ng S C, Fertilizing ability of DNA-damaged spermatozoa[J]. J Exp Zool, 1999.284(6):696-704.
    [104]Fatehi A N, Bevers M M, Schoevers E, et al., DNA damage in bovine sperm does not block fertilization and early embryonic development but induces apoptosis after the first cleavages[J]. J Androl,2006.27(2):176-88.
    [105]Holcik M, LaCasse E, Mackenzie A, et al., Apoptosis in Health and Disease[J].2005: 1-6.
    [106]Wyllie A H, Kerr J F, and Currie A R, Cell death:the significance of apoptosis[J]. Int Rev Cytol,1980.68:251-306.
    [107]Anzar M, He L, Buhr M M, et al., Sperm apoptosis in fresh and cryopreserved bull semen detected by flow cytometry and its relationship with fertility[J]. Biol Reprod, 2002.66(2):354-60.
    [108]Koopman G, Reutelingsperger C P, Kuijten G A, et al., Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis[J]. Blood, 1994.84(5):1415-20.
    [109]Vermes I, Haanen C, Steffens-Nakken H, et al., A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V[J].J Immunol Methods,1995.184(1):39-51.
    [110]Baccetti B, Collodel G, and Piomboni P, Apoptosis in human ejaculated sperm cells (notulae seminologicae 9)[J]. J Submicrosc Cytol Pathol,1996.28(4):587-96.
    [111]Ramalho-Santos J, Schatten G, and Moreno R D, Control of membrane fusion during spermiogenesis and the acrosome reaction[J]. Biol Reprod,2002.67(4):1043-51.
    [112]Honda A, Siruntawineti J, and Baba T, Role of acrosomal matrix proteases in sperm-zona pellucida interactions[J]. Hum Reprod Update,2002.8(5):405-12.
    [113]Holden C A, Hyne R V, Sathananthan A H, et al., Assessment of the human sperm acrosome reaction using concanavalin A lectin[J]. Mol Reprod Dev,1990.25(3): 247-57.
    [114]Flesch F M, Voorhout W F, Colenbrander B, et al., Use of lectins to characterize plasma membrane preparations from boar spermatozoa:a novel technique for monitoring membrane purity and quantity[J]. Biol Reprod,1998.59(6):1530-9.
    [115]Cheng F P, Gadella B M, Voorhout W F, et al., Progesterone-induced acrosome reaction in stallion spermatozoa is mediated by a plasma membrane progesterone receptor[J]. Biol Reprod,1998.59(4):733-42.
    [116]Szasz F, Sirivaidyapong S, Cheng F P, et al., Detection of calcium ionophore induced membrane changes in dog sperm as a simple method to predict the cryopreservability of dog semen[J]. Mol Reprod Dev,2000.55(3):289-98.
    [117]Gillan L, Evans G, and Maxwell W M, Flow cytometric evaluation of sperm parameters in relation to fertility potential[J]. Theriogenology,2005.63(2):445-57.
    [118]Thomas C A, Garner D L, DeJarnette J M, et al., Effect of cryopreservation of bovine sperm organelle function and viability as determined by flow cytometry[J]. Biol Reprod,1998.58(3):786-93.
    [119]Bronson R A, Peresleni T, and Golightly M, Progesterone promotes the acrosome reaction in capacitated human spermatozoa as judged by flow cytometry and CD46 staining[J]. Mol Hum Reprod,1999.5(6):507-12.
    [120]Gagnon C, Iwasaki A, De Lamirande E, et al., Reactive oxygen species and human spermatozoa[J]. Ann N Y Acad Sci,1991.637:436-44.
    [121]Agarwal A, Nallella K P, Allamaneni S S, et al., Role of antioxidants in treatment of male infertility:an overview of the literature[J]. Reprod Biomed Online,2004.8(6): 616-27.
    [122]Griveau J F,Le Lannou D, Reactive oxygen species and human spermatozoa: physiology and pathology[J]. Int J Androl,1997.20(2):61-9.
    [123]Aitken R J, Free radicals, lipid peroxidation and sperm function[J]. Reprod Fertil Dev, 1995.7(4):659-68.
    [124]de Lamirande E,Gagnon C, Human sperm hyperactivation and capacitation as parts of an oxidative process[J]. Free Radic Biol Med,1993.14(2):157-66.
    [125]Kodama H, Kuribayashi Y, and Gagnon C, Effect of sperm lipid peroxidation on fertilization[J]. J Androl,1996.17(2):151-7.
    [126]Griveau J F, Dumont E, Renard P, et al., Reactive oxygen species, lipid peroxidation and enzymatic defence systems in human spermatozoa[J]. J Reprod Fertil,1995. 103(1):17-26.
    [127]Agarwal A,Prabakaran S A, Mechanism, measurement, and prevention of oxidative stress in male reproductive physio logy [J]. Indian J Exp Biol,2005.43(11):963-74.
    [128]Garrido N, Meseguer M, Simon C, et al., Pro-oxidative and anti-oxidative imbalance in human semen and its relation with male fertility[J]. Asian J Androl,2004.6(1): 59-65.
    [129]Gomez E, Buckingham D W, Brindle J, et al., Development of an image analysis system to monitor the retention of residual cytoplasm by human spermatozoa: correlation with biochemical markers of the cytoplasmic space, oxidative stress, and sperm function[J]. J Androl,1996.17(3):276-87.
    [130]Gavella M,Lipovac V, NADH-dependent oxidoreductase (diaphorase) activity and isozyme pattern of sperm in infertile men[J]. Arch Androl,1992.28(2):135-41.
    [131]Ochsendorf F R, Infections in the male genital tract and reactive oxygen species[J]. Hum Reprod Update,1999.5(5):399-420.
    [132]Aitken J,Fisher H, Reactive oxygen species generation and human spermatozoa:the balance of benefit and risk[J]. Bioessays,1994.16(4):259-67.
    [133]Aitken R J, Clarkson J S, and Fishel S, Generation of reactive oxygen species, lipid peroxidation, and human sperm function[J]. Biol Reprod,1989.41(1):183-97.
    [134]Aitken R J, Harkiss D, and Buckingham D W, Analysis of lipid peroxidation mechanisms in human spermatozoa[J]. Mol Reprod Dev,1993.35(3):302-15.
    [135]Agarwal A, Ikemoto I, and Loughlin K R, Relationship of sperm parameters with levels of reactive oxygen species in semen specimens[J]. J Urol,1994.152(1):107-10.
    [136]Armstrong J S, Rajasekaran M, Chamulitrat W, et al., Characterization of reactive oxygen species induced effects on human spermatozoa movement and energy metabolism[J]. Free Radic Biol Med,1999.26(7-8):869-80.
    [137]Aitken R J, Fisher H M, Fulton N, et al., Reactive oxygen species generation by human spermatozoa is induced by exogenous NADPH and inhibited by the flavoprotein inhibitors diphenylene iodonium and quinacrine[J]. Mol Reprod Dev, 1997.47(4):468-82.
    [138]Twigg J, Irvine D S, Houston P, et al., Iatrogenic DNA damage induced in human spermatozoa during sperm preparation:protective significance of seminal plasma[J]. Mol Hum Reprod,1998.4(5):439-45.
    [139]Spiropoulos J, Turnbull D M, and Chinnery P F, Can mitochondrial DNA mutations cause sperm dysfunction?[J]. Mol Hum Reprod,2002.8(8):719-21.
    [140]Aitken R J,Krausz C, Oxidative stress, DNA damage and the Y chromosome[J]. Reproduction,2001.122(4):497-506.
    [141]Sakkas D, Urner F, Bizzaro D, et al., Sperm nuclear DNA damage and altered chromatin structure:effect on fertilization and embryo development[J]. Hum Reprod, 1998.13 Supp14:11-9.
    [142]Lee J, Richburg J H, Younkin S C, et al., The Fas system is a key regulator of germ cell apoptosis in the testis[J]. Endocrinology,1997.138(5):2081-8.
    [143]Cande C, Cecconi F, Dessen P, et al., Apoptosis-inducing factor (AIF):key to the conserved caspase-independent pathways of cell death?[J]. J Cell Sci,2002.115(Pt 24):4727-34.
    [144]杨贤欣,牛直肠触摸法检查卵巢卵泡的发育及判定标准[J].广西畜牧兽医,2003.19(3):111-112.
    [145]Mennella M R,Jones R, Properties of spermatozoal superoxide dismutase and lack of involvement of superoxides in metal-ion-catalysed lipid-peroxidation and reactions in semen[J]. Biochem J,1980.191(2):289-97.
    [146]Zini A, de Lamirande E, and Gagnon C, Reactive oxygen species in semen of infertile patients:levels of superoxide dismutase-and catalase-like activities in seminal plasma and spermatozoa[J]. Int JAndrol,1993.16(3):183-8.
    [147]Bilodeau J F, Chatterjee S, Sirard M A, et al., Levels of antioxidant defenses are decreased in bovine spermatozoa after a cycle of freezing and thawing[J]. Mol Reprod Dev,2000.55(3):282-8.
    [148]Meister A, Glutathione, ascorbate, and cellular protection[J]. Cancer Res,1994.54(7 Suppl):1969s-1975s.
    [149]Meister A, Glutathione metabolism and its selective modification[J]. J Biol Chem, 1988.263(33):17205-8.
    [150]Tsen C C,Tappel A L, Catalytic oxidation of glutathione and other sulfhydryl compounds by selenite[J]. J Biol Chem,1958.233(5):1230-2.
    [151]Sundquist A R,Fahey R C, Evolution of antioxidant mechanisms:thiol-dependent peroxidases and thioltransferase among procaryotes[J]. J Mol Evol,1989.29(5): 429-35.
    [152]Gadea J, Selles E, Marco M A, et al., Decrease in glutathione content in boar sperm after cryopreservation. Effect of the addition of reduced glutathione to the freezing and thawing extenders[J]. Theriogenology,2004.62(3-4):690-701.
    [153]Buhr M M, Curtis E F, and Kakuda N S, Composition and behavior of head membrane lipids of fresh and cryopreserved boar sperm[J]. Cryobiology,1994.31(3):224-38.
    [154]Robinson K, Pilot T F, and Meany J E, Time dependent inhibition of xanthine oxidase in irradiated solutions of folic acid, aminopterin and methotrexate[J]. Physiol Chem Phys Med NMR,1990.22(2):95-103.
    [155]Joshi R, Adhikari S, Patro B S, et al., Free radical scavenging behavior of folic acid: evidence for possible antioxidant activity[J]. Free Radic Biol Med,2001.30(12): 1390-9.
    [156]Zhang H,Liu K K, Optical tweezers for single cells[J]. J R Soc Interface,2008.5(24): 671-90.
    [157]Xie C, Dinno M A, and Li Y Q, Near-infrared Raman spectroscopy of single optically trapped biological cells[J]. Opt Lett,2002.27(4):249-51.
    [158]Xie C, Mace J, Dinno M A, et al., Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy[J]. Anal Chem,2005. 77(14):4390-7.
    [159]Yamazaki H, Kaminaka S, Kohda E, et al., The diagnosis of lung cancer using 1064-nm excited near-infrared multichannel Raman spectroscopy[J]. Radiat Med, 2003.21(1):1-6.
    [160]Omberg K M, J. C. Osborn, S. L. L. Zhang, et al., Raman spectroscopy and factor analysis of tumorigenic and non-tumorigenic cells.[J]. Appl. Spectrosc.,2002.41(56): 813-819.
    [161]Chan J W, Taylor D S, Zwerdling T, et al., Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells[J]. Biophys J,2006.90(2): 648-56.
    [162]Singh G P, Creely C M, Volpe G, et al., Real-time detection of hyperosmotic stress response in optically trapped single yeast cells using Raman microspectroscopy[J]. Anal Chem,2005.77(8):2564-8.
    [163]Townes-Anderson E, St Jules R S, Sherry D M, et al., Micromanipulation of retinal neurons by optical tweezers[J]. Mol Vis,1998.4:12.
    [164]Sequaris J M, Koglin E, and Malfoy B, Inner and outer complexes of Pt-coordination compounds with DNA probed by SERS spectroscopy[J]. FEBS Lett,1984.173(1): 95-8.
    [165]Ke W Z, Yu D W, Gu B P, et al., [Raman spectroscopic study of microscopic damage on the space structure of DNA with acetic acid][J]. Guang Pu Xue Yu Guang Pu Fen Xi,2001.21(6):790-3.
    [166]Banerjee D, Makhal A, and Pal S K, Sequence dependent femtosecond-resolved hydration dynamics in the minor groove of DNA and histone-DNA complexes[J]. J Fluoresc,2009.19(6):1111-8.
    [167]de Yebra L, Ballesca J L, Vanrell J A, et al., Complete selective absence of protamine P2 in humans[J]. J Biol Chem,1993.268(14):10553-7.
    [168]Belokopytova I A, Kostyleva E I, Tomilin AN, et al., Human male infertility may be due to a decrease of the protamine P2 content in sperm chromatin[J]. Mol Reprod Dev, 1993.34(1):53-7.
    [169]Blanchard Y, Lescoat D, and Le Lannou D, Anomalous distribution of nuclear basic proteins in round-headed human spermatozoa[J]. Andrologia,1990.22(6):549-55.
    [170]Hofmann N,Hilscher B, Use of aniline blue to assess chromatin condensation in morphologically normal spermatozoa in normal and infertile men[J]. Hum Reprod, 1991.6(7):979-82.
    [171]Huser T, Orme C A, Hollars C W, et al., Raman spectroscopy of DNA packaging in individual human sperm cells distinguishes normal from abnormal cells[J]. J Biophotonics,2009.2(5):322-32.
    [172]Mizuno A, Nishigori H, and Iwatsuru M, Glucocorticoid-induced cataract in chick embryo monitored by Raman spectroscopy[J]. Invest Ophthalmol Vis Sci,1989.30(1): 132-7.
    [173]Seli E, Sakkas D, Scott R, et al., Noninvasive metabolomic profiling of embryo culture media using Raman and near-infrared spectroscopy correlates with reproductive potential of embryos in women undergoing in vitro fertilization[J]. Fertil Steril,2007.88(5):1350-7.
    [174]Seli E, Vergouw C G, Morita H, et al., Noninvasive metabolomic profiling as an adjunct to morphology for noninvasive embryo assessment in women undergoing single embryo transfer[J]. Fertil Steril,2010.94(2):535-42.
    [175]Johnson L A, Sex Preselection in Swine:Altered Sex Ratios in Offspring following Surgical Insemination of Flow Sorted X-and Y-Bearing Sperm[J]. Reproduction in domestic animal,1991.26(6):309-314.
    [176]Cran DG, Johnson LA, and C P, Sex selection in cattle:a field trial.[J]. veterinary record,1995.136:495-496.
    [177]Liang X W, Lu Y Q, Chen M T, et al., In vitro embryo production in buffalo (Bubalus bubalis) using sexed sperm and oocytes from ovum pick up[J]. Theriogenology,2008. 69(7):822-6.
    [178]Lindsey A C, Bruemmer J E, and Squires E L, Low dose insemination of mares using non-sorted and sex-sorted sperm[J]. Anim Reprod Sci,2001.68(3-4):279-89.
    [179]Gao Q H, Wei H J, Han C M, et al., Successful low dose insemination of flow cytometrically sorted Sika (Cervus nippon) sperm in Wapiti (Cervus elaphus)[J]. Anim Reprod Sci,2009.118(1):89-93.
    [180]Schultz R M, The molecular foundations of the maternal to zygotic transition in the preimplantation embryo[J]. Hum Reprod Update,2002.8(4):323-31.
    [181]Vigneault C, McGraw S, Massicotte L, et al., Transcription factor expression patterns in bovine in vitro-derived embryos prior to maternal-zygotic transition[J]. Biol Reprod, 2004.70(6):1701-9.
    [182]Miyano T, Bringing up small oocytes to eggs in pigs and cows[J]. Theriogenology, 2003.59(1):61-72.
    [183]Yang X, Kubota C, Suzuki H, et al., Control of oocyte maturation in cows--biological factors[J]. Theriogenology,1998.49(2):471-82.
    [184]Hendriksen P J, Vos P L, Steenweg W N, et al., Bovine follicular development and its effect on the in vitro competence of oocytes[J]. Theriogenology,2000.53(1):11-20.
    [185]Wolfenson D, Roth Z, and Meidan R, Impaired reproduction in heat-stressed cattle: basic and applied aspects[J]. Anim Reprod Sci,2000.60-61:535-47.
    [186]Roth Z, Arav A, Bor A, et al., Improvement of quality of oocytes collected in the autumn by enhanced removal of impaired follicles from previously heat-stressed cows[J]. Reproduction,2001.122(5):737-44.
    [187]De Rensis F,Scaramuzzi R J, Heat stress and seasonal effects on reproduction in the dairy cow--a review[J]. Theriogenology,2003.60(6):1139-51.
    [188]Khatir H, Lonergan P, Carolan C, et al., Prepubertal bovine oocyte:a negative model for studying oocyte developmental competence[J]. Mol Reprod Dev,1996.45(2): 231-9.
    [189]Palma G A, Tortonese D J, and Sinowatz F, Developmental capacity in vitro of prepubertal oocytes[J]. Anat Histol Embryol,2001.30(5):295-300.
    [190]Armstrong D T, Effects of maternal age on oocyte developmental competence[J]. Theriogenology,2001.55(6):1303-22.
    [191]Presicce G A, Jiang S, Simkin M, et al., Age and hormonal dependence of acquisition of oocyte competence for embryogenesis in prepubertal calves[J]. Biol Reprod,1997. 56(2):386-92.
    [192]Rocha A, Randel R D, Broussard J R, et al., High environmental temperature and humidity decrease oocyte quality in Bos taurus but not in Bos indicus cows[J]. Theriogenology,1998.49(3):657-65.
    [193]Block J, Chase C C, Jr., and Hansen P J, Inheritance of resistance of bovine preimplantation embryos to heat shock:relative importance of the maternal versus paternal contribution[J]. Mol Reprod Dev,2002.63(1):32-7.
    [194]Paula-Lopes F F, Chase C C, Jr., Al-Katanani Y M, et al., Genetic divergence in cellular resistance to heat shock in cattle:differences between breeds developed in temperate versus hot climates in responses of preimplantation embryos, reproductive tract tissues and lymphocytes to increased culture temperatures[J]. Reproduction,2003. 125(2):285-94.
    [195]Parrish JJ, Parrish JL, and NL F, Effect of swim-up separation and heparin pretreatment of frozen thawed spermatozoa on in vitro fertilization of bovine oocytes.[J]. Biol Reprod,1984.30(suppl 1):112.
    [196]Lu K H,Seidel G E, Jr., Effects of heparin and sperm concentration on cleavage and blastocyst development rates of bovine oocytes inseminated with flow cytometrically-sorted sperm[J]. Theriogenology,2004.62(5):819-30.
    [197]Parrish J J, Susko-Parrish J L, Leibfried-Rutledge M L, et al., Bovine in vitro fertilization with frozen-thawed semen[J]. Theriogenology,1986.25(4):591-600.
    [198]Wolf D P, Byrd W, Dandekar P, et al., Sperm concentration and the fertilization of human eggs in vitro[J]. Biol Reprod,1984.31(4):837-48.
    [199]Bavister B D, Culture of preimplantation embryos:facts and artifacts[J]. Hum Reprod Update,1995.1(2):91-148.
    [200]Lee E S, Fukui Y, Lee B C, et al., Promoting effect of amino acids added to a chemically defined medium on blastocyst formation and blastomere proliferation of bovine embryos cultured in vitro[J]. Anim Reprod Sci,2004.84(3-4):257-67.
    [201]Thompson J G, In vitro culture and embryo metabolism of cattle and sheep embryos-a decade of achievement[J]. Anim Reprod Sci,2000.60-61:263-75.
    [202]Rieger D, Luciano A M, Modina S, et al., The effects of epidermal growth factor and insulin-like growth factor I on the metabolic activity, nuclear maturation and subsequent development of cattle oocytes in vitro[J]. J Reprod Fertil,1998.112(1): 123-30.
    [203]Sirisathien S, Hernandez-Fonseca H J, and Brackett B G, Influences of epidermal growth factor and insulin-like growth factor-I on bovine blastocyst development in vitro[J]. Anim Reprod Sci,2003.77(1-2):21-32.
    [204]Byrne A T, Southgate J, Brison D R, et al., Regulation of apoptosis in the bovine blastocyst by insulin and the insulin-like growth factor (IGF) superfamily[J]. Mol Reprod Dev,2002.62(4):489-95.
    [205]Van Langendonckt A, Donnay I, Schuurbiers N, et al., Effects of supplementation with fetal calf serum on development of bovine embryos in synthetic oviduct fluid medium[J]. J Reprod Fertil,1997.109(1):87-93.
    [206]Thompson J G, Allen N W, McGowan L T, et al., Effect of delayed supplementation of fetal calf serum to culture medium on bovine embryo development in vitro and following transfer[J]. Theriogenology,1998.49(6):1239-49.
    [207]Gandolfi F,Moor R M, Stimulation of early embryonic development in the sheep by co-culture with oviduct epithelial cells[J]. J Reprod Fertil,1987.81(1):23-8.
    [208]Salisbury GW,NL V, Physiology of Reproduction and Artificial Insemination of Cattle. San Francisco 1961. Freeman and Company.
    [209]Macmillan KL,RJ C, Factors influencing A.B.conception rates[J]. Theriogenology, 1977.11:279-285.
    [210]GE.Seidel, Jr C H A, L.A.Johnson, et al., Uterine horn insemination of heifers with very low numbers of nonfrozen and sexed spermatozoa[J]. Theriogenology,1997. 48(8):1255-1264.
    [211]Hunter R H, Advances in deep uterine insemination:a fruitful way forward to exploit new sperm technologies in cattle[J]. Anim Reprod Sci,2003.79(3-4):157-70.
    [212]Bodmer M, Janett F, Hassig M, et al., Fertility in heifers and cows after low dose insemination with sex-sorted and non-sorted sperm under field conditions[J]. Theriogenology,2005.64(7):1647-55.
    [213]Martinez E A, Vazquez J M, Roca J, et al., Minimum number of spermatozoa required for normal fertility after deep intrauterine insemination in non-sedated sows[J]. Reproduction,2002.123(1):163-70.
    [214]Vazquez J M, Martinez E A, Parrilla I, et al., Birth of piglets after deep intrauterine insemination with flow cytometrically sorted boar spermatozoa[J]. Theriogenology, 2003.59(7):1605-14.
    [215]Vazquez J M, Martinez E A, Roca J, et al., Improving the efficiency of sperm technologies in pigs:the value of deep intrauterine insemination[J]. Theriogenology, 2005.63(2):536-47.
    [216]Salamon S.,W.M.C. M, Frozen storage of ram semen II. Causes of low fertility after cervical insemination and methods of improvement[J]. Animal Reproduction Science, 1995.38:1-36.
    [217]Sohnrey B,Holtz W, Technical Note:Transcervical deep cornual insemination of goats[J]. J Anim Sci,2005.83(7):1543-8.
    [218]Campanile G, Gasparrini B, Vecchio D, et al., Pregnancy rates following Al with sexed semen in Mediterranean Italian buffalo heifers (Bubalus bubalis)[J]. Theriogenology, 2011.76(3):500-6.
    [219]Garcia-Macias V, de Paz P, Martinez-Pastor F, et al., DNA fragmentation assessment by flow cytometry and Sperm-Bos-Halomax (bright-field microscopy and fluorescence microscopy) in bull sperm[J]. Int J Androl,2007.30(2):88-98.
    [220]Grundler W, Dirscherl P, Beisker W, et al., Quantification of temporary and permanent subpopulations of bull sperm by an optimized SYBR-14/propidium iodide assay[J]. Cytometry A,2004.60(1):63-72.
    [221]Lydon M J, Keeler K D, and Thomas D B, Vital DNA staining and cell sorting by flow microfluorometry[J]. J Cell Physiol,1980.102(2):175-81.
    [222]Storey B T, Biochemistry of the induction and prevention of lipoperoxidative damage in human spermatozoa[J]. Mol Hum Reprod,1997.3(3):203-13.
    [223]Paasch U, Sharma R K, Gupta A K, et al., Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoa[J]. Biol Reprod,2004.71(6):1828-37.
    [224]Pena F J, Johannisson A, Wallgren M, et al., Assessment of fresh and frozen-thawed boar semen using an Annexin-V assay:a new method of evaluating sperm membrane integrity[J]. Theriogenology,2003.60(4):677-89.
    [225]Gosalvez J, Ramirez M A, Lopez-Fernandez C, et al., Sex-sorted bovine spermatozoa and DNA damage:I. Static features[J]. Theriogenology,2011.75(2):197-205.
    [226]Alm K, Taponen J, Dahlbom M, et al., A novel automated fluorometric assay to evaluate sperm viability and fertility in dairy bulls[J]. Theriogenology,2001.56(4): 677-84.
    [227]Spinaci M, De Ambrogi M, Volpe S, et al., Effect of staining and sorting on boar sperm membrane integrity, mitochondrial activity and in vitro blastocyst development[J]. Theriogenology,2005.64(1):191-201.
    [228]Foster M L, Love C C, Varner D D, et al., Comparison of methods for assessing integrity of equine sperm membranes[J]. Theriogenology,2011.76(2):334-41.
    [229]Cheuqueman C, Bravo P, Treulen F, et al., Sperm Membrane Functionality in the Dog Assessed by Flow Cytometry[J]. Reprod Domest Anim,2011.
    [230]Golan R, Shochat L, Weissenberg R, et al., Evaluation of chromatin condensation in human spermatozoa:a flow cytometric assay using acridine orange staining[J]. Mol Hum Reprod,1997.3(1):47-54.
    [231]Blondin P, Beaulieu M, Fournier V, et al., Analysis of bovine sexed sperm for IVF from sorting to the embryo[J]. Theriogenology,2009.71(1):30-8.
    [232]Januskauskas A, Gil J, Soderquist L, et al., Effect of cooling rates on post-thaw sperm motility, membrane integrity, capacitation status and fertility of dairy bull semen used for artificial insemination in Sweden[J]. Theriogenology,1999.52(4):641-58.
    [233]Bucak M N, Tuncer P B, Sariozkan S, et al., Effects of antioxidants on post-thawed bovine sperm and oxidative stress parameters:antioxidants protect DNA integrity against cryodamage[J]. Cryobiology,2010.61(3):248-53.
    [234]Ball B A, Oxidative stress, osmotic stress and apoptosis:impacts on sperm function and preservation in the horse[J]. Anim Reprod Sci,2008.107(3-4):257-67.
    [235]Duru N K, Morshedi M, Schuffner A, et al., Cryopreservation-thawing of fractionated human spermatozoa and plasma membrane translocation of phosphatidylserine[J]. Fertil Steril,2001.75(2):263-8.
    [236]Chaveiro A, Santos P, and da Silva F M, Assessment of sperm apoptosis in cryopreserved bull semen after swim-up treatment:a flow cytometric study[J]. Reprod Domest Anim,2007.42(1):17-21.
    [237]Dejarnette J M, Leach M A, Nebel R L, et al., Effects of sex-sorting and sperm dosage on conception rates of Holstein heifers:is comparable fertility of sex-sorted and conventional semen plausible?[J]. J Dairy Sci,2011.94(7):3477-83.
    [238]Stradaioli G, Noro T, Sylla L, et al., Decrease in glutathione (GSH) content in bovine sperm after cryopreservation:comparison between two extenders[J]. Theriogenology, 2007.67(7):1249-55.
    [239]Ruan Y, Peterson M H, Wauson E M, et al., Folic acid protects SWV/Fnn embryo fibroblasts against arsenic toxicity[J]. Toxicol Lett,2000.117(3):129-37.
    [240]Chatterjee S,Gagnon C, Production of reactive oxygen species by spermatozoa undergoing cooling, freezing, and thawing[J]. Mol Reprod Dev,2001.59(4):451-8.
    [241]Agarwal A, Ikemoto I, and Loughlin K R, Effect of sperm washing on levels of reactive oxygen species in semen[J]. Arch Androl,1994.33(3):157-62.
    [242]Klinc P,Rath D, Reduction of oxidative stress in bovine spermatozoa during flow cytometric sorting[J]. Reprod Domest Anim,2007.42(1):63-7.
    [243]Klinc P, Frese D, Osmers H, et al., Insemination with sex sorted fresh bovine spermatozoa processed in the presence of antioxidative substances[J]. Reprod Domest Anim,2007.42(1):58-62.
    [244]Foote R H, Brockett C C, and Kaproth M T, Motility and fertility of bull sperm in whole milk extender containing antioxidants[J]. Anim Reprod Sci,2002.71(1-2): 13-23.
    [245]SL. C, JK. O B, WMC. M, et al., Assessment of ram and boar spermatozoa during cell-sorting by flow cytometry[J]. Reprod Domest Anim,1997.32:251-258.
    [246]Johnson L A, Sex preselection by flow cytometric separation of X and Y chromosome-bearing sperm based on DNA difference:a review[J]. Reprod Fertil Dev, 1995.7(4):893-903.
    [247]Maxwell W M,Johnson L A, Physiology of spermatozoa at high dilution rates:the influence of seminal plasma[J]. Theriogenology,1999.52(8):1353-62.
    [248]Gadea J, Gumbao D, Canovas S, et al., Supplementation of the dilution medium after thawing with reduced glutathione improves function and the in vitro fertilizing ability of frozen-thawed bull spermatozoa[J]. Int J Androl,2008.31(1):40-9.
    [249]Gadea J, Gumbao D, Matas C, et al., Supplementation of the thawing media with reduced glutathione improves function and the in vitro fertilizing ability of boar spermatozoa after cryopreservation[J]. J Androl,2005.26(6):749-56.
    [250]Moustafa M H, Sharma R K, Thornton J, et al., Relationship between ROS production, apoptosis and DNA denaturation in spermatozoa from patients examined for infertility[J]. Hum Reprod,2004.19(1):129-38.
    [251]Celeghini E C, de Arruda R P, de Andrade A F, et al., Effects that bovine sperm cryopreservation using two different extenders has on sperm membranes and chromatin[J]. Anim Reprod Sci,2008.104(2-4):119-31.
    [252]Lewis S E,Aitken R J, DNA damage to spermatozoa has impacts on fertilization and pregnancy[J]. Cell Tissue Res,2005.322(1):33-41.
    [253]Marchetti C, Obert G, Deffosez A, et al., Study of mitochondrial membrane potential, reactive oxygen species, DNA fragmentation and cell viability by flow cytometry in human sperm[J]. Hum Reprod,2002.17(5):1257-65.
    [254]Seidel G E, Jr.,Garner D L, Current status of sexing mammalian spermatozoa[J]. Reproduction,2002.124(6):733-43.
    [255]Roca J, Rodriguez M J, Gil M A, et al., Survival and in vitro fertility of boar spermatozoa frozen in the presence of superoxide dismutase and/or catalase[J]. J Androl,2005.26(1):15-24.
    [256]Cerolini S, Maldjian A, Pizzi F, et al., Changes in sperm quality and lipid composition during cryopreservation of boar semen[J]. Reproduction,2001.121(3):395-401.
    [257]Thomson L K, Fleming S D, Aitken R J, et al., Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis[J]. Hum Reprod,2009.24(9):2061-70.
    [258]Xu Y, Zhou Z, Yang H, et al., Raman spectroscopic study of microcosmic photodamage of the space structure of DNA sensitized by Yangzhou haematoporphyrin derivative and Photofrin Ⅱ[J]. J Photochem Photobiol B,1999. 52(1-3):30-4.
    [259]Palma G A, Olivier N S, Neumuller C, et al., Effects of sex-sorted spermatozoa on the efficiency of in vitro fertilization and ultrastructure of in vitro produced bovine blastocysts[J]. Anat Histol Embryol,2008.37(1):67-73.
    [260]Zhang M, Lu K H, and Seidel G E, Development of bovine embryos after in vitro fertilization of oocytes with flow cytometrically sorted, stained and unsorted sperm from different bulls[J]. Theriogenology,2003.60(9):1657-63.
    [261]Fahey R C,Sundquist A R, Evolution of glutathione metabolism[J]. Adv Enzymol Relat Areas Mol Biol,1991.64:1-53.
    [262]Legge M,Sellens M H, Free radical scavengers ameliorate the 2-cell block in mouse embryo culture[J]. Hum Reprod,1991.6(6):867-71.
    [263]Luvoni G C, Keskintepe L, and Brackett B Q Improvement in bovine embryo production in vitro by glutathione-containing culture media[J]. Mol Reprod Dev,1996. 43(4):437-43.
    [264]Wang W H,Day B N, Development of porcine embryos produced by IVM/IVF in a medium with or without protein supplementation:effects of extracellular glutathione[J]. Zygote,2002.10(2):109-15.
    [265]Ozawa M, Nagai T, Fahrudin M, et al., Addition of glutathione or thioredoxin to culture medium reduces intracellular redox status of porcine IVM/IVF embryos, resulting in improved development to the blastocyst stage[J]. Mol Reprod Dev,2006. 73(8):998-1007.
    [266]Curnow E C, Ryan J P, Saunders D M, et al., In vitro developmental potential of macaque oocytes, derived from unstimulated ovaries, following maturation in the presence of glutathione ethyl ester[J]. Hum Reprod,2010.25(10):2465-74.
    [267]Avery B, Jorgensen C B, Madison V, et al., Morphological development and sex of bovine in vitro-fertilized embryos[J]. Mol Reprod Dev,1992.32(3):265-70.
    [268]Miller J QSchultz G A, Amino acid content of preimplantation rabbit embryos and fluids of the reproductive tract[J]. Biol Reprod,1987.36(1):125-9.
    [269]Holmes R P, Goodman H O, Shihabi Z K, et al., The taurine and hypotaurine content of human semen[J]. J Androl,1992.13(3):289-92.
    [270]Lindemann C B, Kanous K, The cyclic nitroxide free radical 4-hydroxy-2,2,6,6-tetramethylpiperidine-loxyl (Tempol) is effective in prolonging the motility of bull sperm in vitro.[J]. Biology of Reproduction,1991.44(suppl.l):117.
    [271]Molla M, Selles E, Marco MA, et al., Freezing procedure produces a reduction in the human spermatozoa glutathione content.[J]. J Androl,2004.25 (Suppl.):45.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.