核壳结构磁光双功能纳米材料的制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性纳米粒子具有独特的磁学性质,如超顺磁性和高饱和磁化强度等,而且生物相容性较好,毒副作用小,在靶向药物载体、磁共振成像、细胞和生物分子分离、免疫检测等生物医学领域具有广阔的应用前景,因此近年来备受人们青睐。为了拓宽磁性纳米粒子在各个领域的应用,人们对磁性纳米粒子进行各种表面修饰从而实现其功能化。据文献报道,对磁性纳米粒子进行光学修饰制备的磁光双功能纳米材料具有优良的磁性和发光性能,在磁学、荧光、生物和医药等领域得到广泛应用,特别是在超高密度信息存储、生物分子识别、药物传输等方面具有诱人的应用前景。本文主要研究Fe3O4、CoFe2O4磁性纳米粒子的制备,二氧化硅包裹和发光材料修饰以及在MRI方面的应用。全文共三章。
     第一章概述了磁性纳米材料的制备、修饰及应用前景,核壳结构磁性纳米粒子/二氧化硅复合纳米材料以及磁光双功能纳米材料的制备和应用并提出了论文的研究设想。
     第二章采用化学共沉淀法,以FeCl3·6H20和FeCl2.4H2O为原料,氨水为沉淀剂,首先在不同种类醇—水体系中制备磁性Fe3O4纳米粒子,并用TEM,XRD对产物进行表征。结果表明,所制得的纳米粒子形貌随醇—水体系极性和黏度的变化由圆球形向棒状结构过渡,而且粒径增大,分散性提高。这些纳米粒子能够稳定分散在水中。以油酸为表面活性剂对乙醇—水体系制备的Fe3O4纳米粒子进行表面修饰,发现经过修饰后的纳米粒子分散性改善,并且能够从水相转移到有机相中。其次以柠檬酸为表面活性剂,制备了能稳定分散在水中的磁性Fe3O4纳米粒子。此Fe3O4纳米粒子饱和磁化强度Ms达50.2 emu/g,具有良好的超顺磁性。磁共振成像实验研究表明,制备的四氧化三铁纳米粒子具有较大的横向驰豫系数r2(119.74 Fe mM-1s-1)和纵向驰豫系数r1(13.64 Fe mM-1s-1),因此该Fe3O4纳米粒子既可以作为T2对比剂,又可以作为T1对比剂;接着,我们以此Fe3O4纳米粒子为种子,在Triton X-100/正己醇/环己烷/水反相微乳体系中,采用碱催化正硅酸乙酯的水解、缩合,制备了具有核壳结构的Fe3O4@SiO2复合纳米粒子。研究了搅拌方式、TEOS的浓度对Fe3O4@SiO2纳米粒子形貌的影响。结果表明采用机械搅拌能够有效地控制复合纳米粒子的形貌,形成分散性好且形貌为圆球形的核壳纳米粒子。随着TEOS浓度的增加,SiO2壳层增厚,复合粒子形貌更均匀。最后,Fe3O4@SiO2纳米粒子通过修饰3-氨丙基三乙氧基硅烷(APTES)使其表面氨基功能化,然后利用硅烷偶联剂的氨基与有机小分子丹磺酰氯反应形成丹磺酰亚胺发光基团,从而合成了磁光双功能的Fe3O4@SiO2@APTES-Dy纳米复合材料。采用TEM, FT-IR, UV-vis, XRD, XPS等技术对所得产物进行了表征,并研究了材料的磁学性质和发光性能。为了考查材料在生物、医学领域应用的可行性,我们对纳米复合材料Fe3O4@SiO2@APTES-Dy进行了细胞毒性测试和磁共振成像(MRI)研究。结果表明,Fe3O4@SiO2@APTES-Dy具有较好的磁共振成像效果且细胞毒性较小,是一种优良的磁共振成像T2对比剂。细胞切片TEM显示,复合纳米粒子能够穿过Hela细胞的细胞膜进入内涵体和细胞质中。
     第三章我们尝试用共沉淀法、水热法、热解法三种方法制备了铁酸钴纳米粒子。其中化学共沉淀法制备的铁酸钴纳米粒子虽然是水溶性的但粒径较大,不利于二氧化硅包覆,也限制了其在生物方面的应用。水热法制备的铁酸钴纳米粒子主要分两种类型,其中一部分是较小的纳米粒子成圆球形,分散性较好;另一部分大的花状纳米粒子是由数个小的铁酸钴纳米粒子组合而成。CoFe2O4纳米粒子的饱和磁化强度Ms达53.2 emu/g,具有良好的超顺磁性。磁共振成像实验研究表明,溶剂热法制备的CoFe2O4纳米粒子的横向驰豫系数r2为36.54 FemM-1s-1,可以作为T2成像对比剂。热解法制备的铁酸钴纳米粒子粒径较小,平均粒径为5nm左右,很容易对其进行二氧化硅包覆得到单分散的核壳结构的CoFe2O4@SiO2,使其从油溶性转变为水溶性。包覆二氧化硅后的铁酸钻纳米粒子通过修饰硅烷偶联剂使其氨基功能化,然后利用表面的氨基与发光染料丹磺酰氯反应,形成磁光双功能纳米粒子CoFe2O4@SiO2@APTES-Dy.采用各种电镜技术和光谱技术对所得纳米复合材料进行了表征,并研究其细胞毒性和MRI成像。结果表明,复合纳米材料CoFe2O4@SiO2@APTES-Dy具有较好的磁共振成像效果且细胞毒性较小,是一种优良的磁共振成像T2对比剂。
Magnetic nanoparticles have shown broad application prospects in biomedical field, including targeted drug delivery system, magnetic resonance imaging (MRI), cellular and bio-molecular separation, and immune detection, because of their unique magnetic properties (such as superparamagnetic and high saturation magnetization), good biocompatibility and low toxicity. Therefore, they have attracted great interests in recent years. To broaden the application of magnetic nanoparticles in various fields, a series of surface modifications were carried out to fabricate functional materials. According to the literature, the magnetic nanoparticles modified by optical materials can produce the magnetic-optical bifunctional nanomaterials with excellent magnetic and luminescent properties, which are widely used in magnetic, fluorescent, biological and pharmaceutical fields, especially with attractive prospect for application in the ultra-high density data storage, bio-molecular recognition, drug delivery, etc. This thesis mainly studies the preparation of Fe3O4 and CoFe2O4 magnetic nanoparticles, silica coating and modification with luminescent materials, as well as the applications of the nanocomposites in MRI. The contents of this thesis include three chapters.
     Chapter 1 summarizes the synthesis, modification and application of magnetic nanoparticles, the preparation and application of core-shell structural magnetic/silica nanoparticles and magnetic-optical bifunctional nanomaterials. The research envisagement for the whole thesis was also proposed.
     In chapter 2, First, Fe3O4 nanoparticles were synthesized in different alcohol-water solvent systems by a facile chemical coprecipitation process using ammonia as precipitant, FeCh·6H2O and FeCl2·4H2O as Fe sources. The nanoparticles were then characterized by TEM (transmission electron microscopy) and XRD (X-ray diffraction) techniques. Along with the decrease of polarity and the increase of viscosity of the solvent systems, the morphology of Fe3O4 nanoparticles changed from spherical to rod-like structure, the particle size increased, and the dispersion of the nanoparticles was improved. The produced nanoparticles can be well re-suspended in water. The surface modification of Fe3O4 nanoparticles synthesized in ethanol-water system was carried out using oleic acid as surfactant. After surface modification with oleic acid, the nanoparticles can be transferred from aqueous phase to organic phase.
     Second, chemical co-precipitation method was employed to synthesize Fe3O4 nanoparticles which can be well dispersed in water by using citric acid as a surfactant. The as-synthesized Fe3O4 nanoparticles showed a good superparamagnetic property with high saturation magnetization (Ms=50.2 emu/g). The r1 and r2 relaxivities of as-synthesized magnetite nanoparticles are found to be r1 (13.64 Fe mM-1 s-1) and r2 (119.74 Fe mM-1 s-1), respectively. Such values for r1 and r2 suggest that the as-synthesized magnetite nanoparticles can act as both T1 and T2 contrast agents. Afterwards, by using Fe3O4 nanoparticles with citric acid as a surfactant as seeds in a Triton X-100/hexanol/cyclohexane/water reverse microemulsion system, the core-shell structural Fe3O4@SiO2 nanocomposite particles were prepared via hydrolysis and condensation of tetraethyl orthosilicate (TEOS) under the catalysis of alkali. The effects of different stirring methods and the concentration of TEOS on the morphology of Fe3O4@SiO2 nanoparticles were investigated. The results showed that the mechanical stirring could effectively control the morphology of the composite nanoparticles to form a good dispersion and spherical morphology of core-shell nanoparticles. With the increase of TEOS concentration, the thickness of the SiO2 shell layer increases, and the morphology of the obtained composite particles become more uniform.
     Finally, the Fe3O4@SiO2 nanoparticles were subsequently modified with 3-aminopropyl-triethoxysilane (APTES) to to immobilize amino groups onto the particle surfaces, then dansyl groups were chemically attached onto the nanoparticles by nucleophilic substitution of sulfonyl chloride with primary amines, resulting the formation of magnetic-optical bifunctional Fe3O4@SiO2@APTES-Dy nanocomposites. Extensive characterizations of the obtained nanocomposites have been performed using TEM, FT-IR spectra, UV-vis spectra, XRD and X-ray photoelectron spectroscopy (XPS). Their magnetic and fluorescent properties were also studied. To investigate their possible applications in biology and medicine fields, the cell toxicity and MRI of the Fe3O4@SiO2@APTES-Dy composites were determined. The results showed that the nanocomposites could be used as excellent T2 contrast agents of MRI due to their good effect of MRI and very low toxicity. TEM observations of the cells incubated with the nanoparticles showed that the Fe3O4@SiO2@APTES-Dy nanocomposites could be endocytosed by the cells and then distributed in the endosome and cytoplasm.
     In chapter 3, we tried to use co-precipitation, solvothermal method, and thermal decomposition to prepare cobalt ferrite (CoFe2O4) nanoparticles. Although water-soluble CoFe2O4 nanoparticles could be prepared by chemical co-precipitation, their larger particle size was not convenient for silica coating, which limited their biological applications. CoFe2O4 nanoparticles prepared by the solvothermal process were composed of two kinds of particles. Some are well-dispersed small size nanoparticles, and others are large flower-like particles consisting of several small nanoparticles. The as-synthesized CoFe2O4 nanoparticles prepared by solvothermal process have a good super-aramagnetic property and their saturation magnetization Ms=53.2 emu/g. Their r2 relaxivity was found to be 36.54 Fe Mm-1 s-1 from MRI. Such a value for r2 suggests that the as-synthesized magnetite nanoparticles can act as T2 contrast agents.
     CoFe2O4 nano-particles prepared by thermal decomposition showed an average diameter of about 5 nm, and it is easier to coat them with silica layer resulting the core/shell structural CoFe2O4@SiO2. After silica coating, the oil-soluble CoFe2O4 nanoparticles easily dissolved in water. The CoFe2O4@SiO2 nanoparticles were subsequently modified with APTES to introduce amino groups on their surfaces, and then the magnetic-optical bifunctional CoFe2O4@SiO2@APTES-Dy nanoparticles were obtained by the nucleophilic substitution reaction between the surface amino groups and dansyl chloride.Extensive characterizations of the produced nanocomposites have been performed by using a variety of microscopy and spectroscopic techniques. The cell toxicity and MRI studies of the as-prepared CoFe2O4@SiO2@APTES-Dy nanocomposites showed that the composite nanoparticles with very low cell toxicity might function as an excellent T2 contrast agent of MRI.
引文
[1]Diandra L. Leslie-Pelecky, Reuben D. Rieke. Magnetic properties of nanostructured materials [J]. Chem. Mater.,1996,8:1770-1783.
    [2]Won Seok Seo, Hyong Hoon Jo, Kwangyeol Lee,Bongsoo Kim, Sang Jun Oh, Joon T. Park. Size-dependent magnetic properties of colloidal Mn_3O_4 and MnO nanoparticles [J]. Angew. Chem. Int. Ed.,2004,43:1115-1117.
    [3]Shou heng Sun, Hao Zeng, David B. Robinson, Simone Raoux, Philip M. Rice, Shan X. Wang, Guanxiong Li. Monodisperse MFe_2O_4 (M=Fe, Co, Mn) nanoparticles [J]. J. Am. Chem. Soc.,2004,126:273-279.
    [4]Sophie Carenco, Cedric Boissiere Lionel Nicole, Clement Sanchez, Pascal Le Floch, Nicolas Mezailles. Controlled design of size-tunable monodisperse nickel nanoparticles [J]. Chem. Mater.,2010,22:1340-1349.
    [5]Michael R. Diehl, Jae-Young Yu, James R. Heath,Glenn A. Held, Hugh Doyle, Shouheng Sun, Christopher B. Murray. Crystalline, shape and surface anisotropy in two crystal morphologies of superparamagnetic cobalt nanoparticles by ferromagnetic resonance [J]. J. Phys. Chem. B.,2001,105:7913-7919.
    [6]Zhong L. Wang, Zurong Dai, Shouheng Sun. Polyhedral shapes of cobalt nanocrystals and their effect on ordered nanocrystal assembly [J]. Adv.Mater.,2000, 12:1944-1946.
    [7]Xin-Bo Zhang, Jun-Min Yan, Song Han, Hiroshi Shioyama, Qiang Xu. Magnetically recyclable Fe@Pt core-shell nanoparticles and their use as electrocatalysts for ammonia borane oxidation:the role of crystallinity of the core [J]. J. Am. Chem. Soc.,2009,131:2778-2779.
    [8]Junzhong Wang, Kian Ping Loh, Yu Lin Zhong, Ming Lin, Jun Ding, Yong Lim Foo. Bifunctional FePt core-shell and hollow spheres:sonochemical preparation and self-assembly [J]. Chem. Mater.,2007,19:2566-2572.
    [9]Ming Wen, Ya-Fen Wang, Fan Zhang, Qing-Sheng Wu. Nanostructures of Ni and Ni-Co amorphous alloys synthesized by a double composite template approach [J].J. Phys. Chem. C.,2009,113:5960-5966.
    [10]Shouheng Sun. Recent, advances in chemical synthesis, self-assembly and applications of FePt nanoparticles [J]. Adv. Mater.,2006,18:393-403
    [11]Yudhisthira Sahoo, Hillel Pizem, Tcipi Fried, Dina Golodnitsky, Larisa Burstein, Chaim N. Sukenik and Gil Markovich. Alkyl phosphonate/phosphate coating on magnetite nanoparticles:a comparison with fatty acids [J]. Langmuir,2001,17: 7907-7911.
    [12]Do Kyung Kim, Maria Mikhaylova, Yu Zhang and Mamoun Muhammed. Protective coating of superparamagnetic iron oxide nanoparticles [J]. Chem.Mater., 2003,15 (8):1617-1627.
    [13]Shou heng Sun, Hao Zeng. Size-controlled synthesis of magnetite nanoparticles [J]. J. Am. Chem. Soc.,2002,124:8204-8205.
    [14]T. J. Daou, G. Pourroy, S. Be'gin-Colin, J. M. Grene'che, C. Ulhaq-Bouillet,P. Legare', P. Bernhardt, C. Leuvrey, G. Rogez. Hydrothermal synthesis of monodisperse magnetite nanoparticles [J]. Chem. Mater.,2006,18:4399-4404.
    [15]L. A. Harris, J. D. Goff, A. Y. Carmichael, J. S. Riffle, J. J. Harburn, T. G. St. Pierre,M. Saunders magnetite nanoparticle dispersions stabilized with triblock copolymers [J]. Chem Mater.,2003,15:1367-1377.
    [16]Youjin Lee, jinwoo Lee, Che Jin Bae, Je-Geun Park, Han-Jin Noh, Jae-Hoon Park, Taeghwan Hyeon. Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions [J]. Adv. Funct. Mater.2005,15:503-509.
    [17]J. A. Lopez Perez and M. A. Lopez QuintelaJ. Mira, J. RivasS. W. Charles. Advances in the preparation of magnetic nanoparticles by the microemulsion method [J]. J. Phys. Chem. B.,1997,101:8045-8047.
    [18]Sugimoto T, Itoh H; Mochida T. Shape control of monodisperse hematite particles by organic additives in the gel-sol system [J]. J.Colloid Interf Sc.,1998, 205(1):42-52.
    [19]Won Hyuk Suh and Kenneth S. Suslick. Magnetic and porous nanospheres from ultrasonic spray pyrolysis [J]. J. Am. Chem. Soc.,2005,127:12007-12010.
    [20]Young Soo Kang, Subhash Risbud, John F. Rabolt and Pieter Stroeve. Synthesis and characterization of nanometer-size Fe_3O_4 and y-Fe_2O_3 particles [J]. Chem. Mater., 1996,8:2209-2211.
    [21]Fong-Yu Chenga, Chia-Hao Sua, Yu-Sheng Yanga, Chen-Sheng Yeha,Chiau-Yuang Tsaib, Chao-Liang Wub, Ming-Ting Wuc, Dar-Bin Shieh. Characterization of aqueous dispersions of Fe_3O_4 nanoparticles and their biomedical applications [J]. Biomaterials,2005,26(730):729-738.
    [22]Minghai Chen, Yong Nam Kim, Cuncheng Li, Sung Oh Cho. Preparation and characterization of magnetic nanoparticles and their silica egg-yolk-like nanostructures:a prospective multifunctional nanostructure platform [J]. J. Phys Chem. C.,2008,112:6710-6716.
    [23]Yunxia Zhang, Shusheng Pan, Xuemei Teng, Yuanyuan Luo, Guanghai Li. Bifunctional magnetic-luminescent nanocomposites:Y203/Tb nanorods on the surface of iron oxide/silica core-shell nanostructures [J]. J. Phys. Chem. C.,2008, 112:9623-9626.
    [24]Nan Wang, Lihua Zhu, Dali Wang, Mingqiong Wang, Zhifen Lin, Heqing Tang Sono-assisted preparation of highly-efficient peroxidase-like Fe_3O_4 magnetic nanoparticles for catalytic removal of organic pollutants with H_2O_2 [J]. Ultrasonics Sonochemistry,2010,17:526-533.
    [25]C. K. Ong, H. C. Fang, Z. Yang and Y. Li. Magnetic relaxation in Zn-Sn-doped barium ferrite nanoparticles for recording [J]. J Magn Magn Mater.,2000,213(3): 413-417.
    [26]H. C. Fang, Z. Yang, C. K. Ong, Y. Li and C. S. Wang. Preparation and magnetic properties of (Zn-Sn) substituted barium hexaferrite nanoparticles for magnetic recording [J]. J Magn Magn Mater.,1998,187(1):129-135.
    [27]V. K. Sankaranarayanan, R. P. Pant, A. C. Rastogi. Spray pyrolytic deposition of barium hexaferrite thin films for magnetic recording applications [J]. J Magn Magn Mater.,2000,220(1):72-78.
    [28]Mark M Benjamin, James O Leckie. Multiple-site adsorption of Cd, Cu, Zn and Pb on amorphous iron oxyhydroxide [J]. J.Colloid Interf Sc.,1981,79(1):209-221.
    [29]Thomas A. Sorenson, Simon A. Morton, G. Dan Waddill, Jay A. Switzer. Epitaxial electrodeposition of Fe_3O_4 thin films on the low-index planes of gold [J]. J. Am. Chem. Soc.,2002,124:7604-7609.
    [30]P. Stephen Williams, Francesca Carpino, Maciej Zborowski. Magnetic nanoparticle drug carriers and their study by quadrupole magnetic field-flow fractionation [J]. Molecular Pharmaceutice,2009,6(5):1290-1306.
    [31]Jin-Hao Gao, Hong-Wei Gu, Bing Xu. Multifunctional magnetic nanoparticles: design, synthesis and biomedical applications [J]. Accounts of Chemica Research, 2009,42(8):1097-1107.
    [32]Si Chen, Xian-Zheng Zhang, Si-Xue Cheng, Ren-Xi Zhuo, Zhong-Wei Gu. Functionalized amphiphilic hyperbranched polymers for targeted drug delivery [J]. Biomacromolecules,2008,9:2578-2585.
    [33]Tapan K. Jain, Marco A. Morales, Sanjeeb K. Sahoo,Diandra L. Leslie-Pelecky, Vinod Labhasetwar. Iron oxide nanoparticles for sustained delivery of anticancer agents [J]. Molecular Pharmaceutice,2005,2(3):194-205.
    [34]J. L. Zhang, R. S. Srivastava, R. D. K. Misra. Core-shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer:synthesis, characterization and LCST of viable drug-targeting delivery system [J]. Langmuir, 2007,23:6342-6351.
    [35]P Oswald, O Clement, C Chambon, E Schoumanclaeys, G Frija. Liver positive enhancement after injection of superparamagnetic nanoparticles:Respective role of circulating and uptaken particles [J]. Magnetic Resonance Imaging,1997,15(9): 1025-1031.
    [36]Fong-Yu Cheng, Chia-Hao Sua, Yu-Sheng Yanga, Chen-Sheng Yeha, Chiau-Yuang Tsai, Chao-Liang Wub, Ming-Ting Wu, Dar-Bin Shieh. Characterization of aqueous dispersions of Fe_3O_4 nanoparticles and their biomedical applications [J]. Biomaterials,2005,26:729-738.
    [34]Young-wook Jun, Yong-Min Huh, Jin-sil Choi, Jae-Hyun Lee, Ho-Taek Song, Sungjun Kim, Sungjun Kim, Sarah Yoon, Kyung-Sup Kim, Jeon-Soo Shin, Jin-Suck Suh, Jinwoo Cheon. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging [J]. J. Am. Chem. Soc.,2005,127:5732-5733.
    [38]Ho-Taek Song, Jin-sil Choi, Yong-Min Huh, Sungjun Kim, Young-wook Jun, Jin-Suck Suh, Jinwoo Cheon. Surface modulation of magnetic nanocrystals in the development of highly efficient magnetic resonance probes for intracellular labeling [J]. J. Am. Chem. Soc.,2005,127:9992-9993.
    [39]Yong-Min Huh, Young-wook Jun, Ho-Taek Song, Sungjun Kim, Jin-sil Choi, Jae-Hyun Lee, Sarah Yoon, Kyung-Sup Kim, Jeon-Soo Shin, Jin-Suck Suh, Jinwoo Cheon. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals [J]. J. Am. Chem. Soc.,2005,127:12387-12391.
    [40]Seyda Bucak, Deverraux A. Jones, Paul E. Laibinis, T. Alan Hatton. Protein separations using colloidal magnetic [J]. Biotechnol. Prog.,2003,19(2):477-484.
    [41]Jwa-Min Nam, C. Shad Thaxton, Chad A. Mirkin. Nanoparticle-based biobar codes for the ultrasensitive detection of proteins [J]. Science,2003,301:1884-1886.
    [42]Xiaozhou Li, Lin Wang, Chi Zhou, Tingting Guan, Juan Li, Yihua Zhang. Preliminary studies of application of CdTe nanocrystals and dextran-Fe_3O_4 magnetic nanoparticles in sandwich immunoassay [J]. Clinica Chimica Acta,2007, 378:168-174.
    [43]Ji-Lai Gong, Yi Liang, Yong Huang, Ji-Wei Chen, Jian-Hui Jiang, Guo-Li Shen, Ru-Qin Yu. Ag/SiO_2 core-shell nanoparticle-based surface-enhanced Raman probes for immunoassay of cancer marker using silica-coated magnetic nanoparticles as separation tools [J]. Biosensors and Bioelectronics,2007,22:1501-1507.
    [44]Jose'Luis Corchero, Antonio Villaverde. Biomedical applications of distally controlled magnetic nanoparticles [J]. Trends in Biotechnology.,2009,27(8):468-476.
    [45]陈克正,王丽平,刘兴斌.纳米微粒在生物医药领域中的应用研究[J].药学进展.2000,24(4):193-196.
    [46]Matthias H. Krause, Kenneth K. Kwong, Evangelos S. Gragoudas, Lucy H. Young. MRI of blood volume with superparamagnetic iron in choroidal melanoma treated with thermotherapy [J]. Magnetic Resonance Imaging,2004,22:779-787.
    [47]Ian J. Bruce and Tapas Sen. Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations [J]. Langmuir,2005, 21(15):7029-7035.
    [48]Chen-Li Chiang, Ching-Shan Sung, Ting-Feng Wu, Chuh-Yean Chen, Chiung-Yuen Hsu. Application of superparamagnetic nanoparticles in purification of plasmid DNA from bacterial cells [J]. J. Chromatogr. B.,2005,822(1-2):54-60.
    [49]汪红志,张学龙,武杰.核磁共振成像技术实验教程[M].科学出版社,2008,108-109.
    [50]Jiaqi Wan, Wei Cai, Xiangxi Mengb, Enzhong LiubMonodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging [J]. Chem. Commun.,2007,5004-5006.
    [51]Jean-Francois Berret, Nicolas Schonbeck, Florence Gazeau, Delphine El Kharrat, Olivier Sandre, Annie Vacher, Marc Airiau. Controlled clustering of superparamagnetic nanoparticles using block copolymers:design of new contrast agents for magnetic resonance imaging [J]. J. Am. Chem. Soc.,2006,128:1755-1761.
    [52]J. Manuel Perez, Lee Josephson, Terrence O'Loughlin, D Hogemann, Ralph Weissleder. Magnetic relaxation switches capable of sensing molecular interactions [J]. Nat. Biotechnol.,2002,20:816-820.
    [53]Sang-Wha Lee, Ho-Geun Yoon, Jin-Suck Suh, Yong-Min Huh, Seungjoo Haam. Multifunctional magnetic gold nanocomposites:human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy [J]. Adv. Funct. Mater.,2008,18:258-264.
    [54]Minghai Chen, Yong Nam Kim, Hyeok Moo Lee, Cuncheng Li, and Sung Oh Cho. Multifunctional magnetic silver nanoshells with sandwichlike nanostructures [J]. J. Phys. Chem. C.,2008,112:8870-8874.
    [55]Hong Ling Liu, Chung Hee Sonn, Jun Hua Wu, Kyung-Mi Lee, Young Keun Kim. Synthesis of streptavidin-FITC-conjugated core-shell Fe_3O_4-Au nanocrystals and their application for the purification of CD4t lymphocytes [J]. Biomaterials,2008, 29:4003-4011.
    [56]Minghai Chen, Lian Gao. Synthesis and characterization of Ag nanoshells by a facile sacrificial template route through in situ replacement reaction [J]. Inorganic Chemistry,2006,45(13):5145-5149.
    [57]Hongbo Liu, Jia Guo, Lan Jin, Wuli Yang, Chang chun Wang. Fabrication and functionalization of dendritic Poly(amidoamine)-immobilized magnetic polymer composite microspheres [J]. J. Phys. Chem. B.,2008,112:3315-3321.
    [58]Hong Xu, Longlan Cui, Naihu Tong, Hongchen Gu. Development of high magnetization Fe_3O_4/polystyrene/silica nanospheres via combined miniemulsion/ emulsion polymerization [J]. J. Am. Chem. Soc.,2006,128:15582-15583.
    [59]Jia Guo, Wuli Yang, Chang chun Wang, Jia He, Jiyao Chen. Poly(N-isopropylacrylamide)-coated luminescent/magnetic silica microspheres: preparation, characterization and biomedical applications [J]. Chem. Mater.,2006, 18:5554-5562
    [60]G.B. Khomutov, Yu.A. Koksharov. Effects of organic ligands, electrostatic and magnetic interactions in formation of colloidal and interfacial inorganic nanostructures [J]. Advances in Colloid and Interface Science,2006,122:119-147.
    [61]Z.G. Peng, K. Hidajat, M.S. Uddin. Adsorption and desorption of lysozyme on nano-sized magneticparticles and its conformational changes [J]. Colloids and Surfaces B:Biointerfaces.,2004,35:169-174.
    [62]Tadashi Matsunaga, Takeyuki Suzuki, Masayoshi Tanaka, Atsushi Arakaki. Molecular analysis of magnetotactic bacteria and development of functional bacterial magnetic particles for nano-biotechnology [J]. Triend in Biotechnology,2007, 25(4):182-188.
    [63]Randy De Palma, Sara Peeters, Margriet J. Van Bael, Hei di Van den Rul, Kristien Bonroy, Wim Laureyn, Jules Mullens, Gustaaf Borghs, Guido Maes. Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible [J]. Chem. Mater.,2007,19:1821-1831.
    [64]Chang Woo Kim, Hyun Gil Cha, Young Hwan Kim, Abhijit P. Jadhav, Eun Sun Ji, Dong In Kang, Young Soo Kang Urface. Investigation and magnetic behavior of Co nanoparticles prepared via a surfactant-mediated polyol process [J]. J. Phys. Chem. C., 2009,113:5081-5086.
    [65]Yudhisthira Sahoo, Alireza Goodarzi, Mark T. Swihart, Tymish Y. Ohulchanskyy, Navjot Kaur, Edward P. Furlani, Paras N. Prasad. Aqueous ferrofluid of magnetite nanoparticles:fluorescence labeling and magnetophoretic control [J]. J. Phys. Chem. B.,2005,109:3879-3885.
    [66]Yong Zhang, Nathan Kohler, Miqin Zhang. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake [J]. Biomaterials,2002,23:1553-1561.
    [67]Nathan Kohler, Glen E. Fryxell, Miqin Zhang. A bifunctional Poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents [J]. J.Am.Chem.Soc.,2004,126:7206-7211.
    [68]Werner Stober, Arthur Fink and Ernst Bohn. Controlled growth of monodisperse silica spheres in micron size range [J]. J. Colloid Interface Sci.,1968,26:62-69.
    [69]Rong He, Xiaogang You, Jun Shao, Feng Gao, Bifeng Pan, Daxiang Cui. Core/shell fluorescent magnetic silica-coated composite nanoparticles for bioconjugation [J]. Nanotechnology,2007,18:315601.
    [70]Yong-Hui Deng, Chang-Chun Wang, Jian-Hua Hu, Wu-Li Yang, Shou-Kuan Fu. Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approach[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects.,2005,262:87-93.
    [71]Christy R. Vestal, Z. John Zhang. Synthesis and magnetic characterization of Mn and Co spinel ferrite-silica nanoparticles with tunable magnetic core [J]. Nano-Lett., 2003,3(12):739-1743.
    [72]Albert P. Philipse, Ana-Mariana Nechifor, Chellapah Patmamanoharan Isotropic, Birefringent. Dispersions of surface modified silica rods with a boehmite-needle core [J]. Langmuir,1994,10:4451-4458.
    [73]Yu Lu, Yadong Yin, Brian T. Mayers, Younan Xia. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach [J]. Nano Lett.,2002,2:183-186.
    [74]Joachim Wagner, Tina Autenrieth, Rolf Hempelmann. Core shell particles consisting of cobalt ferrite and silica as model ferrofluids [CoFe2O_4-SiO2 core shell particles [J]. J. Magn. Magn.Mater.,2002,252:4-6.
    [75]Huang-Hao Yang, Shu-Qiong Zhang, Xiao-Lan Chen, Zhi-Xia Zhuang, Jin-Gou Xu, Xiao-Ru Wang. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations [J]. Anal. Chem.,2004,76:1316-1321.
    [76]Ming Zhang, Brian L Cushing, Charles J O'Connor. Synthesis and characterization of monodisperse ultra-thin silica-coated magnetic nanoparticles [J]. Nanotechnology,2008,19:085601.
    [77]Veronica Salgueirino-Maceira, Miguel A. Correa-Duarte, Marina Spasova, Luis M. Liz-Marzan and Michael Farle. Composite silica spheres with magnetic and luminescent functionalities [J]. Adv. Funct. Mater.,2006,16:509-514.
    [78]Lihua Zhang, Baifeng Liu, Shaojun Dong. Bifunctional nanostructure of magnetic core luminescent shell and its application as solid-state electro chemiluminescence sensor material [J]. J. Phys. Chem. B.,2007,111:10448-10452.
    [79]Yu-Shen Lin, Si-Han Wu, Yann Hung, Yi-Hsin Chou, Chen Chang, Meng-Liang Lin, Chih-Pin Tsai, Chung-Yuan Mou. Multifunctional composite nanoparticles: magnetic, luminescent and mesoporous [J]. Chem. Mater.,2006,18:5170-5172.
    [80]Yonghui Deng, Changchun Wang, Xizhong Shen, Wuli Yang, Lan Jin, Hong Gao, Shoukuan Fu. Preparation, characterization and application of multistimuli-responsive microspheres with fluorescence-labeled magnetic cores and thermoresponsive shells [J]. Chem. Eur. J.,2005,11:6006-6013.
    [81]Haerim Lee, Mi Kyung Yu, Sangjin Park, Sungmin Moon, Jung Jun Min,Yong Yeon Jeong, Hae-Won Kang, Sangyong Jon. Thermally cross-linked superparamagnetic iron oxide nanoparticles:synthesis and application as a dual imaging probe for cancer in vivo [J]. J. Am. Chem. Soc.,2007,129:12739-12745.
    [82]Tae-Jong Yoon, Jun Sung Kim, Byung Geol Kim, Kyeong Nam Yu, Myung-Haing Cho, Jin-Kyu Lee. Multifunctional nanoparticles possessing a"magnetic motor effect" for drug or gene delivery [J]. Angew. Chem. Int. Ed.,2005, 44:1068-1071.
    [83]Shi-Yong Yu, Hong-Jie Zhang, Jiang-Bo Yu, Cheng Wang, Li-Ning Sun, Wei-Dong Shi. Bifunctional magnetic-optical nanocomposites:Grafting lanthanide complex onto core-shell magnetic silica nanoarchitecture [J]. Langmuir,2007, 23:7836-7840.
    [84]Xia Hong, Jun Li, Meijia Wang, Jinjie Xu, Wei Guo, Jinghong Li, Yubai Bai,Tiejin Li Fabrication of magnetic luminescent nanocomposites by a Layer-by-Layer self-assembly approach [J]. Chem. Mater.,2004,16:4022-4027.
    [85]Desheng Wang, Jibao He, Nista Rosenzweig, Zeev Rosenzweig. Superparamagnetic Fe2O_3 beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation [J]. Nano Lett.,2004,4(3):409-413.
    [1]J. Manuel Perez, F. Joseph Simeone, Yoshinaga Saeki, Lee Josephson and Ralph WeisslederViral-Induced. Self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media [J]. J Am Chem Soc.,2003, 125:10192-10193.
    [2]Huang-Hao Yang, Shu-Qiong Zhang, Xiao-Lan Chen, Zhi-Xia Zhuang, Jin-Gou Xu and Xiao-Ru Wang. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations [J]. Anal Chem.,2004,76:1316-1321.
    [3]Fried T, Shemer G, Markovich G. Ordered. Two-dimensional arrays of ferrite nanoparticles [J]. Adv. Mater.,2001,13:1158-1161.
    [4]Yudhisthira Sahoo, Alireza Goodarzi, Mark T. Swihart, Tymish Y. Ohulchanskyy, Navjot Kaur, Edward P. Furlani, and Paras N. Prasad. Aqueous ferrofluid of magnetite nanoparticles:Fluorescence labeling and magnetophoretic control [J]. J Phys Chem B.,2005,109:3879-3885.
    [5]Shouheng Sun and Hao Zeng. Size-controlled synthesis of magnetite nanoparticles [J]. J Am Chem Soc.,2002,124:8204-8205.
    [6]Minghai Chen, Yong Nam Kim, Cuncheng Li, and Sung Oh Cho.Preparation and characterization of magnetic nanoparticles and their silica egg-yolk-like nanostructures:a prospective multifunctional nanostructure platform [J]. J. Phys. Chem. C.,2008,112:6710-6716.
    [7]Weiming Zheng, Feng Gao, Hongchen Gu. Magnetic polymer nanospheres with high and unitform magnetite content [J]. J Magn Magn Mater,2005,288:403-410.
    [8]Xianqiao Liu,Yueping Guan, Zhiya Ma and Huizhou Liu Surface modification and characterization of magnetic polymer nanospheres prepared by miniemulsion polymerization [J]. Langmuir,2004,20(23):10278-10282.
    [9]Yong Zhang, Nathan Kohler, Miqin Zhang.Surface modification of superparagnetic magnetitenanoparticles and their intracellular uptake [J]. Biomaterials,2002,23:1553-1561.
    [10]Wormuth K. Superparamagnetic latex via inverse emulsion polymerization [J]. J Colloid Interf Sc.,2001,241(2):366-377.
    [11]周菊英,徐柳苏,盘荣俊.一种制备纳米Fe3O4的新方法及其磁性能研究[J]. 电子元件与材料,2007,26(7):60-62.
    [12]. Chen-Wen Lu, Yann Hung, Jong-Kai Hsiao, Ming Yao, Tsai-Hua Chung, Yu-Shen Lin, Si-Han Wu, Szu-Chun Hsu, Hon-Man Liu, Chung-Yuan Mou, Chung-Shi Yang, Dong-Ming Huang and Yao-Chang Chen. Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling [J]. Nano Lett.,2007, 7:149-154.
    [13]Tae-Jong Yoon, Jun Sung Kim, Byung Geol Kim, Kyeong Nam Yu, Myung-Haing Cho and Jin-Kyu Lee. Multifunctional nanoparticles possessing a "magnetic motor effect" for drug or gene delivery [J]. Angew. Chem. Int. Ed.,2005, 44:1068-1071.
    [14]Veronica Salgueirino-Maceira, Miguel A. Correa-Duarte, Marina Spasova, Luis M. Liz-Marzan and Michael Farle. Composite silica spheres with magnetic and luminescent functionalities [J]. Adv. Funct. Mater.,2006,16:509-514.
    [15]Hon-Man Liu, Si-Han Wu, Chen-Wen Lu, Ming Yao, Jong-Kai Hsiao, Yann Hung, Yu-Shen Lin, Chung-Yuan Mou, Chung-Shi Yang, Dong-Ming Huang, Yao-Chang Chen. Mesoporous silica nanoparticles improve magnetic labeling efficiency in human stem cells [J]. Small,2008,4(5):619-626.
    [16]Werner Stober, Arthur Fink and Ernst Bohn. Controlled growth of monodisperse silica spheres in micron size range [J]. J. Colloid Interface Sci.,1968,26:62-69.
    [17]Rong Hel, Xiaogang You, Jun Shao, Feng Gao, Bifeng Pan and Daxiang Cui..Core/shell fluorescent magnetic silica-coated composite nanoparticles for bioconjugation [J]. Nanotechnology,2007,18:315601.
    [18]胡大为,王燕民.合成四氧化三铁纳米粒子形貌的调控机理和方法[J].硅酸盐学报,2008,36(10):1488-1493.
    [19]丁建芳,姜继森.核壳结构二氧化硅/磁性纳米粒子的制备及应用[J].材料导报,2006,20(专辑Ⅶ):201-205.
    [20]林本兰,沈晓冬,崔升.纳米Fe304磁流体的制备及其影响因素研究[J].润滑与密封,2006,(10):137-140.
    [21]Leyu Wang, Jie Bao, Lun Wang, Prof., Fang Zhang, Yadong Li, Prof. Dr. One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres [J]. Chem. Eur. J.,2006,12(24):6341-6347.
    [22]Shaojun Guo, Dan Li, Lixue Zhang, Jing Li and Erkang Wang. Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery [J]. Biomaterials,2009,30(10):1881-1889.
    [23]Beng Jit Tan, Kenneth J. Klabunde, Peter M. A. Sherwood. X-ray photoelectron spectroscopy studies of solvated metal bimetallic iron-cobalt particles on alumina. [J]. Chem. Mater.,1990,2 (2):186-191.
    [24]Wagner, C. D.; Riggs, R. M.; Davis, L. E.; Moulder, J. F. Handbook of Electron Spectroscopy; Muilenberg, G. E., Ed.; Perkin-Elmer Corp.,Physical Electronics:Eden Prairie, MN,1979.
    [25]Shi-Yong Yu, Hong-Jie Zhang, Jiang-Bo Yu, Cheng Wang, Li-Ning Sun and Wei-Dong Shi. Bifunctional magnetic-optical nanocomposites:grafting lanthanide complex onto core-shell magnetic silica nanoarchitecture [J]. Langmuir,2007,23: 7836-7840.
    [26]Jiaqi Wan, Wei Cai, Xiangxi Mengb and Enzhong Liu Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging [J]. Chem. Commun.,2007, 5004-5006.
    [27]Kota Sreenivasa Rao, Khalil El-Hami, Tsutomu Kodaki, Kazumi Matsushige, Keisuke Makino. A novel method for synthesis of silica nanoparticles [J]. J. Colloid Interf. Sci.,2005,289:125-131.
    [28]F H Chen,Q Gao and J Z Ni. The grafting and release behavior of doxorubincin from Fe3O_4@SiO_2 core-shell structure nanoparticles via an acid cleaving amide bond: the potential for magnetic targeting drug delivery [J]. Nanotechnology,2008,19: 165103.
    [29]吴刚.材料结构表征及应用,第一版.北京化学工业出版社,2002,356-357.
    [30]Mingwei Zhao, Liqiang Zheng, Xiangtao Bai, Na Li, Li Yu. Fabrication of silica nanoparticles and hollow spheres using ionic liquid microemulsion droplets as templates [J]. Colloid. Surface. A,2009,346:229-236.
    [31]Haining Cao, Jiang He, Li Deng, Xiaoqing Gao. Fabrication of cyclodextrin-functionalized superparamagnetic Fe_3O_4/amino-silane core-shell nanoparticles via layer-by-layer method [J]. Applied Surface Science,2009,255: 7974-7980.
    [32]Choosakoonkriang, Brian A. Lobo, Gary S. Koe, Janet G. Koe, C. Russell Middaugh. Biophysical characterization of PEI/DNA complexes [J]. J. Pharm. Sci., 2003,92:1710-1722.
    [33]Emil C. Buruiana, Mirela Zamfir, Tinca Buruiana. Dansylated acrylic copolymer with potential for sensor applications:Synthesis and properties. J. Poly. Sci. A,2008, 46:3774-3782.
    [34]Fritz Vogtle, Sven Gestermann, Christopher Kauffmann, Paola Ceroni,Veronica Vicinelli, Luisa De Cola, and Vincenzo Balzani. Poly(Propylene Amine) dendrimers with peripheral dansyl units:protonation, absorption spectra, photophysical properties, intradendrimer quenching and sensitization processes [J]. J. Am. Chem. Soc.,1999, 121:12161-12166.
    [35]Fritz Vogtle, Marius Gorka, Veronica Vicinelli,Paola Ceroni, Mauro Maestri, Vincenzo Balzani. A dendritic antenna for near-infrared emission of Nd~(3+)ions [J]. Chem Physchem.,2001, (12):769-77.
    [36]Vincenzo Balzani, Paola Ceroni, Sven Gestermann, Christopher Kauffmann, Marius Gorka, Fritz Vogtle Dendrimers as fluorescent sensors with signal amplification [J]. Chem. Commun.,2000,853-854.
    [1]Laurence Bouet, Philippe Tailhades, Abel Rousset. Relations between magneto-optical properties and reactivity in cobalt-manganese ferrite thin films and powders. Journal of Magnetism and Magnetic Materials,1996,153(3):389-396.
    [2]Jae-Gwang Lee, Jae Yun Park, Young-Jei Oh, Chul Sung Kim. Magnetic properties of CoFe2O_4 thin films prepared by a sol-gel method. Journal of Applied Physics,1998,84(5):2801-2804.
    [3]Tae-Jong Yoon, Jun Sung Kim, Byung Geol Kim, Kyeong Nam Yu, Myung-Haing Cho and Jin-Kyu Lee. Multifunctional nanoparticles possessing a "magnetic motor effect" for drug or gene delivery [J]. Angew. Chem. Int. Ed.,2005,44:1068-1071.
    [4]Zai-Gang Chen, Dian-Yong Tang. Antigen-antibody interaction from quartz crystal microbalance immunosensors based on magnetic CoFe2O_4/SiO2 composite nanoparticle-functionalized biomimetic interface. Bioprocess Biosyst Eng.,2007, 30:243-249.
    [5]Joachim Wagner, Tina Autenrieth, Rolf Hempelmann. Core shell particles consisting of cobalt ferrite and silica as model ferrofluids [CoFe2O_4-SiO_2 core shell particles] [J]. J. Magn. Magn. Mater.,2002,252:4-6.
    [6]Minghai Chen, Yong Nam Kim, Cuncheng Li, and Sung Oh Cho. Preparation and characterization of magnetic nanoparticles and their silica egg-yolk-like nanostructures:a prospective multifunctional nanostructure platform [J] J. Phys Chem. C.,2008,112:6710-6716.
    [7]Shou heng Sun, Hao Zeng, David B. Robinson, Simone Raoux, Philip M. Rice, Shan X. Wang, Guanxiong Li. Monodisperse MFe2O_4 (M=Fe, Co, Mn) nanoparticles [J]. J. Am. Chem. Soc.,2004,126:273-279.
    [8]Dong-Hyun Kim, David E. Nikles, Duane T. Johnson,Christopher S. Brazel. Heat generation of aqueously dispersed CoFe2O_4 nanoparticles as heatingagents for magnetically activated drug delivery and hyperthermia [J]. J. Magn. Magn. Mater., 2008,320:2390-2396.
    [9]Gu H, Zheng R, Zhang X, Xu B. Facile one-pot synthesis of bifunctiona magneticl heterodimers of nanoparticles:a conjugate of quantum dot and magnetic nanoparticles. J. Am. Chem. Soc.,2004,126:5664-5665.
    [10]Zhongli Wang, Xiaojuan Liu, Minfeng Lv, Ping Chai, Yao Liu, Jian Meng.Preparation of ferrite MFe2O_4 (M) Co, Ni) ribbons with nanoporous structure and their magnetic properties [J]. J. Phys. Chem. B,2008,112:11292-11297.
    [11]Young-wook Jun, Jae-Hyun Lee and Jinwoo Cheon. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging [J]. Angew. Chem. Int. Ed.,2008,47:5122-5135.
    [12]Carla Cannas, Andrea Ardu, Davide Peddis, Claudio Sangregorio, Giorgio Piccaluga, Anna Musinu. Surfactant-assisted route to fabricate CoFe2O_4 individual nanoparticles and spherical assemblies [J]. Journal of Colloid and Interface Science, 2010,343:415-422.
    [13]A. B. Bourlinos, A. Bakandritsos, V. Georgakilas, D. Petridis. Surface modification of ultrafine magnetic iron oxide particles [J]. Chem. Mater.,2002,14: 3226-3228.
    [14]Yong Wang, Xiaowei Teng, Jin-Shan Wang, Hong Yang. Solvent-free atom transfer radical polymerization in the synthesis of Fe2O_3@polystyrene core-shell nanoparticles [J]. Nano Lett,2003,3:789-793.
    [15]Qingxia Liu, Zhenghe Xu. Self-Assembled Monolayer Coatings on Nanosized Magnetic Particles Using 16-Mercaptohexadecanoic Acid [J]. Langmuir,1995,11: 4617-4622.
    [16]窦永华,张玲,古宏晨.单分散Fe3O4纳米粒子的合成、表征及其自组装[J].功能材料,2007,38(1):119-122.
    [17]Zhongli Lei, Yanli Li, Xiangyu Wei. A facile two-step modifying process for preparation of poly(SStNa)-grafted Fe_3O_4/SiO_2 particles [J]. Journal of Solid State Chemistry,2008,181:480-486.
    [18]Shao-Long Tie, Hyeon-Cheol Lee, Youn-Sang Bae, Min-Bae Kim,Kangtaek Lee, Chang-Ha Lee. Monodisperse Fe3O_4/Fe@SiO_2 core/shell nanoparticleswith enhanced magnetic property [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects.,2007, 293:278-285.
    [19]Haining Cao, Jiang He, Li Deng, Xiaoqing Gao. Fabrication of cyclodextrin-functionalized superparamagnetic Fe_3O_4/amino-silane core-shell nanoparticles via layer-by-layer method [J]. Applied Surface Science,2009,255: 7974-7980.
    [20]Choosakoonkriang, Brian A. Lobo, Gary S. Koe, Janet G. Koe, C. Russell Middaugh. Biophysical characterization of PEI/DNA complexes [J]. J. Pharm. Sci., 2003,92:1710-1722.
    [21]Emil C. Buruiana, Mirela Zamfir, Tinca Buruiana. Dansylated acrylic copolymer with potential for sensor applications:Synthesis and properties. J. Poly. Sci. A,2008, 46:3774-3782.
    [22]吴刚.材料结构表征及应用,第一版.北京化学工业出版社,2002,356-357.
    [23]Fritz Vogtle, Sven Gestermann, Christopher Kauffmann, Paola Ceroni,Veronica Vicinelli, Luisa De Cola, Vincenzo Balzani.Poly(Propylene Amine) dendrimers with peripheral dansyl units:protonation, absorption spectra, photophysical properties, intradendrimer quenching and sensitization processes [J]. J. Am. Chem. Soc.,1999, 121:12161-12166.
    [24]Fritz Vogtle, Marius Gorka, Veronica Vicinelli,Paola Ceroni, Mauro Maestri, Vincenzo Balzani. A dendritic antenna for near-infrared emission of Nd3+ ions [J].Chem. Physchem.,2001, (12):769-773.
    [25]Vincenzo Balzani, Paola Ceroni, Sven Gestermann, Christopher Kauffmann, Marius Gorka and Fritz Vogtle. Dendrimers as fluorescent sensors with signal amplification [J]. Chem. Commun.,2000,853-854.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.