锰催化剂的制备及其在氧气氧化环己烯反应中的催化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在催化氧化过程中,烯烃的氧化是使碳氢化合物转化成含氧化合物的一类重要反应。环己烯的环氧化是烯烃环氧化的一个探针反应,具有很典型的代表性。环己烯氧化包括双键的氧化和烯丙位的α-H氧化,其中双键环氧化生成的环氧环己烷以及烯丙位氧化生成的环己烯醇和环己烯酮都是重要的有机化工原料和中间体,广泛应用于石油、医药、农药、饲料、高分子材料、食品、染料、纺织、溶剂和精细化工产品等众多领域。本文通过利用洁净易得的氧化剂-分子氧,以环己烯的催化氧化作为研究对象,在不加入共还原剂的条件下考察了不同方法,不同条件下制备的非均相锰氧化物催化剂和MnxOy/SiO2催化剂的催化性能,并且通过多种物化手段对其进行了表征。
     一、锰氧化物催化剂的制备及其在氧气氧化环己烯反应中的催化性能
     (1)采用沉淀法和焙烧法(分别以MnCO3和γ-MnOOH为前驱物)制备了Mn3O4催化剂,并对其在环己烯氧化反应中的催化性能进行了考察。结果表明不同方法所制备的催化剂表现出了不同的催化性能,其中,采用沉淀法制备的Mn3O4催化剂催化性能最佳,并且在最佳的反应条件下,环氧环己烷、环己烯醇和环己烯酮的总收率可达42.1%,其中环氧环己烷的收率达到16.2%。
     (2)考察了沉淀法制备Mn3O4催化剂过程中,pH值对所制催化剂的物化性能和催化性能的影响。结果表明,催化剂的比表面随pH值升高而增大,然而环氧环己烷、环己烯醇和环己烯酮的总收率却有所降低,但对环氧环己烷的收率影响不大。综合考虑,在相同反应条件下,于pH值为9时制备的Mn3O4催化剂在环己烯反应中具有最高的催化性能。
     (3)以pH值为9时制备的Mn3O4为催化剂,考察了焙烧温度、溶剂、反应温度、反应时间和催化剂用量等反应条件对Mn3O4催化性能的影响。溶剂种类对环己烯双键氧化和烯丙位氧化的选择性影响较大,1,2,4,5-四甲基苯为溶剂时Mn3O4催化剂的催化性能最佳。为了进一步解释这一结果,对反应机理作了初步的考察,其遵循自由基机理,且发现溶剂1,2,4,5-四甲基苯参与了反应。GC-MS分析显示在Mn3O4催化剂作用下,1,2,4,5-四甲基苯生成了2,4,5-三甲基苯甲醛,相当于共还原剂,有助于环氧环己烷的生成。
     二、MnxOy/SiO2催化剂的制备及其在氧气氧化环己烯反应中的催化性能
     (1)采用共沉淀法、浸渍法和溶胶-凝胶法制备了MnxOy/SiO2催化剂,并对其在环己烯氧化反应中的催化性能进行了考察。结果表明不同方法所制备的MnxOy/SiO2催化剂表现出了不同的催化性能。其中,采用溶胶-凝胶法制备的MnxOy/SiO2催化剂催化性能最佳,且在最佳反应条件下,环氧环己烷、环己烯醇和环己烯酮的总收率可达35.1%,环己烯酮的收率达到25.7%。
     (2)在采用溶胶-凝胶法制备MnxOy/SiO2的过程中,制备参数是影响催化剂催化性能的主要因素,其中制备过程中pH值是影响催化剂性能的关键因素。于pH值为2-9的范围内制备了系列MnxOy/SiO2催化剂,详细考察了在制备过程中pH值对所制MnxOy/SiO2催化剂的物化性能和催化性能的影响。结果表明不同pH值不仅使催化剂具有不同比表面、金属负载量,而且还使所制备的催化剂的催化氧化性能存在巨大差异。在相同反应条件下,于pH值为4.7时制备的MnxOy/SiO2在环己烯反应中具有最高的反应活性。
     (3)以pH值为4.7时制备的MnxOy/SiO2为催化剂,考察了反应温度、反应时间、溶剂种类及用量和焙烧温度等条件对MnxOy/SiO2催化性能的影响,优化了反应条件。
Epoxidation of alkenes can be regarded as one kind of important reactions which can convert hydrocarbons into oxygen-containing compounds. The epoxidation of cyclohexanol is a typical example. It consists of epoxidation of double bond, producing epoxycyclohexane, and ofα-H allyl oxidation, forming 2-cyclohexene-1-ol and 2-cyclohexene-1-one. Both of these products, as important organic chemical raw materials and intermediates, are widely used in the petrochemical, medicine, pharmaceutical, animal feed, polymer materials, foodstuffs, dyes, textiles, fine chemicals and solvents. In this thesis, a series of manganese oxide and MnxOy/SiO2 catalysts were prepared under different conditions in different ways and characterized by a variety of physico-chemical techniques. Further, their catalytic properties for the epoxidation of cyclohexene with oxygen were investigated.
     Ⅰ) Preparation of manganese oxide catalysts and their catalytic properties in the oxidation of cyclohexene.
     (1) Mn3O4 catalyst was prepared by precipitation of aqueous Mn salt solutions and calcinations (using MnCO3 andγ-MnOOH precursors, respectively). Catalytic tests show that the samples prepared in different ways exhibited different performances. The catalysts prepared by the precipitation method showed better catalytic performance. Under the optimum reaction conditions, the sum yields of epoxycyclohexane, 2-cyclohexene-1-ol and 2-cyclohexene-1-one reached 42.1%, and yield of epoxycyclohexane reached 16.2%, respectively.
     (2) The effect of the pH value in the precipitation mixture on the physicochemical properties and catalytic performance of Mn3O4 was investigated. It has been shown that the samples prepared at different pH values had different surface areas. Although the sum yields of epoxycyclohexane, 2-cyclohexene-1-ol and 2-cyclohexene-1-one decreased with increasing pH values, the epoxycyclohexane yield was not significantly changed. The catalyst prepared at pH=9 were highly active for the epoxidation of cyclohexene.
     (3) The influence of reaction conditions, including calcination temperature, solvent, amount of catalyst, reaction time and reaction temperature, on the catalytic properties was investigated by using the catalyst prepared at pH=9 as an example. It was found that the preferential oxidation of double bond orα-H allyl oxidation was dependent on the solvents employed, and 1,2,4,5-tetramethylbenzene gave the highest the sum yields of epoxycyclohexane, 2-cyclohexene-1-ol and 2-cyclohexene-1-one and yield of epoxycyclohexane. In order to interpret such a result, the catalytic mechanism was further studied. It was shown that the reaction occurred via a radical mechanism, and the solvent took part in the reaction. GC-MS analysis shows that oxidation of 1,2,4,5-tetramethylbenzene occurred, producing 2,4,5- trimethylbenzaldehyde, which acted as a co-reductant in the epoxidation of cyclohexene.
     Ⅱ) Preparation of manganese-based oxide catalysts and their catalytic properties in the oxidation of cyclohexene.
     (1) The MnxOy/SiO2 catalysts were prepared by the co-precipitation method, the impregnation method and the sol-gel method. An extensive evaluation shows that the catalytic properties of MnxOy/SiO2 catalysts for the oxidation of cyclohexene depended on the preparation methods. The MnxOy/SiO2 sample prepared by the sol-gel method exhibited the highest activity. When the reaction was carried out at the optimum reaction conditions, the sum yields of epoxycyclohexane, 2-cyclohexene-1-ol and 2-cyclohexene-1-one reached 35.1%, and 2-cyclohexen-1-one reached 25.7%, respectively.
     (2) Preparation conditions markedly affected the catalytic properties when the sol-gel method was used to prepare the MnxOy/SiO2 catalysts. It was found that the pH value is a key factor determining the catalytic performance. The MnxOy/SiO2 catalysts prepared at different pH values in the range of 2-9, not only had different surface areas and metal loadings, but also exhibited remarkably different catalytic properties. The sample prepared at pH values of 4.7 gave the highest conversion in the oxidation of cyclohexene.
     (3) The effect of reactions conditions, including reaction temperature, reaction time, the type and amount of solvent and catalyst calcination temperature, on the catalytic properties of MnxOy/SiO2 prepared at pH=4.7 were investigated. The optimum reaction conditions were obtained.
引文
[1]王荣民,王云普,雷自强.高分子类卟啉金属配合物催化活化分子氧研究[J].西北范大学学报,2000,36(1):100-103.
    [2] [美]House H.O.著.花文廷,李书润,王定基译,叶秀林校.现代合成反应[M].北京:北京大学出版社,1985.
    [3] Isao Saito, Takashi Mane. Inter-and intramolecular epoxidation utilizing silyl-protected peroxy ester and copper salt[J]. Tetrahydron Lett., 1987, 28(17): 1909-1912.
    [4]陈霞.相转移催化H2O2环氧化环己烯合成环氧环己烷的研究[D].郑州:郑州大学,2004.
    [5] Elena Beloglazkina K., Alexander Majouga G., Renata Romashkina B., etc.. A novel catalyst for alkene epoxidation: apolymer-supported CoIILCl2{L=2-(alkylthio)-3- phenyl-5-(pyridin-2-ylmethylene)-3,5-dihydro-4H-imidazol-4-one}complex[J]. Tetrahedron Lett., 2006, 47(17): 2957-2959.
    [6] Nowak I., Kilos B., Ziolek M., etc.. Epoxidation of cyclohexene on Nb-containing meso-and macroporous materials[J]. Catal. Today, 2003, 78(1-4): 487-498.
    [7] Filippo Somma, Giorgio Strukul. Niobium Containing Micro-, Meso- and MacroporousSilica Materialsas Catalysts for the Epoxidation of Olefins with Hydrogen Peroxide[J]. Cataly. Lett., 2006, 107(1-2): 73-81.
    [8] Yin Guochuan, Buchalova M., Dan by Andrew M., etc.. Olefin Epoxidation by the Hydrogen Peroxide Adduct of a Novel Non-heme Mangangese(IV) Complex: Demonstration of OxygenTransfer by Multiple Mechanisms[J]. Inorg. Chem., 2006, 45(8): 3467-3474.
    [9] Thammanoon Sreethawong, Yusuke Yamada, Kobayashi Tetsuhiko, etc.. Catalysis of nano-crystalline mesoporous TiO2 on cyclohexene epoxidation with H2O2: Effects of mesoporosity and metal oxideadditives[J]. J. Mol. Catal. A: Chemical, 2005, 241(1-2): 23-32.
    [10] Tabushi I., Koga N.. P-450 Type Oxygen Activation by Porphyrin-Manganese Complex [J]. J. Am. Chem. Soc., 1979, 101: 6456-6458.
    [11] Creager S. E., Raybuck S. A., Murray R. W.. A Efficient Electro catalytic Model ofCytochrome P-450 Epoxidation Cycle[J]. J. Am. Chem. Soc., 1986, 108: 4225-4231.
    [12] Haber J., Mlodnicka T., Poltowicz. Metal-Dependent Reactivity of Some Metal loporphyrins in Oxidation with D ioxygen[J]. J. Mol. Catal., 1989, 54: 451-461.
    [13] Yamada T., Takai T., Rhode O., etc.. Highly Efficient Method for Epoxidation of Olefins with Molecular Oxygen and Aldehydes Catalyzed by Ni(Ⅱ)Complexes[J]. Chem. Lett., 1991, 1-4.
    [14] Yan Y. Y., Wang T. J., Guo J. P.. Aerobic Epoxidation of Styrene Catalyzed by Magnesium Oxides Supported Polyttazane Co(Ⅲ) Complexes[J]. Chin. Chem. Lett., 1996, 7: 749- 752.
    [15] Nishida Y., Fujimoto T., Tanaka N.. Formation of Singlet Oxygen Like Act ive Oxygen Species in System Containing Ni(Ⅱ) Complex and Aliphatic A ldehyde[J]. Chem. Lett., 1992, 1291-1294.
    [16] Khan Taqui M. M., Rao Prakash A., Shukla R. S.. Kinetics of the Epoxidation of Cyclohexene by Molecular Oxygen Catalyzed by Dichlorotetra-aquo ruthenium(Ⅲ) in the Presence of the Reductants L-ascorbic Acid and Ethanol[J]. J. Mol. Catal., 1989, 49: 299-314.
    [17] Timothy P. B.. Alkene Oxide Production Using Molten N itrate Salt Catalyst and A Co-Catalyst[P]. US patent, 4883889, 1989.
    [18] Collman J. P., Barnes C. E., Brothers P. J.. Oxidation of Ruthenium(Ⅱ) and Rutheniu(Ⅲ) Porphyrins Crystal Structures of (μ-Oxo-bis-[(p-methylphenoxo)(meso-tetraphenyl porphyrinato)-ruthenium(Ⅳ)] and Ethoxo(meso-tetraphenylporphyrinato)-(ethanol) ruthenium(Ⅲ)-Bisethanol[J]. J. Am. Chem. Soc., 1984, 106: 5151-5163.
    [19] Neumann Ronny, Dahan Mazal. A Ruthenium-Substi-tuted Polyoxometalate as An Inorganic Dioxygenase for Activation of Molecular Oxygen[J]. Nature (London), 1997, 388(6640): 353-355.
    [20]何俊翔,周锦成.环氧环己烷的电化学合成[J].应用化学,1997,14(5):107-109.
    [21] Taqui K. M. M., Mehta S. H., Prakash R. A.. Electrocatalytic oxidation of organic substrates with oxygen using ruthenium-schifbase complex[J]. J. Mol. Catal., 1992, 75(3): 245-251.
    [22] Fan Qian, Li Yaozhong, Cheng Puming, etc.. Studies on Allyic Oxidation inCyclohexene[J]. Chem. Res. Appl., 2001, 13(5): 557-559.
    [23] Fan Qian, Li Yaozhong, Chen Kemei, etc.. Synthesis of 1-Histidine Schiff Base Complex (sal-his-mn) and Its Catalytic Behaviors in Cyclohexene Oxidation[J]. J. Sichuan University(Natural Science Edition), 2001, 38(2): 230-234.
    [24]杨国玉,朱海林等. CoPc/MCM - 41催化氧化环己烯合成环己烯酮[J].精细化工,2006,23(7):721-724.
    [25]陈媛,尹笃林等.五氧化二钒催化环己烯烯丙位氧化[J].催化学报,2006,27(11):983-986.
    [26]常加力,胡长春等.以超临界CO2为介质合成环己烯酮的工艺研究[J].精细与专用化学品,2004,12(9):7-8.
    [27] Groves T., Nemo T. E., Myers R. S.. Hydroxylation and epoxidation catalyzed by ironporphrine complexes[J]. J. Am. Chem. Soc., 1979, 101(4): 1032-1045.
    [28] Tabushi1, Koga N.. P-450 type oxygena ctivation by porphyryin-manganese complex[J]. J. Am. Chem. Soc., 1979, 101: 6456-6458.
    [29] Tabushi1, Yazaki A.. P-450 type dioxygen activation usingH2/coiloidal Pt as an effective electron donor[J]. J. Am. Chem. Soc., 1981, 103: 7371-7376.
    [30] Tabushi L., kodera M.. Fiavi catalyzed reductive dioxygen activation with N-me-thyldihy-dronicotinamide[J]. J. Am. Chem. Soc., 1986, 108: 1101-1107.
    [31] Masuy D., Fontecave M., Bartoli J. F.. Mono-oxygenase-like dioxygen activation leading to alkene hydroxylation and olefin epoxidation by an Mn"(porphyryin)ascorbate biphasic system[J]. J. Chem. Soc., Chem. Comm., 1983, 253-254.
    [32] Yoshihiro Tsuda, Kohshin Takahashi, Takahiro Yamaguchi. Do oxygen-activated reductive epoxidation of cyclohexene using Mn(Ⅲ)porphyryinas catalyst and hexylviologena selection mediator[J]. J. Mol. Catal. A: Chemical, 1999, 138: 145-153.
    [33]倪春林,许登清,姚中荣.新型尾式谷氦酸四苯基卟啉锰(III)催化烯烃环氧化研究[J].化学世界,1999,4:187-190.
    [34]倪春林,许登清,孔凌云等.单取代苯丙氨酸四苯基卟啉锰(III)催化烯烃环氧化研究[J].化学研究与应用,1998,10(6):632-635.
    [35] Birnbaum E. R., Le Lacheur R. M., Horton A. C., etc.. Metalloporphyrin catalyzed homogeneous oxidation in supercritical carbon dioxide[J]. J. Mol. Catal. A: Chemical,1999, 139: 11-24.
    [36]李华明,叶兴凯,吴越. Pd(OAC)/FePc催化环己烯氧化合成环己酮的研究[J].分子催化,1997,11(4):258-262.
    [37]孙强,姚晓华,王丽萍.多核磺化镍(Ⅱ)酞菁催化下的环己烯环氧化[J].化学粘接,1995, 15-17.
    [38]杨国玉,朱海林等. CoPc/MCM-41催化氧化环己烯合成环己烯酮[J].精细化工,2006,23(7):721-724.
    [39]宋国强,王钒,吕晓玲.应用分子氧/正戊醛/三氧化二钴体系氧化环己烯的研究[J].江苏石油化工学院学报,1999,11(3):13-15.
    [40] Kovtyukhova N., belousov V. M., Konishevskaya G. A.. Oxidation of cyclohexene with oxygen catalyzed by a graphite intercalation compound with MoCl5, Kinetics and mechanism of the decomposition of cyclohexenyl hydro peroxide[J]. Kinet. Catal., 1986, 27(6): 1158-1163.
    [41]南光明,陈骏如,施颖等.双齿单Schiff碱钴、锰配合物的合成、表征及催化氧化性能的研究[J].分子催化,2002,16(3):166-170.
    [42] Reddy Madhava M., Punniyamurthy T., Javed Iqbal. Cobalt Catalyzed Oxidation of Cyclic Alkenes with Molecular Oxygen: Allylic Oxidation Versus Double Bound attack[J]. Tetrahedron Lett., 1995, 36: 159-162.
    [43] Krishnan R., Vancheesan S.. Polynuclear manganese complexes catalyzed epoxidation of olefins with molecular oxygen[J]. J. Mol. Catal. A: Chemical, 2002, 185: 87-95.
    [44] Khan M. M. T., Rao A. P.. Epoxidation of cyclohexene,methylcyclohexene and ciscylooctene by Molecular oxygen using ruthenium(III)aquo ion as catalyst-A kinetic study[J]. J. Mol. Catal., 1990, 62(3 ): 265-276.
    [45]戚建英,杨启云,胡家元等.吡啶酰胺基配体与Mn~(2+)、Fe~(3+)、Ru~(3+)配合物的合成和催化环己烯的氧化反应[J].化学研究与应用,1999,11(5):535-536.
    [46] Lourdes T. K., Fernandez M. J., Tmjillo B. S.. Kinetics of Fe'-cyclam complex with H2O2 in acetonitrile and the mechanism of epoxidation of cyclohexene[J]. Plovhednon, 1997, 16(21): 3827-3833.
    [47] Talsi E. P., Babushkin D. E.. Natured the reactive intermediates from the titaniuminduced activation of hydrogen peroxide: studies using1H and 17ONMR[J]. J.Mol. Catal. A: Chemical, 1996, 106: 179-185.
    [48] Beatse E., Vankelecom1 F. J., Jacobs P. A.. Epoxidation of olefins with PDMS membranes containing zeolite occluded manganese diimine complexes[J]. Catal. Today A,1996, 16(32): 1-4.
    [49]肖友发,游劲松,余孝其等.长链烷氧基金属卟啉/H2O2:体系催化烯烃环氧化反应研究[J].化学研究与应用,1996,8(2):270-272.
    [50]田部浩三,御园生诚,小野嘉三等著.郑禄彬,王公尉,张盈珍等译.新固体酸和碱及其催化作用[M].北京:化学工业出版社,1992.
    [51] Iwamoto M., Tateishi M., Mizuno N., etc.. Regioselectivity in epoxidation of dines on PW11CoO395- by molecular oxygen in the presence of aldehyde[J]. Chem. Lett., 1993, (11): 1125-1131.
    [52] Mizuno Noritaka, Weiner Heiko, Finke Richard G.. Co-oxidative epoxidation of cyclohexene with molecular oxygen, isobutyraldehyde reductant, and the polyoxoanion-supported catalyst precursor[(n-C4H9)4N]5Na3[(1,5-COD)lrPZW5Nb3O62], The importance of key control experiments including omitting the catalyst and adding radical-chain initiators[J]. J. Mol. Catal. A: Chemical, 1996, 114: 15-28.
    [53] Neumann R., Dahan M.. Transition metal substituted Keggin type polyoxomolybdates as bifunctional catalysts for the epoxidation of alkenes by molecular oxygen[J]. J. Chem. Soc., Chem. Commun., 1995, 171-172.
    [54]秦笃捷,王国甲,张林等.杂多化合物催化性能的研究[J].分子催化,1996,10(5):357-362.
    [55]奚祖威,王海平等.一种烯烃用分子氧催化氧化制环氧化合物的反应过程[P]. 1998,CN 1203231A.
    [56]李坤兰,周宁,奚祖威.溶剂和杂多酸盐中季铵阳离子对环己烯环氧化反应控制相转移催化的影响[J].催化学报,2002,23(2):125-126.
    [57] Kuznetsova L., Kuznetsova N., Likholobov V. A.. Catalytic properties of Cr-containing Heteropolytungstates in H2O2 participated reactions:H2O2 decomposition and oxidation of unsaturated hydrocarbons with H2O2[J]. J. Mol. Catal. A: Chemical, 1996, 108(3): 56-62.
    [58] Passoni L. C., Rafiq M., Siddiqui H., etc.. Niobiump eroxo compounds as catalysts forliquid-phase oxidation with hydrogen peroxide[J]. J. Mol. Catal. A: Chemical, 2000, 153: 103-108.
    [59]杨恒权,张高勇,洪昕林等.乙二胺基和2,4-戊二酮官能化介孔分子筛固载钼(Ⅵ):新型的环己烯环氧化催化剂[J].化学学报,2003,61(11):1786-1791.
    [60] Tuel A.. Synthesis, Characterization and Catalytic Properties of the New Ti-ZSM-12[J]. Zeolite, 1995, 15: 236-242.
    [61] Laha S. C., Kumar R.. Highly Selective Epoxidation of Olefinic Compounds over TS-1 and TS-2 Redox Molecular Sieves Using Anhydrous Urea Hydrogen Peroxide as Oxidizing Agent[J]. J. Catal., 2002, 208: 339-344.
    [62]王亚军,唐祥海,朱瑞芝等.双金属杂原子分子筛CrCoBEA的合成、波谱及催化性能研究[J].高等学校化学学报,2000(7):28-32.
    [63]于健强,李灿,许磊.以硅溶胶和三氯化钛为原料合成Ti-MCM-41分子筛II. Ti-MCM- 41分子筛的表征[J].催化学报,2001(4):34-38.
    [64]谢宝汉,张玉华.分子氧催化氧化环己烯研究进展[J].化学进展,2001,19(1):30-33.
    [65] Quignard Francoise, Choplin Agnes, Feissier Remy. A molecular route towards silica supported zirconium catalysts active for the mild oxidation of olefins with H2O2[J]. J. Mol. Catal. A: Chemical, 1997, 120: L27-L31.
    [66]李晓强.锰氧化物对甲苯液相氧化反应的催化作用研究[D].大连:中科院大连化学物理研究所,2006.
    [67] Ardizzone S., Tirelli D., Bianchi C. L.. Mn3O4 and gamma-MnOOH powders, preparation, phase composition and XPS characterization[J]. Colloids Surf., 1998, 134(3): 305-312.
    [68] Fritsch S., Rousset A., Kulkarni G. U., etc.. Low-temperature oxidation of Mn3O4[J]. Mater. Res. Bull., 1998, 33(8): 1185-1194.
    [69] Trawczyński J., Bielak B., Mista W.. Oxidation of ethanol over supported manganese catalysts-effect of the carrier[J]. Appl. Catal. B. 2005, 55(4): 277-285.
    [70] Li W. N., Yuan J. K., Gomez-Mower S., etc.. Synthesis of single crystal manganese oxide octahedral molecular sieve(OMS) nanostructures with tunable tunnels and shapes[J]. J. Phys. Chem. B, 2006, 110(7): 3066-3070.
    [71] Wang J. Y., Xia G. G., Yin Y. G., etc.. Cyclohexane functionalization catalyzed byoctahedral molecular sieve(OMS-1)materials[J]. J. Catal., 1998, 176(2): 275-284.
    [72] Makwana V. D., Son Y. C., Howell A. R., etc.. The role of lattice oxygen in selective benzyl alcohol oxidation using OMS-2 catalyst: A kinetic and isotope labeling study[J]. J. Catal., 2002, 210(1): 46-52.
    [1] Wang Xun, Li Yadong. Hydrothermal reduction route to Mn(OH)2 and MnCO3 nanocrystals[J]. Mater. Chem. Phys., 2003, 82: 419-422.
    [2] Zhang Yong Cai, Qiao Tao, Hu Xiao Ya, etc.. Simple hydrothermal preparation ofγ-MnOOH nanowires and their low-temperature thermal conversion toβ-MnO2 nanowires. J. Cryst. Growth[J]. 2005, 280: 652-657.
    [3] Li Xiaoqiang, Xu Jie, Wang Feng, etc.. Direct oxidation of toluene to benzoic acid with molecular oxygen over manganese oxides[J]. Catal. Lett., 2006, 106: 137-140.
    [4] Han Yi-Fan, Chen Luwei, Ramesh Kanaparthi, etc.. Kinetic and spectroscopic study of methane combustion ocherα-Mn2O3 nanocrystal catalysts[J]. J. Catal., 2008, 253: 261-268.
    [5] Zhang Yong Cai, Qiao Tao, Hu Xiao Ya. Preparation of Mn3O4 nanocrystallites by low-temperature solvothermal treatment ofγ-MnOOH nanowires[J]. J. Solid State Chem., 2004, 177: 4093-4097.
    [1] Ley S. V., Baxendale I. R., Bream R. N.. Multi-step organic synthesis using solid-supported reagents and scavengers: a new paradigm in chemical library generation [J]. J. Chem. Soc., Perkin Trans., 2000, 1: 3815-4105.
    [2] Aishui Y., Rogar F.. Novel high rate lithium intercalation cathode materials[J]. J. Electrochem Soc, 2001, 149: 99-102.
    [3] Zhao D., Goldfarb D.. Synthesis of mesoporous mangansilicates: Mn-MCM-41, Mn-MCM-48 and Mn-MCM-L[J]. J. Chem. Soc. Commun., 1995, 8: 875-876.
    [4]王连洲,施剑林,禹剑等. Mn掺杂的介孔氧化锰材料的合成与表征[J].硅酸盐学报,1999,27:89-93.
    [5] Al-Sagheer F. A., Zaki M. I.. Synthesis and surface characterization of todorokite-type microporous manganese oxides: implications for shape-selective oxidation catalysts[J]. Microporous Mesoporous Mater., 2004, 67(1):43-52.
    [6] Lamaita L., Peluso M. A., Sambeth J. E., etc.. A theoretical and experimental study of manganese oxides used as catalysts for VOCs emission reduction[J]. Catal. Today, 2005, 107-08: 133-138.
    [7] Qi G. S., Yang R. T.. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titanic[J]. Appl. Catal. B-Environ., 2003, 44(3): 217-225.
    [8] Radwan N. R. E., El-Shobaky G. A., Fahmy Y. M.. Cordierite as catalyst support for cobalt and manganese oxides in oxidation-reduction reactions[J]. Appl. Catal. A-Gen., 2004, 274(1-2): 87-99.
    [9] Toberer E. S., Schladt T. D., Seshadri R.. Macroporous manganese oxides with regenerative mesopores[J]. J. Am. Chem. Soc., 2006, 128(5): 1462-1463.
    [10] Zeiner C. A., Lion L. W., Shuler M. L., etc.. Cycling of biogenic Mn-oxides in a model microbial predator-prey system[J]. Geomicrobiol. J., 2006, 23(1): 37-43.
    [11] Zhang-Steenwinkel Y., Beckers J., Bliek A.. Surface properties and catalytic performance in CO oxidation of cerium substituted lanthanum-manganese oxides[J]. Appl. Catal. A-Gen., 2002, 235(1-2): 79-92.
    [12] Ardizzone S., Tirelli D., Bianchi C. L.. Mn3O4and gamma-MnOOH powders, preparation, phase composition and XPS characterization[J]. Colloids and Surf., 1998, 134(3): 305-312.
    [13] Fritsch S., Rousset A., Kulkarni G. U., etc.. Low-temperature oxidation of Mn3O4[J]. Mater. Res. Bull., 1998, 33(8): 1185-1194.
    [14]董俊.高品质Mn3O4粉末的制备[J].贵州大学学报(自然科学版),2001,18(2):151-153.
    [15]汤林,陈权启,黄可龙.水热法四氧化三锰超细粉体的研制与表征[J].矿冶工程,2003,23(2):63-65.
    [16]唐爱东,黄可龙. Mn3O4的溶剂热法制备及晶粒生长动力学研究[J].无机化学学报,2005,(6):929-932+781.
    [17] Berbeenni V., Marini A.. Oxidation behavior of mechanically activated Mn3O4 by TGA/Dsc/XRPD[J]. Mater. Res. Bull., 2003, 38: 1859-1866.
    [18]粟海锋,高家利,文衍宣.两段氧化法制备四氧化三锰[J].无机盐工业.2007,6:12-14.
    [19] He WenLiang, Zhang YongCai, Zhang XiaoXue. Low temperature preparation of nanocrystalline Mn2O3 via ethanol-thermal reduction of MnO2[J]. J. Cryst. Growth. 2003, 252: 285-288.
    [20] Su Yang, Wang Lucun. Microwave-accelerated solvent-free aerobic oxidation of benzyl alcohol over efficient and reusable manganese oxides[J]. Catal. Commun., 2007, 8:2181-2185.
    [21] Mukaiyama T.. The Activation of Dioxygen and Homogeneous Catalytic Oxidation[J]. New York: Plenum Press, 1993: 133-137.
    [22] Penniyamurthy T., Iqbal J.. Cobalt catalyzed allylic and benzylic oxidations with dioxygen in the presence of ethyl 2-oxocyclopentanecarboxylate[J]. Tetrahedron Lett., 1994, 35: 4003-4008.
    [23] Hage John P., Powell John A., Donald T.. Sawyer Iron(II)-Induced Activation of Dioxygen for Oxygenation of Cyclohexene and Methyl Linoleate and Initiation of the Autoxidation of 1,4-Cyclohexadiene[J]. J. Am. Chem. Soc., 1995, 117: 12897-12898.
    [24] Kholdeeva O. A., Grigoriev V. A., Fedotov M. A., etc.. Polyfunctional action of transitionmetal substituted heteropolytungstates in alkene epoxidation by molecular oxygen in the presence of aldehyde[J]. J. Mol. Catal. A: Chem., 1996, 114: 123-130.
    [25] Rudler H., Denise B.. Copper(Ⅱ)-catalyzed aerobic oxidation of indene in the presence of aldehydes: intermediate formation of hydroperoxides[J]. J. Mol. Catal. A: Chem., 2000, 154: 277-279.
    [26] Kureshy R. I., Khan.N. H., Abdi S. H., etc.. Choral Ru(Ⅱ) metal complex-catalyzed aerobic enantioselective epoxidation of styrene derivatives with Co-oxidation of aldehyde[J]. J. Mol. Catal. A: Chem., 1997, 124: 91-97.
    [27]樊春玲,刘文明.甲苯选择氧化制苯甲醛的研究进展[J].化工时刊,2008,22(9):61-67.
    [28]卓广澜,赵卫娟,姜玄珍.甲苯氧化制苯甲酸的新催化体系[J].有机化学,2004,24(8):962-965.
    [29]柳艳修,宋华,王宝辉.甲苯直接氧化制苯甲醛研究进展[J].工业催化,2005,13(2):24-28.
    [1]刘惠章,许静玉,孙文梁等.钯、铱单取代十二钼磷酸盐的制备及性质的研究[J].无机化学学报,2000,16(2):310-314.
    [2]刘文,刘强,郭灿城.钴卟啉对空气氧化环己烯合成环己烯酮的催化作用[J].化工学报,2004,55(9):1538-1540.
    [3]范谦,黎耀忠,程克梅等.组氨酸席夫碱锰配合物的合成及环己烯催化氧化[J].四川大学学报(自然科学版),2001,38(2):230-234.
    [4] Zhang Q., Wang Y., Itsuki, etc.. Manganese-containing MCM-41 for epoxidation of styrene and stilbene[J]. J. Mol. Catal. A: Chemical, 2002, 188: 189-200.
    [5] Selvaraj. M., Sinha. P. K., Lee. K., etc.. Synthesis and characterization of Mn-MCM-41 and Zr-Mn-MCM-41[J]. Microspor. Mesopor. Mater., 2005, 78: 139-149.
    [6] Velu. S., Shah. N., Jyothi. T. M., etc.. Effect of manganese substitution on the physicochemical properties and catalytic toluene oxidation activities of Mg-Al layered double hydroxides[J]. Microspor. Mesopor. Mater., 1999, 33: 61-75.
    [7] Vetrivel S., Pandurangan A.. Aerial oxidation of p-isopropyl toluene over manganese containing mesoporous MCM-41 and Al-MCM-41 molecular sieves[J]. J. Mol. Catal. A: Chemical, 2006, 246: 223-230.
    [8] Ramanathan A., Archipov T., Maheswari R., etc.. Synthesis, Characterization and Catalytic Properties of the Novel Manganese-Containing Amorphous Mesoporous Material MnTUD-1[J]. J. Phys. Chem. C, 2008, 112: 7468-7476.
    [9] Xing Shengtao, Hu Chun, Qu Jiuhui, etc.. Characterization and Reactivity of MnOx Supported on Mesoporous Zirconia for Herbicide 2,4-D Mineralization with Ozone[J]. Environ. Sci. Technol., 2008, 42: 3363-3368.
    [10] Velu S., Shah N., Jyothi T. M., etc.. Effect of manganese substitution on the physicochemical properties and catalytic toluene oxidation activities of Mg-Al layered double hydroxides[J]. Microporous Mesoporous Mater.., 1999, 33: 61-75.
    [11] Enrique Fernández López, Vicente Sánchez E., JoséManuel Gallardo Amores, etc.. Structural and morphological characterization of Mn-Zr mixed oxides prepared by a sol-gel method[J]. Solid State Sci., 2002, 4: 951-961.
    [12] Kumar Satish G., Palanichamy M., etc.. A new route for the synthesis of manganese incorporated SBA-15[J]. Microporous Mesoporous Mater., 2008, 112: 53-60.
    [13] Zhanga Yong Cai, Qiaoa Tao, Hu Xiao Ya. Simple hydrothermal preparation ofγ-MnOOH nanowires and their low-temperature thermal conversion toβ-MnO2 nanowires[J]. J. Crystal Growth., 2005, 280: 652-657.
    [14] Nakamoto K.. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edn., Wiley, New York, 1986.
    [15] Weiner H., Trovarelli A., Finke Richard G.. Expanded product, plus kinetic and mechanistic, studies of polyoxoanion-based cyclohexene oxidation catalysis: the detection of~70 products at higher conversion leading to a simple, product-based test for the presence of olefin autoxidation[J]. J. Mol. Cat. A: Chem., 2003, 191: 217-252.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.