肝细胞肝癌相关基因中miRNA结合靶点内多态的筛选及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     筛选肝细胞肝癌(hepatocellular carcinoma, HCC)相关基因中miRNA结合靶点内的基因多态并验证其与HCC发生的关联性进而探讨其中的具体分子机制。
     方法:
     (1)利用生物信息学方法结合文献报道筛选HCC相关基因,并在HCC相关基因3′UTRs或5′UTRs中预测目前人类已知miRNA的结合靶点,然后在预测靶点内筛出候选多态。(2)基于第一步预测结果,采用病例对照研究方法,PCR扩增结合聚丙烯胺凝胶电泳技术对部分候选多态进行基因分型,Logistic统计分析基因位点与HCC的关联性。(3)对发现的阳性关联基因多态位点,利用生物信息学的方法预测该位点可能结合的miRNA;采用定点突变和分子克隆技术,构建不同基因型荧光素酶表达载体,与特定miRNA共转染人肝癌细胞系(HepG2和SMCC7721),采用双荧光素酶报告系统对荧光素酶表达量进行检测。(4)采用Real-time RT-PCR方法,分析阳性关联位点不同基因型的肝癌组织样本目的基因的表达水平。
     结果:
     (1)利用生物信息学方法结合文献报道筛选出HCC相关基因105个,并在HCC相关基因3′UTRs或5′UTRs中已知miRNA结合靶点内筛出16个候选多态(含SNPs和插入缺失多态)。(2)我们从16个候选多态中选取了两个插入缺失多态进行病例对照研究,分别是位于IL1A-3′UTR的rs3783553(“TTCA”4bp插入缺失)和位于VEGF-5′UTR的rs35569394(“TCCCACTCTTCCCACAGG”18bp插入缺失)。基因分型结果显示,rs3783553和rs35569394均具有较好多态性,其在对照样本中最低等位基因频率分别为0.385和0.255。两位点在对照样本中的等位基因频率分布均符合Hardy-weinberg平衡。卡方检验显示rs3783553的基因型和等位基因频率在HCC组和对照组均存在显著性差异。用Logistic回归分析校正年龄、性别、吸烟、饮酒及HBV感染因素后发现,与4N Ins/4N Del和4N Del/4N Del相比,携带有4N Ins/4N Ins的个体HCC易感性明显降低(OR=0.30,95%CI:0.17-0.54),趋势检验P值<0.001。考虑到HBV感染与HCC发生的密切关系,我们对HBV进行了分层分析,结果显示,分层后插入型等位基因的保护作用仍能体现,但在HBV阳性的患者中更为突出。该结果提示,rs3783553多态可能在HBV感染的免疫调节过程中发挥作用。而rs35569394经上述分析后发现与HCC易感性不存在显著性关联,趋势检验P值=0.87。(3)根据rs3783553病例对照研究结果,我们分别构建了rs3783553两种不同基因型荧光素酶载体,基于生物信息学预测结果,将Pre-mir-122或Pre-mir-378与重组载体共转染HepG2和SMCC7721两种肝癌细胞系。实验结果显示,在加入不同浓度的Pre-mir-122后,与含有“TTCA”插入型等位基因的载体比较,含有“TTCA”缺失型等位基因载体的荧光强度显著下降,并呈现梯度依赖趋势。就miR-378而言,当Pre-mir-378浓度加大到10pmol以上时,我们观察到了同样的变化趋势,但rs3783553对miR-378与靶序列的结合的影响较miR-122小。(4)Taqman荧光定量PCR方法对不同rs3783553基因型肝癌组织样本的IL-1αmRNA表达水平进行比较后发现,4N Ins/4N Ins纯合子组的样本IL-1αmRNA表达水平最高,依次高于杂合子组和4N Del/4N Del纯合子组。26个4N Del/4N Del纯合子样本中有3个IL-1αmRNA表达水平未达到检测阈值,Ct按最大循环数40计算。非参数Mann–Whitney U检验显示三组间IL-1αmRNA表达水平存在显著性差异(P=0.042),其中4N Ins/4N Ins组和杂合子组IL-1αmRNA的表达水平分别是4N Del/4N Del组的5.57和3.76倍。
     结论:
     (1)病例对照研究数据分析结果显示,位于IL1A-3′UTR的rs3783553与HCC易感性存在显著性关联,HBV分层后分析结果提示rs3783553多态可能在HBV感染的免疫调节过程中发挥作用,值得进一步深入研究;位于VEGF-5′UTR的rs35569394与HCC易感性未发现显著性关联;(2)根据体外及体内试验结果,我们初步阐明了rs3783553参与HCC发生的具体分子机制,即rs3783553位点“TTCA”四碱基插入破坏了miR-122与IL1A-3′UTR的紧密结合,使得miR-122对IL-1α转录后调控水平的抑制作用减弱,因此携带有“TTCA”插入型个体IL-1α的抗肿瘤免疫调控作用增强,进而使HCC易感性降低。(3)考虑到IL-1α不仅可以影响肿瘤发生、生长和侵润等病理过程,而且可以影响肿瘤与机体之间的相互作用,我们的实验结果提示IL-1α有望成为研究HCC发生机制、早期诊断以及免疫治疗的新靶点。
Objective: To screen polymorhisms residing in the MicroRNAs binding sites of HCC-related genes and investigate their associations with HCC susceptibility and the underlined molecular mechanism.
     Methods: (1) HCC-related genes were selected using bioinformatic methods and literature search, then 3′UTRs or 5′UTRs of these genes were identified. We analized putative miRNA-binding sites by means of specialized algorithms. Then we identified polymorphism within the putative binding sites for their ability to affect the binding with miRNA. (2) Based on the polymorphisms obtained from the first step, we performed case-control association studies using PCR-PAGE method. Logistic regression model was used for evaluating the association between polymorphisms and HCC susceptibility. (3) For the polymorphisms discovered in the second step affecting the HCC sucseptibility, putative miRNAs which would bind within polymorphisms were predicted using specialized algorithms. Meanwhile, Renilla luciferase reporter gene containing alternative alleles of specific polymorphisms were constructed using site-directed mutagenesis and molecular cloning methods. Alternative Renilla luciferase reporter genes were cotransfected with specific miRNAs into HepG2 and SMCC7721 cells and Renilla luciferase activities were measured with the Dual Luciferase assay system. (4) Lastly, Taqman? gene expression method was also used to detect target gene mRNA expression levels in different genotypic HCC tissue samples.
     Results: (1) 105 HCC-related genes were recruited using bioinformatic methods and literature search and 16 candidate polymorphisms (including single nucleotide polymorphism and insertion/deletion polymorphism) were indentified within 3′UTRs or 5′UTRs of these genes. (2) Two insertion/deletion (Indel) polymorphisms (rs3783553 and rs35569394) were chosen from 16 candidate polymorphisms for the following case-control association studies. rs3783553 (“TTCA”Indel) and rs35569394 (“TCCCACTCTTCCCACAGG”Indel) were located within 3′UTR of IL1A and 5′UTR of VEGF, respectively. The genotyping results revealed that the two polymorphisms we studied were highly polymorphic; the minimal allele frequencies for rs3783553 and rs35569394 were 0.385 and 0.255, respectively in our control samples. No polymorphisms genotyped showed significant evidence for deviation from Hardy-Weinberg equilibrium in controls. Significant diffrence was observed for allelic and genotypic frequencies between HCC and control groups after chi-square testing. Using unconditional logistic regression model adjusted for sex, age, smoking status, drinking status and HBV infection, we found that the homozygote 4N Ins/4N Ins of rs3783553 was associated with a significantly reduced risk of HCC compared with its heterozygote 4N Ins/4N Del and homozygote 4N Del/4N Del (odds ratio=0.30, 95% confidence interval: 0.17-0.54, Ptrend<0.001). As HBV infection was one of the major risk factors, a stratified analysis by HBVinfection status was performed using binary logistic regression model. Significant differences were seen between cases and controls after stratification. The overall trend is that the differences between cases and controls were more obvious in HBV positive than the HBV negative population, suggesting a possible role of this polymorphism in the immune regulation during HBV infection. However, we found that rs35569394 was not associated with HCC after analyzing using the above method, at both the allele and genotype levels (Ptrend=0.87). (3) Based on the positive association results, Renilla luciferase reporter gene containing“TTCA”insertion or deletion alleles of rs3783553 were constructed using site-directed mutagenesis. According to the bioinformatic prediction results, two different Renilla luciferase reporter genes were separately cotransfected with Pre-mir-122 or Pre-mir-378 into HepG2 and SMCC7721 cells. Dual Luciferase assay results showed that compared with the constructs containing“TTCA”insertion alleles, the translation of Renilla luciferase from constructs containing the“TTCA”deletion allele was significantly reduced in the presence of Pre-mir-122 in a concentration dependent manner. For miR-378, we observed same change pattern only when >10 pmol pre-miR-378 were added, suggesting miR-378 binding to IL-1αtranscript may be less affected by rs3783553 genotypes. (4) Taqman gene expression analysis showed that“TTCA”insertion homozygous group had the highest IL-1αmRNA level, followed by heterozygous and“TTCA”deletion group. There were 3 of 26 samples in“TTCA” deletion group in which their IL-1αmRNA is under the detection threshold for this method and their Ct value was conservative determined by the maximum cycle number 40. Non-parametric Mann-Whitney U-test ofΔCts of three genotypic groups showed that the P value was 0.042. Compared with TTCA deletion homozygous group, the average IL-1αexpression levels of heterozygous and TTCA insertion homozygous group were 3.76 and 5.57-fold higher, respectively.
     Conclusion: (1) rs3783553 polymorphism which located within IL1A-3′UTR was significantly associated with HCC susceptibility, stratification analysis by HBV infection status suggested a possible role of this polymorphism in the immune regulation during HBV infection. However, no significant association was observed for rs35569394 which located within VEGF-5′UTR; (2) Our in vitro and in vivo experiments demonstrated the molecular mechanism between rs3783553 and HCC susceptibility: miR-122 binds and negatively regulates the transcription of IL-1αwhich promote anti-tumor immunity and this regulation is negatively influenced by the presence of the“TTCA”insertion allele, presumably affecting miR-122 binding to the IL-1αtranscript. (3) Considering IL-1αaffects not only various phases of the malignant process, such as carcinogenesis, tumor growth and invasiveness, but also patterns of interactions between malignant cells and the host's immune system. Our results indicated that IL-1αmay be a promising target for immunotherapy, early diagnosis and intervention of HCC.
引文
1.El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology, 2007,132(7):2557-76.
    2.Padma S, Martinie JB, Iannitti DA. Liver tumor ablation: percutaneous and open approaches. J Surg Oncol. 2009,100(8):619-34.
    3.Cha CH, Saif MW, Yamane BH, Weber SM. Hepatocellular carcinoma: current management. Curr Probl Surg. 2010, 47(1):10-67.
    4.Poon D, Anderson BO, Chen LT, Tanaka K, Lau WY, Van Cutsem E, Singh H, Chow WC, Ooi LL, Chow P, Khin MW, Koo WH; Asian Oncology Summit. Management of hepatocellular carcinoma in Asia: consensus statement from the Asian Oncology Summit 2009. Lancet Oncol. 2009, 10(11):1111-8.
    5.Plymoth A, Viviani S, Hainaut P. Control of hepatocellular carcinoma through hepatitis B vaccination in areas of high endemicity: perspectives for global liver cancer prevention. Cancer Lett. 2009, 286(1):15-21.
    6.Pillai RS. MicroRNA function: multiple mechanisms for a tiny RNA? RNA, 2005, 11(12):1753-61.
    7.Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell, 2006, 126(6):1203-17.
    8.http://microrna.sanger.ac.uk/
    9.Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009, 11(3):228-34.
    10.Schmittgen TD. Regulation of microRNA processing in development, differentiation and cancer. J Cell Mol Med. 2008, 12(5B):1811-9.
    11.Deng S, Calin GA, Croce CM, Coukos G, Zhang L. Mechanisms of microRNA deregulation in human cancer. Cell Cycle. 2008 , 7(17):2643-6.
    12.Ahmed FE. Role of miRNA in carcinogenesis and biomarker selection: a methodological view. Expert Rev Mol Diagn, 2007, 7(5):569-603.
    13.Aravalli RN, Steer CJ, Cressman EN. Molecular mechanisms of hepatocellular carcinoma. Hepatology. 2008, 48(6):2047-63.
    14.Thorgeirsson SS, Lee JS, Grisham JW. Functional genomics of hepatocellular carcinoma. Hepatology. 2006, 43(2 Suppl 1):S145-50.
    15.Budhu A, Jia HL, Forgues M, Liu CG, Goldstein D, Lam A, Zanetti KA, Ye QH, Qin LX, Croce CM, Tang ZY, Wang XW. Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology, 2008,47(3):897-907.
    16.Ji J, Wang XW. New kids on the block: diagnostic and prognostic microRNAs in hepatocellular carcinoma. Cancer Biol Ther. 2009, 8(18):1686-93.
    17.Gramantieri L, Fornari F, Callegari E, Sabbioni S, Lanza G, Croce CM, Bolondi L, Negrini M. MicroRNA involvement in hepatocellular carcinoma. J Cell Mol Med. 2008, (6A):2189-204.
    18.Wang Y, Armstrong SA. Genome-wide SNP analysis in cancer: leukemia shows the way. Cancer Cell, 2007, 11(4):308-9.
    19.Yu Z, Li Z, Jolicoeur N, Zhang L, Fortin Y, Wang E, Wu M, Shen SH. Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers. Nucleic Acids Res, 2007,35(13):4535-41.
    20.Saunders MA, Liang H, Li WH. Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci USA, 2007, 104(9):3300-5.
    21.Abelson JF, Kwan KY, O'Roak BJ, Baek DY, Stillman AA, Morgan TM, Mathews CA, Pauls DL, Rasin MR, Gunel M, Davis NR, Ercan-Sencicek AG, Guez DH, Spertus JA, Leckman JF, Dure LS 4th, Kurlan R, Singer HS, Gilbert DL, Farhi A, Louvi A, Lifton RP, Sestan N, State MW. Sequence variants in SLITRK1 are associated with Tourette's syndrome. Science, 2005,310:317-20.
    22.Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, BibéB, Bouix J, Caiment F, Elsen JM, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M. A mutation creating a potential illegitimate microRNAtarget site in the myostatin gene affects muscularity in sheep. Nat Genet, 2006,38(7):813-8.
    23.Sethupathy P., Borel C, Gagnebin M, Grant GR, Hatzigeorgiou AG, Antonorakis, SE. Human microRNA-155 on Chromosome 21 Differentially Interacts with Its Polymorphic Target in the AGTR1 3′Untranslated Region: A Mechanism for Functional Single-Nucleotide Polymorphisms Related to Phenotypes. Am J Hum Genet, 2007,81: 405-13.
    24.Mishra PJ, Humeniuk R, Mishra PJ, Longo-Sorbello GS, Banerjee D, Bertino JR. A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc Natl Acad Sci U S A, 2007, 104:13513-8.
    25.Wang G, van der Walt JM, Mayhew G, Li YJ, Züchner S, Scott WK, Martin ER, Vance JM. Variation in the miRNA-433 binding site of FGF20 confers risk for ParkInson disease by overexpression of alpha-synuclein. Am J Hum Genet, 2008, 82(2):283-9.
    26.Bao L, Zhou M, Wu L, Lu L, Goldowitz D, Williams RW, Cui Y. PolymiRTS Database:linking polymorphisms in microRNA target sites with complex traits. Nucleic Acids Res, 2007,35:D51-4.
    27.Sethupathy P, Corda B, Hatziegeorgiou AG. TarBase: a comprehensive database of experimentally supported animal microRNA targets. RNA , 2006,12:192-197.
    28.Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer, 2006,6(4):259-69.
    29.Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell, 2003,115(7):787-98.
    30.Rusinov V, Baev V, Minkov IN, Tabler M. MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res, 2005,33(Web Server issue):W696-700.
    31.John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human MicroRNA targets. PLoS Biol, 2004,2(11):e363.
    32.Landi D, Gemignani F, Barale R, Landi S. A Catalog of Polymorphisms Falling inMicroRNA-Binding Regions of Cancer Genes. DNA Cell Biol, 2008,27(1):35-43.
    33.Mínguez B, Tovar V, Chiang D, Villanueva A, Llovet JM. Pathogenesis of hepatocellular carcinoma and molecular therapies. Curr Opin Gastroenterol, 2009, 25(3):186-94.
    34.Sherman M. Hepatocellular Carcinoma: Epidemiology, Surveillance, and Diagnosis. Semin Liver Dis. 2010;30(1):3-16.
    35.Dragani TA. Risk of HCC: genetic heterogeneity and complex genetics. J Hepatol, 2010,52(2):252-7.
    36.Blum HE. Molecular targets for prevention of hepatocellular carcinoma.Dig Dis, 2002,20(1):81-90.
    37.Lytle JR, Yario TA, Steitz JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′UTR as in the 3′UTR. Proc. Natl Acad. Sci, USA 2007, 104, 9667–72.
    38.Duursma AM, Kedde M, Schrier M, le Sage C, Agami R. miR-148 targets human DNMT3b protein coding region. RNA, 2008,14(5):872-7.
    39.Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature, 2008,455(7216):1124-8.
    40.Song X, Voronov E, Dvorkin T, Fima E, Cagnano E, Benharroch D, Shendler Y, Bjorkdahl O, Segal S, Dinarello CA, Apte RN. Differential effects of IL-1 alpha and IL-1 beta on tumorigenicity patterns and invasiveness. J Immunol, 2003,171(12):6448-56.
    41.Apte RN, Dotan S, Elkabets M, White MR, Reich E, Carmi Y, Song X, Dvozkin T, Krelin Y, Voronov E.The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions.Cancer Metastasis Rev, 2006,25(3):387-408.
    42.Apte RN, Voronov E. Is interleukin-1 a good or bad“guy”in tumor immunobiology and immunotherapy?Immunol Rev, 2008,222:222-41.
    43.Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer ,2002,2, 795-803.
    44.Fernández M, Semela D, Bruix J, Colle I, Pinzani M, Bosch J.Angiogenesis in liver disease. J Hepatol, 2009,50(3):604-20..
    45.Kaseb AO, Hanbali A, Cotant M, Hassan MM, Wollner I, Philip PA.Vascular endothelial growth factor in the management of hepatocellular carcinoma: a review of literature. Cancer, 2009,115(21):4895-906.
    46.Girard M, Jacquemin E, Munnich A, Lyonnet S, Henrion-Caude A.miR-122, a paradigm for the role of microRNAs in the liver. J Hepatol,2008,48(4):648-56.
    47.Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS.Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties.Oncogene, 2009,28(40):3526-36.
    48.Tsai WC, Hsu PW, Lai TC, Chau GY, Lin CW, Chen CM, Lin CD, Liao YL, Wang JL, Chau YP, Hsu MT, Hsiao M, Huang HD, Tsou AP. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology, 2009,49(5):1571-82.
    49.Sakurai T, He G, Matsuzawa A, Yu GY, Maeda S, Hardiman G, Karin M.Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis.Cancer Cell, 2008,14(2):156-65.
    1.Berger J, Suzuki T, Senti KA, Stubbs J, Schaffner G. Dickson BJ. Genetic mapping with SNP markers in Drosophila. Nat Genet, 2001, 29(4): 475-481.
    2.Wicks SR, Yeh RT, Gish WR, Waterston RH, Plasterk RH. Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat Genet, 2001, 28(2): 160-164.
    3.Dawson E, Chen Y, Hunt S, Smink LJ, Hunt A, Ric K, Livingston S, Bumpstead S, Bruskiewich R, Sham P. A SNP resource for human chromosome 22: Extracting dense clusters of SNPs from the genomic sequence. Genome Res, 2001, 11(1): 170-178.
    4.Ryan E Mills, Christopher T Luttig, Christine E LarkIns. An initial map of Insertion and Deletion (INDEL) variation in the human genome. Genome Res, 2006, 16(9): 1182-1190.
    5.Tushar RB, Matthew S,Deborah AN. Automating resequencing-based detection of Insertion-Deletion polymorphisms. Nat Genet, 2006, 38(12):1457-1462.
    6.Chen S, He Y, Ding J, Jiang Y, Jia S, Xia W, Zhao J, Lu M, Gu Z, Gao Y. An Insertion/Deletion polymorphism in the 3' untranslated region of beta-transducin repeat-containing protein (betaTrCP) is associated with susceptibility for hepatocellular carcinoma in Chinese. Biochem Biophys Res Commun, 2010, 391(1): 552-556.
    7.Gao Y, He Y, Ding J, Wu K, Hu B, Liu Y, Wu Y, Guo B, Shen Y, Landi D, Landi S, Zhou Y, Liu H. An Insertion/Deletion polymorphism at miRNA-122 binding site in the interleukin-1{alpha} 3' untranslated region confers risk for hepatocellular carcinoma. Carcinogenesis, 2009, 30(12): 2064-2069.
    8.Tseng TL, Shi YP, Huang YC, Wang CK, Chen PH, Chang JG, Yeh KT, Chen YM, Kenneth H. Genotypic and Phenotypic Characterization of a Putative Tumor Susceptibility Gene, GNMT, in Liver Cancer. Cancer Res, 2003, 63(3): 647-654.
    9.Chen J, Kyte C, Chan W, Wetmur JG, Fuchs CS, Giovannucci E. Polymorphism inthe thymidylate synthase promoter enhancer region and risk of colorectal adenomas. Cancer Epidemiol Biomarkers Prev, 2004, 13(12): 2247-2250.
    10.Yu KD, Di GH, Yuan WT, Fan L, Wu J, Hu Z, Shen ZZ, Zheng Y, Huang W, Shao ZM. Functional polymorphisms, altered gene expression and genetic association link NRH:quinone oxidoreductase 2 to breast cancer with wild-type p53. Hum Mol Genet, 2009, 18(13): 2502-2517.
    11.Zhang J, Jin X, Fang S, Li Y, Wang R, Guo W, Wang N, Wang Y, Wen D, Wei L, Kuang G, Dong Z. The functional SNP in the matrix metalloproteinase-3 promoter modifies susceptibility and lymphatic metastasis in esophageal squamous cell carcinoma but not in gastric cardiac adenocarcinoma. Carcinogenesis, 2004,25(12): 2519-2524.
    12.Wang M, Zhang Z, Tian Y, Shao J, Zhang Z. A six-nucleotide Insertion-Deletion polymorphism in the CASP8 promoter associated with risk and progression of bladder cancer.Clin Cancer Res, 2009, 15(7): 2567-2572.
    13.Zhang P, Wei Q, Li X, Wang K, Zeng H, Bu H, Li H. A functional Insertion/ Deletion polymorphism in the promoter region of the NF-KB gene increases susceptibility for prostate cancer. Cancer Genet Cytogenet, 2009, 191(2): 73-77.
    14.Schenk S, Schraml P, Bendik I, Ludwig CU. A novel polymorphism in the promoter of the RAGE gene is associated with non-small cell lung cancer. lung Cancer, 2001, 32(1): 7-12.
    15.Six L, Grimm C, Leodolter S, Tempfer C, Zeillinger R, Sliutz G, Speiser P, Reinthaller A, Hefler LA. A polymorphism in the matrix metalloproteinase-1 gene promoter is associated with the prognosis of patients with ovarian cancer. Gynecol Oncol, 2006, 100(3): 506-510.
    16.Sun T, Gao Y, Tan W, Ma S, Shi Y, Yao J, Guo Y, Yang M, Zhang X, Zhang Q, Zeng C, Lin D.A six-nucleotide Insertion-Deletion polymorphism in the CASP8 promoter is associated with susceptibility to multiple cancers. Nat Genet, 2007, 39(5): 605-613.
    17.Tang T, Cui S, Deng X, Gong Z, Jiang G, Wang P, Liao B, Fei Z, Xian S, Zeng D, Li J. Insertion/Deletion Polymorphism in the Promoter Region of NF-KB GeneIncreases Susceptibility for Superficial Bladder Cancer in Chinese. DNA Cell Biol, 2010, 29(1): 9-12.
    18.Schwarzenbach H, Goekkurt E, Pantel K, Aust DE, Stoehlmacher J. Molecular analysis of the polymorphisms of thymidylate synthase on cell-free circulating DNA in blood of patients with advanced colorectal carcinoma. J Cancer, 2009, [Epub ahead of print].
    19.Lin SC, Liu CJ, Yeh WI, Lui MT, Chang KW, Chang CS. Functional polymorphism in NF-κB promoter is related to the risks of oral squamous cell carcinoma occurring on older male areca (betel) chewers. Cancer Lett, 2006, 243(1): 47-54.
    20.Tsezou A, Tzetis M, Giannatou E, Gennatas C, Pampanos A, Kanavakis E, Kitsiou-Tzeli S. Genetic polymorphisms in the UGT1A1 gene and breast cancer risk in Greek women. Genet Test, 2007,11(3): 303-306.
    21.J Lin SC, Chung MY, Huang JW, Shieh TM, Liu CJ, Chang KW. Correlation between functional genotypes in the matrix metalloproteinases-1 promoter and risk of oral squamous cell carcinomas. Oral Pathol Med, 2004, 33(6): 323-326.
    22.Wenham RM, Calingaert B, Ali S, McClean K, Whitaker R, Bentley R, Lancaster JM, Schildkraut J, Marks J, Berchuck A. Matrix metalloproteinase-1 gene promoter polymorphism and risk of ovarian cancer. J Soc Gynecol Investig, 2003, 10(6): 381-387.
    23 . Loktionov A, Watson MA, Stebbings WS, Speakman CT, Bingham SA. Plasminogen activator inhibitor-1 gene polymorphism and colorectal cancer risk and prognosis. Cancer Lett, 2003, 189(2): 189-96.
    24.Eroglu A, Ulu A, Cam R, Akar N. Plasminogen activator inhibitor -1 gene 4G/5G polymorphism in patients with breast cancer. J BUON, 2006, 11(4): 481-484.
    25.Lewander A, Butchi AK, Gao J, He LJ, Lindblom A, Arbman G, Carstensen J, Zhang ZY, Sun XF. Polymorphism in the promoter region of the NF-KB gene increases the risk of sporadic colorectal cancer in Swedish but not in Chinese populations. Scand J Gastroenterol, 2007, 42(11): 1332-8.
    26.Shen LX, Basilion JP, Stanton VP Jr. Single-nucleotide polymorphisms can causedifferent structural folds of mRNA. Proc Natl Acad Sci U S A, 1999, 96(14): 7871-7876.
    27.Yasuo Miyoshi1, Hiroki Nagase, Hiroshi Ando, Akira Horii1, Shigetoshi Ichii1, Shuichi Nakatsuru1, Takahisa Aoki1, Yoshio Miki1, Takesada Mori, Yusuke Nakamura. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Human Molecular Genetics, 1992, 1(4): 229-233.
    28.Wang L, Patel U, Ghosh L, Chen HC, Banerjee S. Mutation in the nm23 Gene Is Associated with Metastasis in Colorectal Cancer. Cancer Res, 1993, 53(15): 717-720.
    29.Liu B, Ramon E, Stanley R, Gloria M, Henry T, Patrice W, Sanford M, James K, Jane G, Kenneth W, Bert V. HMSH2 Mutations in Hereditary Nonpolyposis Colorectal Cancer Kindreds. Cancer Res, 1994, 54(17) 4590-4594.
    30.Dong XY, Rodriguez C, Guo P, Sun X, Talbot JT, Zhou W, Petros J, Li Q, Vessella RL, Kibel SA, Stevens VL, Calle E, Dong JT. SnoRNA U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer. Human Molecular Genetics, 2008, 17(7): 1031-1042.
    31.Smidt KC, Hansen LL, S?gaard TM, Petersen LK, Knudsen UB, Martensen PM. A nine-nucleotide Deletion and splice variation in the coding region of the interferon induced ISG12 gene. Biochim Biophys Acta, 2003, 1638(3): 227-234.
    32.Takashi T, Tsutomu Ur, Tomohisa F, Mieko M, Takashi M, Shin S, Yusuke N.Characterization of the human p57 KIP2 gene:alternative splicing, Insertion/Deletion polymorphisms in VNTR sequences in the coding region, and mutational analysis. Hum Genet, 1996,97(5): 625-631.
    33.Raia, R, Mahalea A, Saranath D. Molecular cloning, isolation and characterisation of ERK3 gene from chewing-tobacco induced oral squamous cell carcinoma. Oral Oncology, 2004, 40(7): 705-712.
    34.Durocher F, Labrie Y, Soucy P, Sinilnikova O, Labuda D, Bessette P, Chiquette J, Laframboise R, Lépine J, Lespérance B, Ouellette G, Pichette R, Plante M, Tavtigian SV, Simard J. Mutation analysis and characterization of ATR sequence variants in breast cancer cases from high-risk French Canadian breast/ovariancancer families. BMC Cancer, 2006, 29(6): 230.
    35.Yoshimura A, Gemma A, Kataoka K, Hosoya Y, Noro R, Seike M, Kokubo Y, Watanabe M, Kudoh S. Mutational analysis of the macrophage scavenger receptor 1 (MSR1) gene in primary lung cancer. J Nippon Med Sch, 2004, 71(2): 99-104.
    36.Gismondi V, Meta M, Bonelli L, Radice P, Sala P, Bertario L, Viel A, Fornasarig M, Arrigoni A, Gentile M, Ponz de Leon M, Anselmi L, Mareni C, Bruzzi P, Varesco L. Prevalence of the Y165C, G382D and 1395DelGGA germline mutations of the MYH gene in Italian patients with adenomatous polyposis coli and colorectal adenomas. Int J Cancer, 2004, 109(5): 680-684.
    37.Shin KH, Kim JM, Rho KS, Park KH, Oh JE, Min BM. Inactivation of the PTEN gene by mutation, exonic Deletion, and loss of transcript in human oral squamous cell carcinomas. Int J Oncol, 2002, 21(5): 997-1001.
    38.Park B, Jang JS, Park K. Deletion of one adenine base within the polyadenine tract of transforming growth factor-beta receptor type II in human MDA-MB-231 breast cancer cell line. Int J Oncol, 2000, 17(3): 473-478.
    39.Shin KH, Park YJ, Park JG.. Mutational analysis of the transforming growth factor beta receptor type II gene in hereditary nonpolyposis colorectal cancer and early-onset colorectal cancer patients. Clin Cancer Res, 20006(2): 536-540.
    40.Guo RJ, Wang Y, Kaneko E, Wang DY, Arai H, Hanai H, Takenoshita S, Hagiwara K, Harris CC, Sugimura H. Analyses of mutation and loss of heterozygosity of coding sequences of the entire transforming growth factor beta type II receptor gene in sporadic human gastric cancer. Carcinogenesis,1998, 19(9): 1539-1544.
    41.Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, avtigianS T, Liu Q, Cochran C, Bennett LM, Ding W, A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science, 266(5182): 66-71.
    42.Chen, K. Chen K, Song F, Calin GA, Wei Q, Hao X, Zhang W. Polymorphisms in microRNA targets: a gold mine for molecular epidemiology. Carcinogenesis, 2008, 29(7): 1306-1311.
    43.Yuan Z, Shin J, Wilson A, Goel S, Ling YH, Ahmed N, Dopeso H, Jhawer M,Nasser S, Montagna C, Fordyce K, Augenlicht LH, Aaltonen LA, Arango D, Weber TK, Mariadason JM. An A13 repeat within the 3'-untranslated region of epidermal growth factor receptor (EGFR) is frequently mutated in microsatellite Instability colon cancers and is associated with increased EGFR expression. Cancer Res, 2009, 69(19): 7811-7818.
    44 . Fernández-Contreras ME, Sánchez-Hernández JJ, González E, Herráez B, Domínguez I, Lozano M, García De Paredes ML, Mu?oz A, Gamallo C. Combination of polymorphisms within 5' and 3' untranslated regions of thymidylate synthase gene modulates survival in 5 fluorouracil-treated colorectal cancer patients. Int J Oncol, 2009, 34(1): 219-229.
    45.Keam B, Im SA, Han SW, Ham HS, Kim MA, Oh DY, Lee SH, Kim JH, Kim DW, Kim TY, Heo DS, Kim WH, Bang YJ. Modified FOLFOX-6 chemotherapy in advanced gastric cancer: Results of phase II study and comprehensive analysis of polymorphisms as a predictive and prognostic marker. BMC Cancer, 2008 ,27(8): 148.
    46.Shin J, Yuan Z, Fordyce K, Sreeramoju P, Kent TS, Kim J, Wang V, Schneyer D, Weber TK. A Del T poly T (8) mutation in the 3' untranslated region (UTR) of the CDK2-AP1 gene is functionally significant causing decreased mRNA stability resulting in decreased CDK2-AP1 expression in human microsatellite unstable (MSI) colorectal cancer (CRC). Surgery, 2007, 142(2): 222-227.
    47.Mao G, Pan X, Gu L. Evidence that a mutation in the MLH1 3'-untranslated region confers a mutator phenotype and mismatch repair deficiency in patients with relapsed leukemia. J Biol Chem, 2008, 283(6): 3211-3216.
    48.Zhai X, Gao J, Hu Z, Tang J, Qin J, Wang S, Wang X, Jin G, Liu J, Chen W, Chen F, Wang X, Wei Q, Shen H. Polymorphisms in thymidylate synthase gene and susceptibility to breast cancer in a Chinese population: a case-control analysis. BMC Cancer, 2006, 25(6): 138.
    49.Zhang Z, Xu Y, Zhou J, Wang X, Wang L, Hu X, Guo J, Wei Q, Shen H. Polymorphisms of thymidylate synthase in the 5'- and 3'-untranslated regions associated with risk of gastric cancer in South China: a case-control analysis.Carcinogenesis, 2005, 26(10): 1764-1769.
    50.Zhai X, Gao J, Hu Z, Tang J, Qin J, Wang S, Wang X, Jin G, Liu J, Chen W, Chen F, Wang X, Wei Q, Shen H. Polymorphisms in thymidylate synthase gene and susceptibility to breast cancer in a Chinese population: a case-control analysis. BMC Cancer, 2006, 25(6): 138.
    51.Shi Q, Zhang Z, Neumann AS, Li G, Spitz MR, Wei Q. Case-control analysis of thymidylate synthase polymorphisms and risk of lung cancer. Carcinogenesis, 2005, 26(3): 649-656.
    52.Paynter RA, HankInson SE, Colditz GA, Kraft P, Hunter DJ, De Vivo I. CYP19 (aromatase) haplotypes and endometrial cancer risk. Int J Cancer, 2008,122(6): 1443.
    53.Presneau N, Shen Z, Provencher D, Mes-Masson AM, Tonin PN. Identification of novel variant, 1484DelG in the 3'UTR of H3F3B, a member of the histone 3B replacement family, in ovarian tumors. Int J Oncol, 2005,26(6): 1621-1627.
    54.Tsukamoto H, Boado RJ, Pardridge WM. Site-directed Deletion of a 10-nucleotide domain of the 3'-untranslated region of the GLUT1 glucose transporter mRNA eliminates cytosolic protein binding in human brain tumors and induction of reporter gene expression. J Neurochem, 1997, 68(6):2587-2592.
    55.Thomas MA, Preece DM, Bentel JM. Androgen regulation of the prostatic tumour suppressor NKX3.1 is mediated by its 3'untranslated region. Biochem J, 2009, [Epub ahead of print].
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.