基于聚光分频技术和改进型LFR聚光器的光伏/光热综合系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能是重要的可再生能源,其高效利用己成为重要的研究课题。传统上,太阳能利用方式主要有光伏转换和光热转换。这两种方式均受制于较低的太阳能能流密度。采用聚光方式提高太阳能的辐射能流密度,光热利用时可提高集热温度,提高效率;光伏转换时则可减少光伏电池用量,降低成本。而且聚光电池具有比平板光伏电池更高的光电转换效率。因此,太阳能的聚光利用具有良好的前景。然而某些类型的聚光系统如碟式系统、槽式系统的焦斑能流分布不均,影响光伏电池转换效率。因此研制具有均匀焦斑的低成本、高性能的新型聚光器在聚光光伏应用中具有重要意义。聚光光伏发电的聚光倍数为数十至数百,且由于光伏电池仅能转换特定光谱区间的太阳辐射能,其余谱段的辐射能在电池内耗散为废热,造成电池严重的热负荷。对于光伏电池废热的利用,主要有光伏-热水系统等传统型电热联用系统,利用冷却介质对光伏电池进行冷却,而冷却流体则被加热成热流体以资利用。这种系统提高了太阳能的综合利用效率,但由于冷却介质温度受限于光伏电池工作温度,热利用效率很低。光谱分频技术可实现对不同光谱的太阳辐射能的分配,因此在聚光光伏利用中可将能高效光伏转换谱段的太阳辐射输送至光伏电池,将其余谱段的太阳辐射能集热回收。光谱分频技术不仅从源头上降低了光伏电池的热负荷,还实现光伏转换过程与光热转换过程的相互独立,使得热利用系统可获取比传统电热联用系统更高的集热温度。本文在传统线性菲涅尔聚光器的基础上,提出了一种改进型的聚光器,在此聚光器平台上构建了一种基于光谱分频技术的新型聚光光伏/光热综合利用系统,并围绕这一新型电热联用系统展开理论分析和实验研究。
     首先,提出了一种集光平板倾斜布置的改进型线性菲涅尔反射式(LFR)聚光器设计方案。以此聚光器为平台,提出了一种基于光谱分频技术的新型太阳能聚光光伏/光热综合利用系统方案。描述了该聚光分频利用系统中各部件之间的几何关系,并以几何聚光比和面积利用率为目标函数,对该系统的结构参数进行了优化计算。在考虑主要光学误差的前提下,利用光学仿真软件对该系统进行了光学仿真。仿真结果显示焦斑位置能流密度分布均匀,适于光伏电池使用;且在未使用再反射镜时热接收器已可收集约86%的光谱分频器反射能流。
     其次,以优化计算获得的结构参数构建了上述改进型LFR聚光器,并在此聚光器上搭建了太阳能聚光光伏/光热综合利用的实验装置。利用CCD测试法对实际聚光器的焦斑能流分布进行了测试,测试结果与光学仿真结果一致。利用该实验装置,测试了单晶硅电池和砷化镓电池在不同聚光倍数的全光谱太阳辐射下的I-V特性曲线,分析了各光伏电池性能的优劣。同时还测试了等光强的不同单色光光照条件下单晶硅电池的I-V曲线。根据曲线特征,得出在高辐照能流密度下,光伏电池的开路电压同低辐照能流密度下相似,具有微弱的光谱依赖特性。对影响光伏电池转换效率的内外部各因素展开深入分析,描述了光伏电池在单纯聚光以及聚光分频两种工作条件下的开路电压、短路电流以及填充因子三要素的表达式,根据转换效率的定义式即可计算出相应条件下光伏电池的转换效率。同时还构建了聚光条件下光伏电池的转换效率模型,并检验了该模型的可靠性。根据效率模型,分析了光伏电池聚光利用时存在最大转换效率并对应最佳聚光倍数。
     再次,建立了中高温太阳能热利用系统性能分析模型。对黑体表面和不同截止波长的理想选择性吸收表面的热接收器进行热力学分析,得出中高温太阳能光热利用效率与热接收器表面性质、入射能流密度及集热温度的关系。分析了传统的单纯聚光光热利用系统和采用聚光分频系统中的热接收器表面涂层的特性,确定了这两类系统中热接收器的最佳工作温度、系统热功转换效率与入射能流密度之间的关系。数值计算表明,单纯聚光光热利用系统中的中高温热接收器的最佳截止波长为1.6~2.0μa;而采用硅电池或砷化镓电池的聚光分频系统中的热接收器选择性吸收涂层的最佳截止波长为2.2~2.6μm。同时给出了对带有实际选择性吸收涂层的热接收器的最佳工作温度及对应的最大效率的分析计算方法。
     最后,针对聚光分频系统,提出通过比较光伏电池的光谱转换效率和设定工作温度下热利用子系统的最大效率的大小,来确定太阳光谱最佳分频位置。计算了采用不同光伏电池的聚光分频利用系统的总效率。并以采用单晶硅电池和采用特定截止波长的热接收器的热利用子系统构成的CPV/T分频利用系统为案例,根据聚光分频利用系统的结构及各部件的光学特性,计算了各环节的能量分布及系统总效率。计算结果表明,相同工作条件下聚光分频利用系统比单纯聚光系统具有更高的效率,且CPV/T分频利用系统的整体效率受温度影响低于相同条件下的CPV系统。因此,太阳能聚光分频利用系统具有良好的应用前景。
Solar energy is inexhaustible, clean and regarded as one of the most important
     renewable energy to replace limited and polluting fossil fuels. Its efficient conversion
     into heat and electricity or other energy forms at low cost attracts worldwide concerns.
     The traditional methods of solar energy utilization are mainly photovoltaic power
     generation and solar thermal utilization, both of which are limited by the dilute solar
     energy. High solar flux by a solar concentrator may lead to high temperatures and thus
     high thermal efficiency for solar thermal utilization and achieve high power
     generation efficiency at low cost because numerous traditional PV panels are replaced
     by much less concentrator solar cells which are of high conversion efficiency. Thus,
     solar concentrating application shows a promising prospect. However, some solar
     concentrators such as dish and trough concentrator, inherent poor uniformity of the
     concentrated flux will deteriorate the PV conversion efficiency. Thus, development of
     a solar concentrator with low cost, high efficiency and stability is of great importance.
     For a concentrating PV (CPV) system, flux density on the target ranges from dozens
     to hundreds of suns, which leading to heavy waste heat flux generation because of
     limited spectral response of solar cells. Thus, a cooling system for solar cells is
     generally required in a CPV system. The removed heat by the cooling system can be
     used for heating purpose, but the temperature of the fluid is normally restricted to a
     low temperature to ensure efficient operation of solar cells. The beam splitting
     technique is a promising method to reduce the heat load of solar cells drastically and
     achieve higher temperature for thermal utilization by splitting the inefficient radiation
     to a thermal absorber. With the beam splitting technique, a CPV system combined
     with a thermal utilization cycle developing a concentrating PV/Thermal (CPV/T)
     system which allows the PV module and the thermal absorber to be organized in a
     thermally decoupled way and operated at independent temperatures. In this thesis, a
     novel CPV/T hybrid solar system based on the beam splitting technique and an
     improved linear Fresnel reflector (LFR) concentrator was proposed. Related
     theoretical analysis and experimental work were carried out as follows: Firstly, an improved linear Fresnel reflector (LFR) concentrator utilizing sloped
     panels was proposed. Based on the concentrator and the beam splitting technique, a
     novel CPV/T hybrid solar system was developed. Relations between the structural
     parameters and the optical performances of the hybrid system were investigated and optimized to pursue the highest geometrical concentration ratio and aperture utilization ratio. Ray-tracing simulations were carried out by considering the main optical errors and the simulated results show a good uniformity of about92%for the concentrated flux distribution on the solar cells and about86%energy reflected by the spectral beam splitter was intercepted by the thermal receiver without a secondary reflector.
     Secondly, an experimental installation of the CPV/T hybrid system with the beam splitting technique and the improved LFR concentrator constructed according to the optimized structural parameters was developed. Flux density distributions of the concentrated radiation were tested by using the CCD camera method which show a good uniformity and agree well with the simulated results. Also, the optical concentration ratio of the concentrator was achieved by measuring the direct solar radiation density and the concentrated flux density. The Ⅰ-Ⅴ characteristics of c-silicon solar cells and GaAs solar cells were tested under full-spectrum light at a variable intensity, and their performances were analyzed. Ⅰ-Ⅴ characteristics of c-Si solar cell under monochromatic lights at variable intensity were also tested. It shows that the open-circuit voltage of solar cell is slightly spectral dependence. Based on the analysis of internal and external factors that affect solar cells performance, the open-circuit voltage, short-circuit current and fill factor under both the full-spectrum concentrating condition and the split-spectrum concentrating condition were described to calculate the conversion efficiency. Furthermore, an efficiency model for solar cells under concentrated illumination was developed and validated. On the basis of the model, the highest conversion efficiency of solar cell and the corresponding optimal concentration ratio were analyzed.
     Thirdly, a model to analyze the thermodynamic performance of the medium-high temperature solar thermal system was developed. Thermodynamic analysis on thermal receivers with ideal selective coatings of different cutoff wavelengths and blackbody thermal receivers have been conducted to investigate the relations of the efficiency with the properties of selective coatings, the incident solar flux and the working temperature. The calculated results indicate that the cutoff wavelengths of selective coatings affect the thermodynamic performance of medium-high temperature solar thermal receivers greatly. For thermal utilization that converts the full solar spectrum, the optimal cutoff wavelengths for the medium-high temperature thermal receivers are in the range of1.6~2.0μm. And for thermal utilization in a CPV/T hybrid solar system with beam splitting technique which apply c-Si or GaAs solar cells as PV devices, the optimal cutoff wavelengths for thermal receivers are in the range of2.2~2.6μ. The relations of the optimal working temperature and the corresponding efficiency with the incident solar flux for both the hybrid system employing c-Si and GaAs solar cells were developed and applied for a medium-high temperature solar thermal receiver with actual selective coatings.
     Finally, a method to determine the optimal splitting waveband for CPV/T hybrid solar system was proposed by comparing the PV conversion efficiency of solar cells with the efficiency of thermal utilization under variable operating temperature.mThe overall efficiencies of CPV/T hybrid system employing different solar cells were investigated. Based on the experimental data of the components, thermodynamic analysis on the CPV/T hybrid system was carried out and shows more work production than the CPV system under the same conditions and less negative influence of the PV temperature. Thus, the beam splitting CPV/T hybrid system has a promising prospect.
引文
[1]BP. A Year of Disruption and Growth Proved Open Energy Markets to Stability.2012.
    [2]左然,施明恒,王希麟.可再生能源概论[M].北京:机械工业出版社,2007.
    [3]赵争鸣,刘建政,孙晓瑛,等.太阳能光伏发电及其应用[M].北京:科学出版社,2008.
    [4]Astm. Standard Tables for Reference Solar Spectral Irradiances:Direct Normal and Hemispherical on 37°Tilted Surface.2003.
    [5]陈颖健,孟浩.太阳能利用技术研究的最新进展[J].高技术通讯,2008,18(12):1321-1325.
    [6]Steinfeld A. Solar thermochemical production of hydrogen-a review[J]. Solar energy,2005, 78(5):603-615.
    [7]黄文雄.太阳能之应用及理论M].台北:协志工业丛书出版股份有限公司,1978.
    [8]罗运俊,何梓年,王长贵.太阳能利用技术[M].北京:化学工业出版社,2005.
    [9]张耀明.太阳能热发电技术[J].高科技与产业化,2009,(7):28-30.
    [10]能源科学学科发展战略研究组.2011~2020年我国能源科学学科发展战略报告[R].国家自然科学基金委员会中国科学院,2010.
    [11]国家太阳能光热产业技术创新战略联盟.中国太阳能热发电产业政策研究报告专题报告一:国内外太阳能热发电技术、市场及政策发展现状[R].国家太阳能光热产业技术产业联盟,2013.
    [12]贾磊,陈则韶,胡芃,等.半导体温差发电器件的热力学分析[J].中国科学技术大学学报,2004,34(6):684-688.
    [13]Schlaich J. The solar chimney:electricity from the sun[M]. Edition Axel Menges,1995.
    [14]Weinberger H. The physics of the solar pond[J]. Solar energy,1964,8(2):45-56.
    [15]Berthelot Y H. Thermoacoustic generation of narrow-band signals with high repetition rate pulsed lasers[J]. The Journal of the Acoustical Society of America,1989,85(3):1173-1181.
    [16]Chiras D D. The solar house:passive heating and cooling[M]. Chelsea Green Publishing, 2002.
    [17]陈晓夫,高援朝,任宏琛.我国太阳灶技术进展和应用[J].可再生能源,2002,(3):9-12.
    [18]王如竹,戴彦军.太阳能制冷[M].北京:化学工业出版社,2007.
    [19]Qiblawey H M, Banat F. Solar thermal desalination technologies[J]. Desalination,2008, 220(1):633-644.
    [20]Conibeer G. Third-generation photovoltaics[J]. Materials today,2007,10(11):42-50.
    [21]Dimroth F, Grave M, Beutel P, et al. Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency [J]. Progress in Photovoltaics:Research and Applications,2014.
    [22]NREL. http://www.nrel.gov/ncpv.2014.
    [23]王炳忠.中国太阳能资源利用区划[J].太阳能学报,1983,4(3):221-228.
    [24]张晓霞,侯竞伟,殷攀攀.太阳能发电系统现状及发展趋势[J].机电产品开发与创新,2007,20(5):14-16.
    [25]赵春江.太阳能光伏发电系统的技术发展[J].阳光能源,2011,(2):56-63.
    [26]Planck M. The Theory of Heat Radiation[M]. Philadelphia:Blakistons,1914.
    [27]Incropera F P, Lavine A S, Dewitt D P. Fundamentals of Heat and Mass Transfer[M]. New Jersey:John Wiley & Sons,2011.
    [28]葛新石,龚堡,俞善庆.太阳能利用中的光谱选择性涂层.北京:科学出版社,1980.
    [29]Kacira M, Simsek M, Babur Y, et al. Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey[J]. Renewable energy,2004,29(8):1265-1275.
    [30]常泽辉,田瑞.固定式太阳电池方阵最佳倾角的实验研究[J].电源技术,2007,31(4):312-315.
    [31]夏小燕.大范围太阳光线跟踪传感器及跟踪方法的研究[D].机械电子工程,南京:河海大学,2007.
    [32]Luque A L, Andreev V M. Concentrator Photovoltaics[M]. Verlag Berlin Heidelberg: Springer,2007.
    [33]O'gallagher J J. Nonimaging optics in solar energy[J]. Synthesis Lectures on Energy and the Environment:Technology, Science, and Society,2008,2(1):1-120.
    [34]Green M A, Emery K, Hishikawa Y. Solar cell efficiency tables (version 39)[J]. Progress in Photovoltaics:Research and Applications,2012,20:12-20.
    [35]Yamaguchi M, Takamoto T, Araki K, et al. Multi-junction Ⅲ-Ⅴ solar cells:current status and future potential[J]. Solar energy,2005,79(1):78-85.
    [36]Nrel. The Basic Physics and Design of III-V Multijunction Solar Cells.2004.
    [37]Luque A, Hegedus S. Handbook of photovoltaic science and engineering[M]. John Wiley & Sons,2011.
    [38]Nozik A. Quantum dot solar cells[J]. Physica E:Low-dimensional Systems and Nanostructures,2002,14(1):115-120.
    [39]Hamakawa Y. Thin-film solar cells[M]. Springer,2004.
    [40]Gratzel M. Dye-sensitized solar cells[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2003,4(2):145-153.
    [41]Royne A, Dey C J, Mills D R. Cooling of photovoltaic cells under concentrated illumination:a critical review[J]. Solar Energy Materials and Solar Cells,2005,86(4):451-483.
    [42]陈则韶,莫松平,李志宏,等.太阳能分频利用电热联产初步研究[J].工程热物理学报,2008,(1):13-15.
    [43]Kumar R, Rosen M A. A critical review of photovoltaic/thermal solar collectors for air heating[J]. Applied Energy,2011,88(11):3603-3614.
    [44]Zondag H. Flat-plate PV-Thermal collectors and systems:A review[J]. Renewable and Sustainable Energy Reviews,2008,12(4):891-959.
    [45]Miiller-Steinhagen H, Trieb F. Concentrating solar power[J]. A review of the technology. Ingenia Inform QR Acad Eng,2004,18:43-50.
    [46]Luque A, Sala G, I L-H. Photovoltaic Concentration at the Onset of its Commercial Deployment [J]. Progress in Photovoltaics,2006,14(5):413-428.
    [47]Swanson R M. The promise of concentrators[J]. Progress in Photovoltaics Research and Applications,2000,8(1):93-111.
    [48]Afian V V, Martirosian R G, Ryabikov S V, et al. Solar concentrator and manufacturing method therefor:4863224[P].
    [49]Johnson C F. Solar concentrator for heat and electricity. Google Patents,2000.
    [50]Rabl A. Comparison of solar concentrators[J]. Solar energy,1976,18(2):93-111.
    [51]Dang A. Concentrators:a review[J]. Energy conversion and management,1986,26(1):11-26.
    [52]Price H. Advance in Parabolic Trough Solar Power Technology [J]. Journal of Solar Energy Engineering,2002,124(2):109-125.
    [53]罗智慧,龙新峰.槽式太阳能热发电技术研究现状与发展[J].电力设备,2006,7(11):29-32.
    [54]Francia G. Pilot Plants of Solar Steam Generation Systems[J]. Solar Energy,1968,12:51-64.
    [55]Duffie J A, Beckman W A. Solar Engineering of Thermal Processes (2nd edition)[M]. John Wiley & Sons Inc,1991.
    [56]杨敏林,杨晓西,林汝谋.太阳能热发电技术与系统[J].热能与动力工程,2008,23(3):221-226.
    [57]Mills D. Advances in solar thermal electricity technology [J]. Solar energy,2004,76(1):19-31.
    [58]宁铎.折面形抛物柱太阳能聚光器的研制[J].西北轻工业学院学报,2002,20(4):72-74.
    [59]王刚,陈则韶,胡芃.折平板等光强反射聚光光伏系统的实验研究[J].太阳能学报,2012,33(1):2002-2005.
    [60]张辉,王一平,朱丽,等.条形平面镜聚光器设计参数的分析及优化[J].太阳能学报,2013,34(11):1882-1887.
    [61]Yao Z, Wang Z, Lu Z. Modeling and Simulation of the Pioneer 1 MW Solar Thermal Central Receiver System in China[J],2009,34:2437-2446.
    [62]Schramek P, Mills D. Multi-tower Solar Array[J]. Solar energy,2003,75(3):249-260.
    [63]Kolb, J G. Solar Power Tower [R]. Livermore:Sandia National Laboratories,1999.
    [64]Riaz M. A theory of concentrators of solar energy on a central receiver for electric power generation[J]. Journal for Engineering for Power,1976,98(3):375-383.
    [65]王军,刘德有,张文进.碟式太阳能热发电[J].太阳能,2006,31:31-32.
    [66]王云峰,季杰,何伟.抛物碟式太阳能聚光器的聚光特性分析与设计[J],2012,32(1):1-8.
    [67]Kritchman E, Friesem A, Yekutieli G. Efficient Fresnel lens for solar concentration[J]. Solar energy,1979,22(2):119-123.
    [68]Sierra C, Vazquez A J. High solar energy concentration with a Fresnel lens[J]. Journal of materials science,2005,40(6):1339-1343.
    [69]Yoon S, Garboushian V. Reduced temperature dependence of high-concentration photovoltaic solar cell open-circuit voltage (Voc) at high concentration levels[C]. Photovoltaic Energy Conversion,1994., Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference-1994,1994 IEEE First World Conference on,1994:1500-1504.
    [70]Kurtz S. Opportunities for development of a mature concentrating photovoltaic power industry[C]. CS MANTECH conference,2009.
    [71]王刚,陈则韶,胡芃,等.太阳能等照度带聚焦菲涅尔透镜研[J].太阳能学报,2012,33(1):81-85.
    [72]lvarez J L, Hernandez M, Benitez P. TIR-R Concentrator:a New Compact High-Gain SMS Design[J]. Proceedings of SPIE,2002,4446:32-42.
    [73]曾飞,李洪涛,郝智彪.具有均匀照度的高倍太阳能聚光器[J].太阳能学报,2012,33(2):338-342.
    [74]Jing L, Liu H, Lu Z. Design of Compound Fresnel-R lenses for New High-Efficient Photovoltaic Concentrator. Proc. SPIE:Proc. SPIE,2010.
    [75]Welford W T, Winston R. High collection Nonimaging optics[M]. San Diego, California: Academic Press,1989.
    [76]Leutz R, Suzuki A, Akisawa A, et al. Design of a nonimaging Fresnel lens for solar concentrators[J]. Solar energy,1999,65(6):379-387.
    [77]杜春旭王,马重芳.线性菲涅尔聚光系统无遮挡镜场布置的光学几何方法[J].光学学报2010,30(11):3276-3282.
    [78]Gordon J. solar energy:the State of the Art:ISES position papers[M]. Earthscan,2001.
    [79]Sootha G, Negi B. A Comparative Study of Optical Designs and Solar Flux Concentrating Characteristics of a Linear Fresnel Reflector Solar Concentrator with Tubular Absorber[J]. Solar Energy Materials and Solar Cells,1994,32(2):169-186.
    [80]Mills D R, Morrison G L. Compact linear Fresnel reflector solar thermal power-plants [J]. Solar energy,2000,68(3):263-283.
    [81]熊勇刚,刘玉卫,陈洪晶,等.太阳能中高温热发电反射式线性菲涅尔技术简介[J].太阳能,2010,(6):31-33.
    [82]Barale G, Heimsath A, Nitz P, et al. Optical design of a linear fresnel collector for sicily[C]. 16th SolarPACES International Symposium Perpignan, France,2010.
    [83]Singh P L, Sarviya R, Bhagoria J. Thermal performance of linear Fresnel reflecting solar concentrator with trapezoidal cavity absorbers [J]. Applied energy,2010,87(2):541-550.
    [84]Pye J D, Morrison G L, Behnia M, et al. Modelling of Cavity Receiver Heat Transfer for the Compact Linear Fresnel Reflector[C]. ISES World Congress,2003.
    [85]Dey C. Heat transfer aspects of an elevated linear absorber[J]. Solar energy,2004,76(1): 243-249.
    [86]Feuermann D, Gordon J. Analysis of a Two-Stage Linear Fresnel Reflector Solar Concentrator[J]. Journal of Solar Energy Engineering,1991,113(11):272-279.
    [87]Singh P, Ganesan S, Yadav G. Technical note:performance study of a linear Fresnel concentrating solar device[J]. Renewable energy,1999,18(3):409-416.
    [88]Bernhard R, Laabs H, Eck M. Linear Fresnel collector demonstration on the PSA[R]. Las Vegas, USA:14th International Solar PACES Symposium,2008.
    [89]Hautmann G, Selig M, Mertins M. First European Linear Fresnel power plant in operation-Operational experience&outlook[J]. Proceedings SolarPACES,2009:15-18.
    [90]Mills D, Morrison G, Le Lievre P. Design of a 240 MWe solar thermal power Plant[C]. Proc. Eurosun Conference, Freiburg,2004.
    [91]Bernhard R, Laabs H, De Lalaing J, et al. Linear Fresnel collector demonstration on the PSA, Part I-design, construction and quality control[J]. Proc.14th Biennial SolarPACES Concentrating Solar,2008.
    [92]http://www.areva.coom/EN/solar-209/areva-solar-projects.html.2008. Accessed at 2014-05-05.[EB/OL].
    [93]许志龙,刘菊东,冯培锋.蝶式光伏发电聚光器的研制[J].太阳能学报,2007,28(2):174-177.
    [94]Walter D, Everett V, Blakers A. A 20-sun hybrid PV-Thermal linear micro-concentrator system for urban rooftop applications[C].35th IEEE Photovoltaic Specialists Conference,2010: 831-836.
    [95]Rosell J, Vallverdu X, Lechon M, et al. Design and simulation of a low concentrating photovoltaic/thermal system[J]. Energy conversion and management,2005,46(18): 3034-3046.
    [96]Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (version 39)[J]. Progress in photovoltaics:research and applications,2012,20(1):12-20.
    [97]Gopal R, Dwivedi R, Srivastava S. Effect of nonuniform illumination on the photovoltaic decay characteristic of solar cells[J]. Electron Devices, IEEE Transactions on,1986,33(6): 802-809.
    [98]H L Z, Q S, Q L S. The effect of non-uniform illumination on the performance of conventional polycrystalline silicon solar cell[C]. Proceedings of ISES Solar World Congress,2007: 1445-1448.
    [99]Luque A, Sala G, Arboiro J. Electric and thermal model for non-uniformly illuminated concentration cells[J]. Solar energy materials and solar cells,1998,51(3):269-290.
    [100]胡芃,张谦,王刚,等.平板型玻璃镜反射太阳能聚光光伏系统的实验研究[J].工程热物理学报,2011,32(5):729-732.
    [101]Hu P, Zhang Q, Wang G. Experimental Investigation on Flat-Type Solar Concentrator PV System with Glass Mirror Reflectors[J]. Journal of Engineering Thermophysics,2011,32(5): 729--732.
    [102]Hu Guangliang, Jie J, Tiantai Z. Photovoltaic-Hot Water Module.
    [103]Imenes A, Mills D. Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems:a review[J]. Solar energy materials and solar cells,2004,84(1): 19-69.
    [104]Hu P, Zhang Q, Liu Y, et al. Optical analysis of a hybrid solar concentrating Photovoltaic/Thermal (CPV/T) system with beam splitting technique[J]. Science China Technological Sciences,2013,56(6):1387-1394.
    [105]范正修.光学薄膜及其进展[J].光学学报,2011,31(9):1-5.
    [106]Macleod H A. Thin-film optical filters[M]. CRC Press,2001.
    [107]Jiang S, Hu P, Mo S, et al. Optical modeling for a two-stage parabolic trough concentrating photovoltaic/thermal system using spectral beam splitting technology [J]. Solar Energy Materials and Solar Cells,2010,94(10):1686-1696.
    [108]Haught A. Physics considerations of solar energy conversion[J]. Journal of Solar Energy Engineering,1984,106(1):3-15.
    [109]Blocker W. High-efficiency solar energy conversion through flux concentration and spectrum splitting[J]. Proceedings of the IEEE,1978,66(1):104-105.
    [110]Soltrace Optical Modeling Software. Available at: [EB/OL].
    [111]Wendelin T. SolTRACE:a new optical modeling tool for concentrating solar optics[C]. ASME 2003 International Solar Energy Conference,2003:253-260.
    [112]Spencer G, Murty M. General ray-tracing procedure[J]. JOSA,1962,52(6):672-676.
    [113]Maliage M, Roos T H. The flux distribution from a 1.25 m2 target aligned heliostat: comparison of ray tracing and experimental results[J],2012.
    [114]Andreev V, Grilikhes V, Rumyantsev V, et al. Effect of nonuniform light intensity distribution on temperature coefficients of concentrator solar cells[C]. Photovoltaic Energy Conversion,2003. Proceedings of 3rd World Conference on,2003:881-884.
    [115]Guven H, Bannerot R. Derivation of universal error parameters for comprehensive optical analysis of parabolic troughs[J]. Journal of solar energy engineering,1986,108(4):275-281.
    [116]Ulmer S, Reinalter W, Heller P, et al. Beam characterization and improvement with a flux mapping system for dish concentrators[C]. ASME Solar 2002:International Solar Energy Conference,2002:285-292.
    [117]戴景民,刘颖.聚光器聚焦光斑能流密度分布的测量与分析[J].应用光学,2008,29(6):917-920.
    [118]张国荣,瞿晓丽,苏建徽.基于动态电容充电的光伏阵列I-V特性测试仪[J].电子测量与仪器学报,2009:85-89.
    [119]Wolf M, Rauschenbach H. Series resistance effects on solar cell measurements[J]. Advanced energy conversion,1963,3(2):455-479.
    [120]Pysch D, Mette A, Glunz S. A review and comparison of different methods to determine the series resistance of solar cells[J]. Solar energy materials and solar cells,2007,91(18): 1698-1706.
    [121]Handy R. Theoretical analysis of the series resistance of a solar cell[J]. Solid-State Electronics,1967,10(8):765-775.
    [122]Coello J, Castro M, Anton I, et al. Conversion of commercial Si solar cells to keep their efficient performance at 15 suns[J]. Progress in Photovoltaics:Research and Applications, 2004,12(5):323-331.
    [123]Andreev V M, Luque A L. Concentrator photovoltaics[M]. Springer,2007.
    [124]Nenova Z, Vitanov P, Kanev S. Temperature behaviour of the spectral response:A new approach for silicon solar cell characterization[J]. Journal of optoelectronics and advanced materials,2009,11(10):1487-1489.
    [125]Hovel H J. Semiconductors and semimetals. Volume 11. Solar cells[J],1975.
    [126]Nelson J. The physics of solar cells[M].57. World Scientific,2003.
    [127]Nielsen L D. Distributed series resistance effects in solar cells[J]. Electron Devices, IEEE Transactions on,1982,29(5):821-827.
    [128]Emery K. Temperature Dependence of Photovoltaic Cells, Module and Systems.[C]. Photovoltaic Specialists Conference,1996:1275-1278.
    [129]Hamdy M A, Luttmann F, Osborn D. Model of a spectrally selective decoupled photovoltaic/thermal concentrating system[J]. Applied Energy,1988,30(3):209-225.
    [130]Skoplaki E, Palyvos J A. On the temperature dependence of photovoltaic module electrical performance:A review of efficiency/power correlations[J]. Solar energy,2009,83(5): 614-624.
    [131]Radziemska E. The effect of temperature on the power drop in crystalline silicon solar cells[J]. Renewable Energy,2003,28(1):1-12.
    [132]Fan J C C. Theoretical temperature dependence of solar cell parameters[J]. Solar cells,1986, 17(2-3):309-315.
    [133]Singh P, Ravindra N. Temperature dependence of solar cell performance-an analysis[J]. Solar energy materials and solar cells,2012,101:36-45.
    [134]Schwartz R. Review of silicon solar cells for high concentrations[J]. Solar Cells,1982,6(1): 17-38.
    [135]Sanchez E, Araujo G L. Mathematical analysis of the efficiency-concentration characteristic of a solar cell[J]. Solar cells,1984,12(3):263-276.
    [136]程晓舫,李坚,余世杰.晶体硅太阳电池串联内阻的函数形式[J].太阳能学报,2004,25(3).
    [137]Arora J, Verma A, Bhatnagar M. Variation of series resistance with temperature and illumination level in diffused junction poly-and single-crystalline silicon solar cells[J]. Journal of materials science letters,1986,5(12):1210-1212.
    [138]Green M A. Solar cell fill factors:General graph and empirical expressions[J]. Solid-State Electronics,1981,24(8):788-789.
    [139]Green M A. Accuracy of analytical expressions for solar cell fill factors[J]. Solar cells,1982, 7(3):337-340.
    [140]Mcmahon T, Basso T, Rummel S. Cell shunt resistance and photovoltaic module performance[C]. Photovoltaic Specialists Conference,1996., Conference Record of the Twenty Fifth IEEE,1996:1291-1294.
    [141]Swaleh M, Green M. Effect of shunt resistance and bypass diodes on the shadow tolerance of solar cell modules[J]. Solar cells,1982,5(2):183-198.
    [142]Hamdy M, Call R. The effect of the diode ideality factor on the experimental determination of series resistance of solar cells[J]. Solar cells,1987,20(2):119-126.
    [143]Jain A, Kapoor A. Exact analytical solutions of the parameters of real solar cells using Lambert W function[J]. Solar energy materials and solar cells,2004,81(2):269-277.
    [144]Ortiz-Conde A, Garcia Sanchez F J, Muci J. New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I-V characteristics[J]. Solar energy materials and solar cells,2006,90(3):352-361.
    [145]Zagrouba M, Sellami A, Bouaicha M, et al. Identification of PV solar cells and modules parameters using the genetic algorithms:application to maximum power extraction[J]. Solar energy,2010,84(5):860-866.
    [146]E1-Adawi M, Al-Nuaim I. A method to determine the solar cell series resistance from a single Ⅰ-Ⅴ. Characteristic curve considering its shunt resistance-new approach[J]. Vacuum,2001, 64(1):33-36.
    [147]Orioli A, Di Gangi A. A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data[J]. Applied energy,2013, 102:1160-1177.
    [148]Lo Brano V, Orioli A, Ciulla G, et al. An improved five-parameter model for photovoltaic modules[J]. Solar energy materials and solar cells,2010,94(8):1358-1370.
    [149]Iec. Photovoltaic devices-Procedures for temperature and irradiance corrections to measured I-V characteristics, CEI/IEC 60891:Edition 2.0 Geneva, Switzerland,2009.
    [150]Aberle A, Wenham S, Green M. A new method for accurate measurements of the lumped series resistance of solar cells[C]. Photovoltaic Specialists Conference,1993., Conference Record of the Twenty Third IEEE,1993:133-139.
    [151]Singh V, Singh R. A method for the measurement of solar cell series resistance[J]. Journal of Physics D Applied Physics,1983,16:1823-1825.
    [152]张忠政,程晓舫.与太阳电池研究相适配的双原点坐标系[J].物理学报,2014,63((118801)1-6).
    [153]Gupta S, Srivastaya M, Gupta A. Mathematical Formulation Comparative Analysis of Losses in Solar Cells, http://www.tutorialspoint.com/white-papers.
    [154]Polverini D, Tzamalis G, M(u|")llejans H. A validation study of photovoltaic module series resistance determination under various operating conditions according to IEC 60891[J]. Progress in Photovoltaics:Research and Applications,2012,20(6):650-660.
    [155]De Soto W, Klein S, Beckman W. Improvement and validation of a model for photovoltaic array performance[J]. Solar energy,2006,80(1):78-88.
    [156]Cheknane A, Hilal H S, Charles J, et al. Modelling and simulation of InGaP solar cells under solar concentration:Series resistance measurement and prediction[J]. Solid state sciences, 2006,8(5):556-559.
    [157]King D L, Kratochvil J A, Boyson W E. Photovoltaic array performance model[M]. United States. Department of Energy,2004.
    [158]Ju X, Wang Z, Flamant G, et al. Numerical analysis and optimization of a spectrum splitting concentration photovoltaic-thermoelectric hybrid system[J]. Solar energy,2012,86(6): 1941-1954.
    [159]Algora C, Ortiz E, Rey-Stolle I, et al. A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns[J]. Electron Devices, IEEE Transactions on,2001,48(5): 840-844.
    [160]Feteha M, Eldallal G. The effects of temperature and light concentration on the GaInP/GaAs multijunction solar cell's performance[J]. Renewable Energy,2003,28(7):1097-1104.
    [161]陈则韶,莫松平,胡芃,et al辐射传热中的熵流,熵产和有效能流[J].工程热物理学报, 2010,(10):1621-1626.
    [162]李建昌,侯雪艳,王紫碹,et al.真空管式太阳能集热器研究最新进展[J].真空科学与技术学报,2012,32(10):943.
    [163]彭运吉,王鲁振,王伟.平板型太阳能集热器的研究进展[J].能源与节能,2011,(8):15-17.
    [164]Spanner D C. Introduction to thermodynamics[M]. London:Academic Press,,64.
    [165]Petela R. Exergy of Heat Radiation[J]. Journal of Heat Transfer,1964,86(2):187-192.
    [166]Chen K, Chun W. Radiation energy transfer and maximum conversion efficiency[J]. Applied Energy,2009,86(10):2268-2271.
    [167]Bejan A. Unification of Three Different Theories Concerning the Ideal Conversion of Enclosed Radiation[J]. Journal of Solar Energy Engineering,1987,109(1):46-51.
    [168]Kabelac S. Exergy of solar radiation[J]. J. Energy Technology and Policy,2005,3:115-122.
    [169]Dayanga W, Gamalath K. Thermodynamics investigation of solar energy conversion into work[J]. Journal of Physics,2008,9:47-60.
    [170]Press W H. Theoretical maximum for energy from direct and diffuse sunlight[J]. Nature, 1976,264:733-734.
    [171]Jeter S M. Maximum conversion efficiency for the utilization of direct solar radiation[J]. Solar Energy,1981,26(3):231-236.
    [172]Landsberg P T, Tonge G. Thermodynamics of the conversion of diluted radiation[J]. Phys. A: Math. Gen,1979,12:551-562.
    [173]Badescu V. On the thermodynamics of the conversion of diluted radiation[J]. Phys. D: Applied Physics,1990,23:289-292.
    [174]Petela R. Exergy of undiluted thermal radiation[J]. Solar Energy,2003,74(6):469-488.
    [175]陈则韶,胡芃,莫松平.非平衡态辐射场能理状态参数的表征[J].工程热物理学报,2012,33(06):918-921.
    [176]Lee W Y, Kim S S. Maximum power-conversion efficiency for the utilization of solar energy[J]. International Journal of Energy Research,1991,15(4):257-267.
    [177]陈金灿.不可逆太阳能热机系统集热器的最佳工作温度[J].热能与动力工程,1994,9:59-61.
    [178]Zamfirescu C, Dincer I, Wagar W. Evaluation of exergy and energy efficiencies of photothermal solar radiation conversion[J]. Applied Solar Energy,2009,45(4):213-223.
    [179]Chun W, Oh S J, Lim S H, et al. Maximum efficiency of solar energy conversion.[J]. Int. J. Energy Res,2012,36:928-934.
    [180]Joshi A S, Tiwari A. Energy and exergy efficiencies of a hybrid photovoltaic-thermal (PV/T) air collector[J]. Renewable Energy,2007,32(13):2223-2241.
    [181]Zhai H, Dai Y J, Wu J Y, et al. Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas[J]. Applied Energy,2009,86(9): 1395-1404.
    [182]Sarhaddi F, Farahat S, Ajam H, et al. Exergetic optimization of a solar photovoltaic thermal (PV/T) air collector[J]. International Journal of Energy Research,2011,35(9):813-827.
    [183]Saidur R, Boroumandjazi G, Mekhlif S. Exergy analysis of solar energy applications. Renewable and Sustainable Energy Review[J]. Renewable and Sustainable Energy Reviews, 2012,16:350-356.
    [184]Blocker W. High-efficiency solar energy conversion through flux concentration and spectrum splitting[J]. Proceedings of the IEEE,1978,66:104-105.
    [185]Osborn D E, Chendo M a C, Hamdy M A, et al. Spectral selectivity applied to hybrid concentration systems[J]. Solar Energy Materials,1986,14(3-5):299-325.
    [186]Segal A, Epstein M, Yogev A. Hybrid concentrated photovoltaic and thermal power conversion at different spectral bands[J]. Solar Energy,2004,76(5):591-601.
    [187]Imenes A G, Mills D R. Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems:a review[J]. Solar Energy Materials and Solar Cells, 2004,84(1-4):19-69.
    [188]Imenes A G, Buie D, Mills D R, et al. A new strategy for improved spectral performance in solar power plants[J]. Solar Energy,2006,80(10):1263-1269.
    [189]陈则韶,莫松平,李志宏.太阳能分频利用电热联产初步研究[J].工程热物理学报,2008,29:13-15.
    [190]Hu P, Ianzhang Q, Liu Y. Optical analysis of a hybrid solar concentrating photovoltaic /thermal (CPV/T) system with beam splitting technique[J]. Sci China Tech Sci,2013,56:1-8.
    [191]王泉河,徐刚,徐雪青.Ag-A12O3太阳能选择性吸收涂层的研制[J].太阳能学报,2011,32(12):1748—1752.
    [192]胡广良,季杰,周天泰光伏热水模光[P].
    [193]Li M, Ji X, Li G, et al. Performance study of solar cell arrays based on a trough concentrating photovoltaic/thermal system[J]. Applied Energy,2011,88(9):3218-3227.
    [194]Imenes A, Mills D. Electricity replacement benefits of various receiver combinations in a Multi Tower Solar Array distributed CHP plant[C]. Proceedings of the ISES Solar World Congress-Solar Energy for a Sustainable Future, Gothenburg, Sweden,2003.
    [195]Schwartz R J. Review of silicon solar-cells for high-concentrations[J]. Solar cells,1982,6(1): 17-38.
    [196]Zhang Z, Cheng X, Liu J. An improvement method for extracting five parameters of a solar cell based on Lambert W-function with the current-voltage data[J]. Applied Mechanics and Materials,2013,291-294:38-42.
    [197]Fisher B, Biddle J. Luminescent spectral splitting:efficient spatial division of solar spectrum at low concentration J]. Solar energy materials and solar cells,2011,95(7):1741-1755.
    [198]Hu P, Liu Y, Zhang Q. Thermodynamic analysis on medium-high temperature solar thermal systems with selective coatings[J]. Sci China Tech Sci,2013,56:3137-3143.
    [199]Imenes A G, Mills D R. Electricity replacement benefits of various receiver combinations in a multi tower solar array distributed CHP plant[C]. ISES Solar World Congress,2003.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.