西农萨能奶山羊LXRα基因的克隆、序列分析及表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝X受体α(Liver X Receptorα, LXRα)是核受体超家族中非甾体类成员,LXRα特异表达于脂质代谢旺盛的组织,如肝、肠、肾、乳腺、脾和肌肉等。大量研究证明LXRα是机体保持胆固醇相对稳定的关键感受器。可通过调控胆固醇的输出、胆汁酸的产生、脂肪酸的合成及几种脂质转运蛋白从而保持机体脂质的动态平衡。在山羊上,目前还没有完整的LXRα基因序列。本研究克隆西农萨能奶山羊乳腺LXRα基因的cDNA序列并对其进行生物信息学分析;研究西农萨能奶山羊LXRα基因组织表达差异;研究LXRα激动剂TO901317对乳腺上皮细胞中LXRα基因、脂肪酸合酶(Fatty acid synthase, FASN)基因、脂蛋白脂酶(Lipoprotein Lipase, LPL)基因的表达及对细胞脂肪酸组成的影响。试验结果如下:
     本研究采用RT-PCR和RACE技术,分离并克隆了西农萨能奶山羊LXRα基因的cDNA序列,其全长1654bp(GenBank收录号为:GU332719),包括5’UTR150bp,CDS 1344bp和3’UTR 160bp,共编码447个氨基酸。经序列比对发现山羊LXRα基因与其他物种相似性较高,其CDS与GeneBank中牛(BC103207)、小鼠(NM_013839)、大鼠(NM_031627)、猪(NM_001101814)和人(NM_005693)的LXRα基因相比较,CDS核苷酸相似性分别为98%、87%、87%、93%和90%,氨基酸的相似性分别为98%、91%、91%、96%和92%。其UTR核苷酸与牛、小鼠、大鼠、猪和人的相应序列比较,5’UTR相似性为93%、27%、82%、23%和74%,3’UTR相似性为98%、63%、65%、78%和79%。经蛋白质结构分析表明,推测山羊LXRα蛋白质的分子量为50.35kD,等电点为6.30,整个序列中不含信号肽与跨膜结构。该蛋白N端到C端均存在较强的亲水区域,按分值大小划分其疏水最大值为3.233,最小值为-3.089,分别位于第84和361氨基酸序列处。LXRα二级结构主要由49.66%不规则卷曲、49.00%α-螺旋和1.34%延伸链组成。其二级结构主要包括三个功能结构域:配体结合区域(LBD, Ligand-binding Domain)、DNA结合区域(DBD, DNA-binding Domain)和锌指蛋白C4型区域(zf-C4, Zinc finger C4 type)。
     应用ABI PRISM?7300实时荧光定量PCR仪采用SYBR-Green法对西农萨能奶山羊11个组织LXRα基因表达量检测,以甘油醛-3-磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase, GAPDH)基因为内参。试验结果显示LXRα基因在垂体、肺脏、肝脏、瘤胃、卵巢、脾脏、皮下脂肪、乳腺、肾脏、心脏及小肠组织中均有表达。LXRα基因在小肠组织中的表达量最高,肝脏、脾脏、皮脂、乳腺次之,分析表明小肠表达量相对于其他组织差异显著(P<0.05),肝脏、脾脏、皮脂、乳腺基因表达量间差异不显著(P>0.05),心脏中表达量最低。
     以西农萨能奶山羊乳腺上皮细胞为试验材料,应用激动剂TO901317(0、0.1、0.01、1、10)μmol/L浓度的培养基处理细胞(0μmol/L为空白对照),在相同处理时间下乳腺上皮细胞中LXRα、FASN、LPL基因mRNA表达量均上调,其中10μmol/L的LXRα激动剂表达量上调最大;同种浓度激动剂处理条件下,随着培养时间的延长(12、24、48、72)h,乳腺上皮细胞中LXRα、FASN、LPL基因mRNA表达量呈先升高后降低的趋势,培养48h达到最大值。相关分析表明,不同浓度(0.1、0.01、1、10)μmol/L激动剂对西农萨能奶山羊乳腺上皮细胞LXRα、FASN、LPL基因mRNA表达量呈正相关。对细胞总脂肪酸检测结果显示,细胞内总脂肪酸含量增加,不饱和脂肪酸的比例升高,表明LXRα基因对乳腺上皮细胞不饱和脂肪酸具有重要的调控作用。
LXRα(Liver x-activate receptorα)is an non-steroidal receptor in the nuclear receptor superfamily. The gene is expressed in specific lipid metabolism tissues, such as liver, intestine, kidney, breast, spleen and muscle. Numerous studies have demonstrated that LXRαis a key senser in the maintaining of cholesterol level in body. LXRαcontrols the cholesterol output and bile acid production, regulates fatty acid synthesis and several lipid-transfer proteins, and therefore contributes to the course of lipid homeostasis. So far in goats there is still no complete sequence of the LXRαgene. In this study, the mammary gland tissue of Xinong Saanen dairy goat was collected in the Northwest A & F University Saanen goats farm. The cDNA sequence of LXRαgene was cloned from total RNA of the tissue and analyzed using bioinformatics methods. The present study examined the LXRαgene expression in the different tissues of Saanen goats. Also, we analized the effects of TO901317, an LXRαagonist, in goat mammary gland epithelial cells by detecting the expression of the fatty acid synthase (FASN) gene, lipoprotein lipase (LPL) gene, and LXRαgene, as well as fatty acid composition in GMEC. The results are as follows:
     The cDNA sequence of LXRαgene in Xinong Saanen dairy goat mammary gland was cloned by RT-PCR and RACE from total RNA of the mammary gland tissue. The cDNA of wild type LXRαgene was cloned successfully and registered in GenBank (GenBank accession No. GU332719). The cDNA sequence is 1654 bp in length, including 1344bp of open reading frame, which encodes a polypeptide of 447 amino acids. The UTR contains 160bp of 3’UTR and 150bp of 5’UTR.The nucleotide homology between the cloned goat LXRαgene and its counterparts in Bos taurus (BC103207), Mouse (NM_013839), Rattus norvegicus (NM_031627), Sus scrofa (NM_001101814) and Human (NM_005693) are 98%, 87%, 87%, 93%, and 90%; the homology of amino acid sequences are 98%, 91%, 91%, 96%, and 92%. The nucleotide homology of 5’UTR nucleotide sequence of LXRαgene with the counterparts of Bos taurus (BC103207), Mouse (NM_013839), Rattus norvegicus (NM_031627), Sus scrofa (NM_001101814) Human(NM_005693) are 93%, 27%, 82%, 23%, and 74%; The nucleotide homology of 3’UTR nucleotide sequence are 98%, 63%, 65%, 78%, 79% respectively. Protein structure analysis suggested that the relative molecular weight of LXRαreceptor is 50.35kD, its isoelectric point is 6.30. It most likely does not have a signal peptide structure and transmembrane domain. There are strong hydrophilic regions located at amino acid sequence 84 and 361. The secondary structure of the protein containsα-helices by 49.00%, an extension of the main chain(extended strand)by 1.34%, and random coil by 49.66%. LXRαprotein is mainly consists of three functional domains: a Ligand-binding Domain, a DNA-binding Domain, and a Zinc fingerr C4 region.
     Taking the GAPDH gene as internal reference, use the RT-qPCR technology of ABI PRISM?7300 Real-Time PCR System with the SYBR-Green method to test 11 tissues about the LXRαgene expression on Xinong Saanen dairy goat. The results showed that LXRαgene were expressed in the pituitary, lung, liver, rumen, ovary, spleen, sebum, mammary gland, kidney, heart and intestinal tissues. The highest expression happened in the small intestine, followed by liver, spleen, sebum and mammary gland. Analysis of expression variance showed a significant difference in the small intestine compared to other tissues(P<0.05), no significant difference among liver, spleen, sebum, mammary gland(P>0.05).The lowest expression happened in heart.
     Using the Saanen dairy goat mammary epithelial cells as experimental material, the mRNA expressions of LXRα, FASN, LPL genes had a trend to increase, with LXRαagonist TO901317 concentration’s increasing from 0 to 10μmol/L,When the dose of LXRαagonist was 10μmol/L, the mRNA expressions of genes above reached the maximum. With the extension of culture time, the mRNA expressions of LXRα, FASN, LPL genes in mammary epithelial cells had a trend to increase. When the culture time was less than 48 hours, however, it reduced after 48 hours. The maximum achieved at the 48th hour. The correlation analysis showed that the mRNA expressions in LXRα, FASN, LPL genes had a significant positive correlation with the doses of LXRαagonis(t0.01、0.1、1、10)μmol/L. Test of the total cellular fatty acids showed that the total content of fatty acid in cell increased, the proportion of unsaturated fatty acids increased, indicating that LXRαgene played an important role in regulation of unsaturated fatty acids in breast epithelial cell.
引文
蔡霞. 2005.定量PCR技术及其应用现状.现代诊断与治疗, 16(2): 112~115
    丁晓东,马国文. 2006.实时荧光定量PCR技术研究进展及其应用.内蒙古民族大学学报(自然科学版), 21(6): 665~668
    刘伟志,叶飞,岳莉多. 2003.核受体LXRα靶基因研究进展.世界科技研究与发展, 25(6): 51~54
    唐涛,李燕.2004.固醇元件结合蛋白与脂质代谢.生理科学进展. 29(1): 29~38
    张晓燕,陈丽红,杨光锐. 2006.肝X受体(LXR)激动剂TO901317上调肾脏近直小管SCD1的表达.中华医学会肾脏病学分会2006年学术年会论文集, 77
    Adachi T, Nakagawa H., Hagiya Y, Yasuoka T and Ishikawa T. 2009. Transport-metabolism interplay: LXR alpha-mediated induction of human ABC transporter ABCC2 (cMOAT/MRP2) in HepG2 cells. Mol Pharm 6, 1678-1688.
    Alberti S, Schuster G, Parinl P. 2001. Hepatic ceholesterol metabolism and resistance to dietary cholesterol in LXR beta deficient mice. Clin invest, 107(5): 565~57
    Apfel R, Benbrook D, Lernhardt E, Ortiz M A, Salbert G, Pfahl M. 1994. A novel orphan receptor specific for a subset of thyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormone receptor subfamily. Mol.Cell.Biol, 14: 7025~7035
    Barish G D, Evans R M. 2004. PPARs and LXRs:atherosclerosis goes nuclear. Trends Endocrinol Metab, 15: 158~165
    Basciano H, Miller A, Baker C, Naples M and Adeli K. 2009. LXR alpha activation perturbs hepatic insulin signaling and stimulates production of apolipoprotein B-containing lipoproteins. Am J Physiol Gastrointest liver Physiol 297, G323-332
    Beato M, Herrlich P, Schutz G. 1995. Steroid hormone receptors many actors insear chofaplot. Cell, 83: 851~857
    Bethany A. Janowski, Michael J. Grogan, Stacey A. Jones 1999.Tructoral requirements of ligands for the oxysterol liver X receptors LXR alpha and LXR beta.Proe.Nad.Aead.Sei.USA,1999,96: 266~271
    Beyer T P,Schlnidt R J,Foxworthy P. 2004. Coadminist ration of a liver X receptor agonist and aperoxisome proliferator activator receptorαagonist in mice:effects of nuclear receptor interplay on high-density lipoprotein and triglyceride metabolism in vivo. PET, 309(3): 861~868
    Bischoff E D, Daige C L, Petrowski M, Dedman H, Pattison J, Juliano J, Li A C and Schulman I G. 2009. Non-Redundant Roles for LXR alpha and LXR beta in Atherosclerosis Susceptibility in low Density Receptor Knockout Mice. J Lipid Res.
    Carl P S. 2002.Potent synthetie LXR agonist is more effective cholesterol loading at inducing ABCA mRNA and stlinulating cholesterol effiux.Biol.Chem,277(12):10021~10027
    Cheema S K, Aqarwal-Mawal A, Murray C M, et al. 2005. Lack of stimulation of cholesterol ester transfer protein by cholesterol in the presence of a diet high in monounsaturated fatty acids. J Lipids Res, 46(11): 2356~2366
    Chen Y, P Yu, J Luo. 2003. Secreted protein prediction system combining CJ-SPHMM,TMHMM,and PSORT. Mamm Genome, 14(12): 859~865
    Chiang J Y, Kimmel R, Stroup D. 2001. Regulation of cholesterol 7αhydroxyLase gene (CYP7A1) transcription by the Liver orphan receptor (LXRa). J Gene, 262(122): 257~265
    Christopherson K W, Landay A. 2009. Liver X receptor alpha as a therapeutic target in chronic lymphocytic leukemia (CLL). J Leukoc Biol 86, 1019-1021.
    Costet P, Luo Y, Wang N. 2000. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor.J Biol Chem, 275(36): 28240~28245
    Dalen K T, Ulven S M. 2003. Expressionoftheinsulin-responsive glucose-transporter GLUT in adipocytesis dependent on liver X receptor alpha. Biol Chem, 278(48): 48283~48291
    Daniel St-Gelais, Ould B A, Sophie T. 2000.Composition of Goat's Milk and Processing Suitability 84(1): 297~315
    Darimont C, Avanti O, Zbinden I. 2006. Liver X receptor preferentially activates de novo lipogenesis in human preadipocytes. Biochimie, 88: 309~318
    Dils R R.1983. Milk fat synthesis in Biochemistry of lactation Mepham editor.Amsterdam.The Netherlands:Elsevier.
    Edwards P A, Kast H R, Anisfeld A M. 2002.The adoption of LXR and FXR and their roles in lipid homeostasis. J Lipid Res, 43(1): 2~12
    Escriva H, Delaunary F, Laudet V. 2000. Ligand binding and nuclear receptor evolution. Bio Essays, 22: 717~727
    Farmer A A,Loftus T M,Mills A A,et al. 1994. Extreme evolutionary conservation of QM, Jun associated transction factor. Hum Mol Genet,3: 723~728
    Gasteiger E A,Gattiker C, Hoogland, et al. 2003. ExPASy: The proteomics server for indepth protein knowledge and analysis. Nucleic Acids Res, 31(13): 3784~3788
    Geourjon C, G DeLeage. 1995. SOPMA:significant improvements in protein secondary structure prediction by consensus prediction from muLtiple alignments. Comput Appl Biosci, 11(6): 681~684
    Glass C K, Rosenfeld M G. 2000. The coregulator exchange in transcrip tional functions of nuclear receptors. Genes Dev, 14(2): 121~141
    Graf G A, Li W P, Gerard R D, et al. 2002. Coexpression of ATP-binding cassette proteins ABCG5 and ABCG8 permits their transport to the apical surface. J Clin Invest, 110(5): 659~669
    Grefhorst A, Dijk T H, Hanuner A. 2005. Differential effects of phannacological liver X receptor activation on hepatic and peripheral insulin sensitivity in lean and ob/ob mice. Physiol Endocrinol Metab, 289(5): 829~838
    Gupta S, Pandak W M, Hylemon P B. 2002. LXRa is the dominant regulator of CYP7A1 transcription. J Biochemical and Biophysical Research Communications, 293(1): 338~343
    Haenlein G F W. 1992. Role of goat meat and milk in human nutrition. Proc. Vth Intern. Conf. Goats, New Delhi, India, ICAR, 2(2): 575~580
    Haenlein G F W. 2001. Past, Present, and Future Perspectives of Small Ruminant Dairy Research. J. Dairy Sci, 84(9): 2097~2115
    Haghpassand M, Bourassa P A, Francone O L, et al. 2001. Monocyte/macrophage expression of ABCA1 has minimal contribution to plasma HDL levels. J Clin Invest, 108(9): 1315~1320
    Hao X R, Cao D L, Hu Y W, Li X X, Liu X H, Xiao J, Liao D F, Xiang J and Tang C K. 2009. IFN-gamma down-regulates ABCA1 expression by inhibiting LXRalpha in a JAK/STAT signalingpathway-dependent manner. Atherosclerosis 203, 417-428.
    Hayek T, Masucci-Magoulas L, Jiang X, et al. 1995. Decreased earLy atheroscLerotic Lesions in hypertrigLyceridemic mice expressing cholesterylester transfe protein transgene. J Clin Invest, 96(4): 2071~2074
    Heid C A, Stevens J, Livak K J. 1996. Real time quantitative PCR. Genome Res, 6(10): 986~994
    Higuchi R, Fockler C. 1993. Kinetic PCR analysis:real-time monitoring of DNA amplification reactions. Biotechnology, L1(9): 1026~1030
    Hioki H, Shima N, Kawaguchi K, Harada K, Kubo M, Esumi T, Nishimaki-Mogami T, Sawada J, Hashimoto T, Asakawa Y. 2009. Synthesis of riccardin C and its seven analogues. Part 1: The roLe of their phenolic hydroxy groups as LXR alpha agonists. Bioorg Med Chem Lett 19, 738-741.
    Hong I., Lee M H, Na T Y, Zouboulis C C and Lee M O. 2008. LXR alpha enhances lipid synthesis in SZ95 sebocytes. J Invest Dermatol 128, 1266-1272.
    Hou M, Xia M, Zhu H, Wang Q, Li Y, Xiao Y, Zhao T, Tang Z, Ma J, Ling W. 2007.
    Lysophosphatidylcholine promotes cholesterol efflux from mouse macrophage foam cells via PPARgamma-LXRalpha-ABCA1-dependent pathway associated with apoE. Cell Biochem Funct 25, 33-44.
    Howell G, Deng X, Yellaturu C, Park E A, Wilcox H G, Raghow R. and Elam M B. 2009. N-3 polyunsaturated fatty acids suppress insuLin-induced SREBP-1c transcription via reduced trans-activating capacity of LXRalpha. Biochim Biophys Acta 1791, 1190-1196.
    Jeffrey W C, Jenny H, Seott A M. 2003. The LXR ligand TO901317 induces severe lipogenesis in the DB/DB diabetic mouse. Lipid Res, 44: 2039~2048
    Jiang W, Miyamoto T, Kakizawa T, Nishio, S I, Oiwa A, Takeda T, Suzuki S and Hashizume K. 2006. Inhibition of LXRalpha signaling by vitamin D receptor: possible role of VDR in bile acid synthesis. Biochem Biophys Res Commun 351, 176-184.
    Joseph S B, Laffitte B A, Patel P H, et al. 2002. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by Liver X receptors. J Biol Chem, 277(13): 11019~11025
    Joyce C, Freeman L, Brewer H B, et al. 2003. Study of ABCA1 function in transgenic mice. Arterioscler Thromb Vasc Biol, 23(6): 965~971
    Juvet L K, Andresen S M, Sehuster G U. 2003. On the role of Liver X receptors in lipid accumulation in adipocytes. Mol.Endoerinol, 17: 172~182
    Karolchik D A S, Hinrichs T S, Furey ,et al. 2004. The UCSC Table Browser data retrieval tool. Nucleic Acids Res., 32(Database issue):D493~496
    Karolchik D R, Baertsch M, Diekhans. 2003. The UCSC Genome Browser Dataase. Nucleic Acids Res, 31(1): 51~54
    Kermeth J, Livak Thomas D. 2001. Sehlnittgen.Analysis of relative gene expression data using realtime quantitative PCR and the 2△△c t method. Methods, 25: 402~408
    Ketting R F, Fischer S E, Bernstein E, et al. 2001. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. GenesDev, 15(0): 2654~2659
    Kim K, Kim K H, Kim H H and Cheong J. 2008. Hepatitis B virus X protein induces lipogenic transcription factor SREBP1 and fatty acid synthase through the activation of nuclear receptor LXRalpha. Biochem J 416, 219-230.
    Kim K H, Choi S H, Lee T S, Kim D S and Kim J B.2006. Selective LXRalpha inhibitory effectsobserved in plant extracts of MEH184 (Parthenocissua tricuspidata) and MEH185 (Euscaphis japonica). Biochem Biophys Res Commun 349, 513-518.
    Kim K H, Yoon J M, Choi A H, Kim W S, Lee G Y and Kim J B. 2009. liver X receptor Ligands suppress ubiquitination and degradation of LXR alpha by displacing BARD1/BRCA1. Mol EndocrinoL 23, 466-474.
    Kim M S, Sweeney T R, Shigenaga J K, Chui L G, Moser A, Grunfeld C and Feingold K R. 2007.
    Tumor necrosis factor and interleukin 1 decrease RXRalpha, PPARalpha, PPARgamma, LXRalpha, and the coactivators SRC-1, PGC-1alpha, and PGC-1beta in liver cells. Metabolism 56, 267-279.
    Kozak M. 1997. Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6. Embo, 16(9): 2482~2492
    Laffitte B A, Chao L C.2003. Activation of LiverX receptor improves glucose tol erance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proe Natl Acad Sci USA, 100(9): 5419~5424
    Laffitte B A, Repa J J, Joseph S B. 2001. LXRs control lipid inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc Natl Acad Sci USA, 98(2): 507~512
    Lee J H, Park S M, Kim O S, Lee C S, Woo J H, Park S J, Joe E H and Jou I. 2009. Differential SUMOyLation of LXR alpha and LXR beta mediates transrepression of STAT1 infLammatory signaling in IFN-gamma-stimulated brain astrocytes. Mol CeLL 35, 806-817.
    Lehmann J M, KLiewer S A, Moore L B, et al. 1997. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem, 272: 3137~3140
    Lehmann J M, Kliewer S A, Moore L B, et al. 1997. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem, 272(6): 3137~3140
    Liang K, Vaziri N D. 1997. Gene expression of lipoprotein lipase in experimental nephrosis. Lab CLin Med, 130: 387~393
    Livak K J,T D. 2001. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(DeLta C(T))Method. Methods, 25(4): 402~408
    Lu R J, Iwamoto N, Nishimaki-Mogami T and Yokoyama S. 2009. FGF-1 induces expression of LXR alpha and production of 25-hydroxycholesterol to upreguLate the apoE gene in rat astrocytes. J Lipid Res 50, 1156-1164.
    Luna P, Bach A, Juárez M. 2008. Effect of a diet enriched in whoLe Linseed and sunfLower oiL on goat miLk fatty acid composition and conjugated linoleic acid isomer profiLe. J Dairy Sci., 91(1): 20~28
    Mailly F, Tugrul Y, Reymer P W. 1995. A comrnon variant in the gene for lipoprotein lipase. Arterioseler Thromb Vasc Biol, 15: 468~478
    Mark S L, Hansa V P, John P. 2002. Capone Oxysterol Activators of Liver X Receptor and 9-cis-Retinoic Acid Promote Sequentia1 Steps in the Synthesis and Secretion of Tumor Necrosis Factor-αfrom Human Monocytes. Biol.Chem, 277(7): 4713~4721
    Menke J G, MacnauL K L, Hayes N S. 2002. A novel iver X receptor agonist establishes species differences in the regulation of cholesterol 7α-hydroxylase (CYP7a ). J Endocrinology, 143(7): 2548~2558
    Moore J H, Christie W W. 1999. lipid metabolism in the mammary gland of ruminant animals.Progress in lipid Research, 17: 347~395
    Motoshima K, Noguchi-Yachide T, Sugita K, Hashimoto Y and Ishikawa M. 2009. Separation of alpha-glucosidase-inhibitory and liver X receptor-antagonistic activities of phenethylphenyl phthalimide analogs and generation of LXR alpha-selective antagonists. Bioorg Med Chem 17, 5001-5014
    Nakamuta M, Fujino T, Yada R, Yada M, Yasutake K, Yoshimoto T, Harada N, Higuchi N, Kato M, Kohjima M. 2009. Impact of cholesterol metabolism and the LXRalpha-SREBP-1c pathway on nonalcoholic fatty liver disease. Int J Mol Med 23, 603-608
    Nakatani T, Katsumata A, Miura S, Kamei Y and Ezaki O. 2005. Effects of fish oil feeding and FASNting on LXRalpha/RXRalpha binding to LXRE in the SREBP-1c promoter in mouse liver. Biochim Biophys Acta 1736, 77-86
    Noshiro M, Usui E, Kawamoto T, Sato F, Nakashima A, Ueshima T, Honda K, Fujimoto K, Honma S, Honma K. 2009. liver X receptors (LXRalpha and LXRbeta) are potent regulators for hepatic Dec1 expression. Genes Cells 14, 29-40
    Oosterveer M H, Vandijk T H, Grefhorst A, Bloks V W, Havinga R, Kuipers F and Reijngoud D J. 2008. Lxralpha deficiency hampers the hepatic adaptive response to FASNting in mice. J Biol Chem 283, 25437-25445
    Panday N, Benz J, Blum-Kaelin D, Bourgeaux V, Dehmlow H, Hartman P, Kuhn B, Ratni H, Warot X and Wright M B. 2006. Synthesis and evaluation of anilinohexa fluoroisopropanols as activators/modulators of LXRalpha and beta. Bioorg Med Chem Lett 16, 5231-5237
    Park S S, Choi H, Kim S J, Kim O J, Chae K S and Kim E. 2008. FXRalpha down-regulates LXRalpha signaling at the CETP promoter via a common element. Mol Cells 26, 409-414
    Pasquinel Li A E, Reinhart B J, Slack F, et al. 2000. Conservation of the sequence and temporal expression of Let-7 heterochronic regulatory RNA. Nature, 408(6808): 86~89
    Peet D J, Turley S D, Ma W, Janowski B A 1998.Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha..CeLL,1998,93(5):693-704
    Popjak G, French T H, Hunter G D, et al. 1951b. Mode of formation of miLk fatty acids from acetate in the goat. J.Biochemical, 48: 612~618
    Qin Y, Dalen K T, Gustafsson J A and Nebb H I. 2009. Regulation of hepatic fatty acid elongase 5 by LXRalpha-SREBP-1c. Biochim Biophys Acta 1791, 140-147
    Quinet E M, Savio D A, Halpern A R., Chen L, Schuster G U, Gustafsson J A, Basso M D and Nambi P. 2006. liver X receptor(LXR)-beta regulation in LXRalpha-deficient mice: implications for therapeutic targeting. Mol Pharmacol 70, 1340-1349
    Rajasekaran S V, Thapar H, Dave. 2005. Randomized and parallel algorithms for distance matrix calculations in multiple sequence alignment. J Clin Monit Comput, 19(4-5): 351~359
    Ramirez I, Llober M, Herrara E. 1983. Circulating triacylglycerols,lipoproteins and tissue lipoprotein lipase activities in rat mothers and offspring during the perinatal period: effect of postmaturity. Metubolism, 32: 333~341
    Repa J J, Berge K E, Pomajzl C. 2002. Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta. J Biol Chem, 277(21): 18793~18800
    Repa J J, Liang G, Ou J. 2000. Regulation of mouse sterol regulatory element-binding protein-1c gene(SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev, 14 (22): 2819~2830
    Repa J J, Turley S D, lobaccaro J A, et al. 2002b. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science, 289: 1524~1529
    Repa J, Mangelsdorf D J. 2002. The iver X receptor gene team:potential new playersin a therosclerosis. Nature Med, 8: 1243~1244
    Robinson D S. 1970. The function of the plasma triglycerides in fatty acid transport. Comprehensive Bioehemistry, 18: 51~116
    Robinson-Rechavi M, Carpentier A S, Duffraisse M, et al. 2001. How many nuclear hormone receptors are there in the humangenome. Trends Genet, 17(10): 554~556
    Rode S, Rubic T and Lorenz R L. 2008. alpha-Tocopherol disturbs macrophage LXRalpha regulation of ABCA1/G1 and cholesterol handling. Biochem Biophys Res Commun 369, 868-872
    Sato K, Akibal Y. 2002. Lipoprotein lipase mRNA expression in abdominal adipose tissue is LittLe modified by age and nutritional state in broiler chickens. Poultry Science, 81: 846~852
    Schmittgen T D. 2001. Real-time quantitative PCR. Methods, 25(4): 383~385
    Schmitz G, Langmann T, Heimerl S. 2001. Role of ABCG1 and other ABCG familymembers in lipid metabolism. J lipid Res, 42(10): 1513~1520
    SchuLtz J R, Tu H, Luk A, et al. 2000. Role of LXRs in control of lipogenesis. Genes Dev, 14: 2831~2838
    Schwartz K, Lawn R M, Wade D P. 2000. ABC1 gene expression and ApoA-I-mediated cholesterol efflux are regulated by LXR. Biochem Biophys Res Commun, 274(3): 794~802
    Sehuster G U,Par,Wang L. 2002. Accumulation of foam cells in liver X receptor deficient mice. Circulation, 106: 1147~1153
    Semb H, Olivecrona T. 1989. Two different mechanisms are involved in nutritional regulation of lipoprotein lipase in guinea-pig adipose tissue. Bioehem J, 62: 505~511
    Seol W, Choi H S, Moore D D. 1995. Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors. Mol. Endocrinol. 9: 72~85
    Shang Q, Pan L, Saumoy M, Chiang J Y, Tint G S, Salen G and Xu G. 2007. An overlapping binding site in the CYP7A1 promoter allows activation of FXR to override the stimulation by LXRalpha. Am J Physiol Gastrointest liver Physiol 293, G817-823
    Shang Q, Pan L, Saumoy M, Chiang J Y, Tint G S, Salen G and Xu G. 2006. The stimulatory effect of LXRalpha is blocked by SHP despite the presence of a LXRalpha binding site in the rabbit CYP7A1 promoter. J lipid Res 47, 997-1004
    Shinar D M, Endo N, Rutledge S J, Vogel R, Rodan G A, Schmidt A, 1994. NER, a new member of the gene family encoding the human steroid hormone nuclear receptor. Gene, 147: 273~276
    Song C, HiiPakka R A, Liao S.2000.Sclective activation of liver X receptor ralpha by 6 alpha-hdroxy Bile acids and analogs. Steroids, 65: 423~427
    Song C, Kokontis J M, Hiipakka R A, Liao S. 1994. Ubiquitous receptor: a receptor that modulates gene activation by retinoic acid and thyroid hormone receptors. Proc.Natl.Acad.Sci.USA, 91(10): 809~10813
    Song C, Lian S. 2000b. Cholestenoic acidis an aturally occurring ligand for liverX receptor alpha Endocrinology, 141: 4180~4184
    Spencer T A,LI D, Russel J. 2001. phannaeophorean alysis of the nuclear oxysterol receptor LXRalpha. Med.Chem., 44: 886~897
    Stuinig T M, Steffensen K R, Gao H. 2002. Novel roles of liver X receptors exposed by gene expression profiling in liver and dipose tissue. Mol pharmacol, 62(6): 1299~1305
    Stulnig T M, OPPermann U, Steffensen K R. 2002. liver X receptors down regulate beta hydroxysteroid dehydrogenase type 1 expression and activity. Diabetes, 51,(8): 2426~2433
    Teboul M, Enmark E, Li Q, Wikstrom A C, Pelto-Huikko M, Gustafsson J A. 1995. OR-1,a member of the nuclear receptor superfamily that interacts with the 9-cis-retinoic acid receptor. Proc.Natl.Acad.Sci.USA, 92: 2096~2100
    Thompson J D, F Plewniak, O Poch. 1999. A comprehensive comparison of multiple sequence alignment programs. Nucleic Acids Res, 27(13): 2682~2690
    Thompson J D, Gibson F, Plewniak.1997. The CLUSTAL_X windows interfac flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 25(24): 4876~4882
    Valledor A F, Ricote M. 2004. Nuclear receptor signaling in macrophages. Biochem Pharmacol 67: 201~212
    Van Eck M, Bos I S, Kaminski W E. 2002. Leukocyte ABCA1 controls susceptibility to atherosclerosis and macrophage recruitment into tissues. Proc.Natl.Acad.Sci.USA, 99(9): 6298~6303
    Vannier C, Zoubir A, Etienne J. 1985. Maturation and secretion of lipoprotein lipase in cultured adipose cells. Intra cellular activation of the enzyme. Biol.Chem, 260: 4424~4431
    Venkateswaran A, Laffitte B A, Joseph S B. 2000b. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc.Natl.Acad.Sci.USA, 97(22): 12097~12102
    Venkateswaran A, Repa J J, Lobaccaro J M. 2000a. Human white/murine ABC8 mRNA levels are highly induced in lipid-loaded macrophages.A transcriptional role for specific oxysterols. J Biol Chem, 275(19): 14700~14707
    Viklund H, A Elofsson. 2004. Best alpha-helical transmembrane protein topology predictions are achieved using hidden Markov models and evolutionary information. Protein Sci, 13(7): 1908~1917
    Wang Y, Rogers, P M, Su C, Varga, G, Stayrook K R., and Burris, T P. 2008. Regulation of cholesterologenesis by the oxysterol receptor, LXRalpha. J Biol Chem 283, 26332-26339
    Watanabe Y, Jiang S, Takabe W, Ohashi R., Tanaka T, Uchiyama Y, Katsumi K, Iwanari H, Noguchi N, Naito M. 2005. Expression of the LXRalpha protein in human atheroscleroticlesions. Arterioscler Thromb Vasc Biol 25, 622-627
    Williams C M. 2000. Dietary fatty acids and human health. Ann. Zootech, 49: 165~180
    Willy P J, Umesono K, Ong E S, Evans R M, Heyman R A, Mangelsdorf D J. 1995. LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev, 61: 201~212
    Wu Z H and Zhao S P. 2009. Niacin promotes cholesterol efflux through stimulation of the PPAR gamma-LXRalpha-ABCA1 pathway in 3T3-L1 adipocytes. Pharmacology 84: 282~287
    Yang J, Zhao S P, Li J, Wu Z H, and Dong S Z. 2007. Effect of niacin on HDL-induced cholesterol efflux and LXRalpha expression in adipocytes of hypercholesterolemic rabbits. Zhonghua Xin Xue Guan Bing Za Zhi 35: 745~749
    Yoshikawa T, Shimano H, Amemiya, Kudo M. 2001. Identification of Liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein-1c gene promoter. Mol Cell Biol, 21(9): 2991~3000
    Yu L, Hammer R E, Li-Hawkins J. 2002. Disruption of ABCG5 and ABCG8 in mice reveals their crucial role in biliary cholesterol secretion. Proc Natl Acad Sci USA, 99(25): 16237~16242
    Yuan Z. 2001. Regulation of lipoprotein lipase by the oxysterol receptors,LXRαand LXRβ. Biol.Chem., 276(46): 43018~43024
    Zaima N, Sugawara T, Goto D and Hirata T. 2006. Trans geometric isomers of EPA decrease LXRalpha-induced cellular triacylglycerol via suppression of SREBP-1c and PGC-1beta. J lipid Res 47, 2712-2717
    Zhang Y, Repa J J, Gauthier K. 2001. Regulation of lipoprotein lipase by the oxysterol receptors,LXRαand LXRβ. J Biol Chem, 276(46): 43018~43024
    Zhang Y, Repa J J. 2001. Gauthier K.Regulation of lipoprotein lipase by the oxysterol receptors LXR Alpha and LXR beta. Biol Chem., 276(43): 18~24
    Zhao S P, Yang J, Li J, Dong S Z, and Wu Z H. 2008. Effect of niacin on LXR alpha and PPAR gamma expression and HDL-induced cholesterol efflux in adipocytes of hypercholesterolemic rabbits. Int J Cardiol 124, 172-178
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.