煤与水生生物质及其混合物快速热解过程中氮迁移研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用高频热解装置对褐煤、烟煤和无烟煤三种不同煤阶的煤及模型化合物吡咯、吡啶、咔唑、吖啶、生物质蓝藻和水葫芦以及蓝藻和水葫芦在不同比例下与煤进行了热解实验,对快速热解过程中HCN和NH3以及Char-N产率进行分析,并且对煤热解过程中HCN和NH3以及Char-N逸出的影响因素进行了分析。
     (1)褐煤、烟煤的HCN产率随升温速率增加而降低,无烟煤的HCN产率随升温速率增加先增加后基本保持不变;褐煤、烟煤的NH3产率随升温速率增加而增加,无烟煤的NH3产率随升温速率增加降低。褐煤和烟煤的HCN产率随温度升高而降低,无烟煤的HCN产率随温度升高而增加;褐煤、烟煤、无烟煤的NH3产率随温度升高均先增加后降低。模型化合物吡咯快速热解时,NH3为主要的含氮产物,吡啶快速热解时,HCN为主要的含氮产物。
     (2)蓝藻和水葫芦中氮主要以蛋白质的形式存在,热解时主要的含氮污染物为NH3,也有少量的HCN生成,这是由于氨基酸分解时更易形成N、NH、NH2自由基,并且蓝藻和水葫芦热解时,能产生大量的H自由基,使得NH3产率高,蓝藻和水葫芦热解时HCN和Char-N产率均随温度的升高而降低,而NH3产率随温度的升高先升高后降低。
     (3)蓝藻和水葫芦与神府煤热解共热解时,可能是因为蓝藻和水葫芦中含有大量的CaO,促使了HCN还原反应生成NHi,而NHi进一步反应生成N2,这使得HCN和NH3产率较预估HCN、NH3产率低,而HCN产率随温度的升高而降低,NH3产率随着温度的升高先升高后降低。
Pyrolysis of three kinds of the different rank of coal, four nitrogen model compounds of pyrrole, pyridine, carbazole, acridine, biomass of blue-green algae and water hyacinth together with three different ratios of biomass in Shenfu and Zunyi coal were carried out in a high-frequency furnace. The yields and influencing factors of HCN, NH3 and Char-N were analyzed, the thesis included the following three parts:
     (1) The yields of HCN during pyrolysis of lignite and bituminous decrease with an increasing heating rate, while HCN yield of anthracite increases and then to be constant with an increasing heating rate. NH3 yields of lignite and bituminous increase, while NH3 yield of anthracite decrease with an increasing heating rate. HCN yields of lignite and bituminous decrease, while HCN yield of anthracite increases with an increasing temperature. NH3 yields of lignite, bituminous and anthracite increase and then decrease with an increasing temperature. NH3 was the main nitrogen-containing product during the pyrolysis of pyrrole and carbazole, while HCN was the main nitrogen-containing product during the pyrolysis of pyridine and acridine.
     (2) The main nitrogen form in blue-green algae and water hyacinth is protein, NH3 is the main nitrogen-containing pollutant during pyrolysis, a small mount of HCN also is formed, lots of N. NH and NH2 are formed during decomposition of amino acid, a great amount of H are also formed during pyrolysis of blue-green algae and water hyacinth, so NH3 can be easily formed during pyrolysis of blue-green algae and water hyacinth leading a high yield of NH3. The yields of HCN and Char-N decrease with an increasing temperature, while the yields of NH3 increase and then decrease with the increased temperature.
     (3) HCN can be reduced to NHi and NHi finally converted to N2 during co-pyrolysis of blue-green algae and water hyacinth with Shenfu coal and Zunyi coal because of higher mount of CaO existed in blue-green algae and water hyacinth, so HCN and NH3 yields in the experimental are lower than that of calculated value. The yields of HCN decrease with the increased temperature, while NH3 yields increase and then decrease with an increasing temperature.
引文
[1]李伟东,李伟锋,刘海峰,于遵宏.蓝藻与神府煤共成浆性的研究[J].燃料化学学报,2009,37(5):533-537.
    [2]吴乐,张强,李伟东,李伟锋,刘海峰.水葫芦与神府煤共成浆性的研究[J].燃料化学学报,2010,38(5):1-6.
    [3]Chen Zhong, Yuan Shuai, Liang Qin-Feng, et al. Distribution of HCN, NH3, NO and N2 in an entrained flow gasifier[J]. Chemical Engineering Journal,2009,148(2):312-318.
    [4]陈忠.气流床气化过程中煤中氮的转化机理及氨在生产系统中的分布[D].上海:华东理工大学.2009.
    [5]国家发展改革委.能源发展“十一五”规划[Z].2007,4.
    [6]Thmas K M. The release of nitrogen oxides during char combustion [J]. Fuel,1997, 76(6):457-473.
    [7]Leppalahti J, Kolijonen T. Nitrogen evolution from coal, peat and wood during gasification:Literatuer review [J]. Fuel Processing Thechnology,1995,43(1):1-45.
    [8]杨焕祥,廖玉枝.煤化学及煤质评价[M].武汉:中国地质大学出版社.1990.
    [9]Gong Bin. Identification of inorganic nitrogen in an Australian bituminous coal using X-ray photoelectron spectroscopy and time-of flight secondary ion mass spectrometry (TOFSIMS) [J]. International Journal of Coal Geology,1997,34(1):53-68.
    [10]Buckley A N, Kelly M D, Nelson P F and et al. Inorganic nitrogen in Australian semi-anthracites; implications for determining organic nitrogen functionality in bituminous coals by X-ray photoelectron spectroscopy [J]. Fuel Prcocessing Thechnology,1995,43(1):47-60.
    [11]Kawashima H, Wu Z H, Sugimoto Y. Change of nitrogen functionality of N enriched condensation products during pyrolysis[J]. Fuel,2002,81(18):2037-2316.
    [12]Peles J. R., Kapteijn F., Moulijn J. A. et al. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis[J]. Carbon,1995,35(11):164-1653.
    [13]Kelemen S R, Gorbaty M L, Kwiatek P J and et al. Nitrogen transformations in coal during pyrolysis [J]. Energy & Fuels,1998,12(1):159-173.
    [14]Stanczyk K, Dziembaj R, Piwowarska Z and et al. Transformation of nitrogen structures in carbonization of model compounds determined by XPS[J]. Carbon,1995, 33(10):1383-1392.
    [15]Schmiers H, Feiebel J, Streubel P and et al. Change of chemical bonding of nitrogen of polymeric N-heterocyclic compounds during pyrolysis [J]. Carbon,1999,37(12): 1965-1978.
    [16]Xie Z L. Formation of NOx and SOX precursors during the pyrolysis and gasification of coal[D]. Thesis, Monash University, Australia,2001.
    [17]Davis A, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae[J]. Water Resources,2003,37(18):4311-4330.
    [18]肖兴富,李文奇,刘娜,杨旭光.富营养化水体中蓝藻毒素的危害及其控制[J].中国水利水电科学研究院学报,2006,5(2):116-123.
    [19]Falconer I R. An overview of problems caused by toxic blue-green algae(cyanobacteria) in drinking and recreational water[J]. Environ Toxicol,1999,14(1):5-12.
    [20]Ames J B, Tanaka T, Stryer L, et al. Secondary Structure of Myristoylated Recoverin Determined by Three-Dimensional Heteronuclear NMR:Implications for the Calcium-Myristoyl Switch[J]. Biochemistry,1994,33(35):10743-10753.
    [21]Biniface J J, Allbritton N L, Reay P A, et al. pH affects both the mechanism and the specificity of peptide binding to a class II major histocompatibility complex molecule[J]. Biochemistry,1993,32(44):11761-11768.
    [22]Richmond A, Borowitzka M A, Borowitzka L J. Micro-Algae Biotechnology[M]. Cambridge University Press,1989.
    [23]Graham L E, Wilcox L W. Algae[M]. London:Prentice Hall,2000.
    [24]Mackie J C, Meredith B C. Nelsion P F, Shock tube pyrolysis of pyridine [J]. Journal of Chemical Physics,1990,94(10):4099-4106.
    [25]李尔炀,蔡志强.生物化学[M].北京:化学工业出版社,2010.
    [26]Solomon Peter R., Colket Meredith B. Evolution of fuel nitrogen in coal devolatilization[J]. Fuel,1978,57(12):749-755.
    [27]Lappalahti L, Koljonan T. Nitrogen evolution from coal, peat and wood during gasification:Literature review[J]. Fuel Processing Technology,1995,43(1):1-45.
    [28]Tan L L, Li C-Z. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part I. Effect of reactor configuration on the determined yields of HCN and NH3 during pyrolysis[J]. Fuel,2000,79(15):1883-1889.
    [29]Feng Jie, Li Wen-ying, Xie Ke-chang, et al. Studies of the release rule of NOx precursors during gasification of coal and its char[J]. Fuel Processing Technology,2003, 84(3):243-254.
    [30]赵炜,常丽萍,冯志华等.煤热解过程中生成氮化物的研究[J].燃料化学学报,2002,30(5):408-412.
    [31]常丽萍.煤热解、气化过程中含氮化合物的生成与释放研究[D].山西太原,太原理工大学,2004.
    [32]Lazer M J, Ibarra J V, Moliner R, et al. The release of nitrogen during the combustion of coal char:the role of volatile matter and surface area[J]. Fuel,1996,75(8): 1014-1024.
    [33]Hayashi J, Kusakabe K, Morooka S, et al. Role of iron catalyst impregnated by solvent swelling method in pyrolysis removal of coal nitrogen[J]. Energy & Fuels,1995, 9(6):1028-1034.
    [34]Kambara S, Takarada T, Yamamoto Y, et al. Relation between function forms of coal nitrogen and formation of NOx precursors during rapid pyrolysis[J]. Energy & Fuels, 1993,7(6):1013-1020.
    [35]Li C-Z, Nelson P F. Interactions of quartz, zircon sand and stainless steel with ammonia: implications for the measurement of ammonia at high temperatre[J]. Fuel,1996,75(4): 525-526.
    [36]Axworthy A E, Day an V H, Martin B G. Reaction of fuel-nitrogen compounds under conditions of inert pyrolysis [J]. Fuel,1978,57(1):29-35.
    [37]Houser T J, Mccarville M E, Biftu T. Kinetics of the thermal decomposition of pyridine in a flow systrm [J]. Int. Jorunal of Chemical Kinetics,1980,12(8):555-568.
    [38]Mackie J C, Doughty A. Kinetics of pyrolysis of a coal model compound,2-picoline,the nitrogen heteroaromatic an alogue of tolyene.2. The 2-picolyl radical and kinetic model [J]. Journal of Physical Chemistry,1992,96(25):10339-10348.
    [39]Mackie J C, Cillet M B, Nelson P F and et al. Shock tube pyrolysis of pyrrole and kinetic modeling [J]. Int. J. Chem. Kinetics,1991,23(2):733-760.
    [40]Chronakis I S, Galatanu A N, Nylander T, et al. The behaviour of protein preparations from blue-green algae at the air/water interface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2000,173(3):181-192.
    [41]Teretis A, Doughty A, Mackie J C. Kinetics of pyrolysis of a coal model compound,2-picoline,the nitrogen heteroaromatic an alogue of toluene.1. Product distributions [J]. Journal of Physical Chemistry,1992,96(25):10334-10338.
    [42]Doughty A, Mackie J C. Kinetics of pyrolysis of the isomeric butane itriles and kinetic modeling[J]. Journal of Physical Chemistry,1992,96(1):272-281.
    [43]Yu Q Z, Brage C, Chen G X, et al. The fate of fuel-nitrogen during gasification of biomass in a pressurized fluidised bed gasifier[J]. Fuel,2007,86(4):611-618.
    [44]Wu Z H, Sugimoto Y, Kawashima H. Catalytic nitrogen release during a fied-bed pyrolysis of model coals containing pyrrolic and pyridinic nitrogen[J]. Fuel,2001, 80(2):251-254.
    [45]Memon H U R, Barele K D, Taylor J M and et al. Shock tube pyrolysis of pyridine[J]. International Journal of Energy Research,2000,24(13):1141-1159.
    [46]Lifshitz A, Tamburu A, Suslensky A. Isomerization and Decomposition of pyrrole at elevated temperatures. Studied with a single-pulse shock tube [J]. Journal of Physical Chamistry,1989,93(15):5802-5808.
    [47]Hansson K-M, Samuelsson J, Smand L-E et al. The temperature's influence on the selectivity between HCNO and HCN from pyrolysis of 2,5-diketopiperazine and 2-pynidone[J]. Fuel,2003,82(18):2163-2172.
    [48]Sugiyama S, Arai N, Asatani M and et al. Reducing fuel NOx emission:N2 formation from fuel-N [J]. Environmental Science and Technology,1978,12(2):175-180.
    [49]Watanabe T, Ohtsuka Y, Nishiyama Yi. Nitrogen removal and carbonization of polyacrylonitrile with hltrafine metal particles at low temperatures [J]. Carbon,1994, 32(3):329-334.
    [50]Wang W X, Thomas K M. The release of nitrogen species from carbons during gasification:models for coal char gasification[J]. Fuel,1992,71(8):871-877.
    [51]Wang W X, Thomas K M. The release of nitrogen oxides from chars derived from high-pressure carbonization of carbozole and naphthol during oxidative gasification[J]. Fuel,1993,72(3):293-297.
    [52]Yu C-L, Zhang Y-X, Bauer S H. Estimation of the equilibrium distribution of products generated during high temperature pyrolysis of 1,3,3-trinitroazetidine:thermochemical parameters [J]. Journal of Molecular Structure(Thaochem),1998,432(3):63-68.
    [53]Kapteijn F, Moulijn J A, Matzner S et al. The development of nitrogen funcitionality in model chars during gasification in CO2 and O2[J]. Carbon,1999,37(8):1143-1150.
    [54]Leichtnam J-N, Schwartz D, Gadiou R. The behaviour of fuel-nitrogen during fast pyrolysis at high temperature [J]. Journal of Analytical and Applied Pyrolysis,2000, 55(2):255-268.
    [55]Furimsky E, Nielsen M, Jurasek P. Formation of nitrogen compounds from nitrogen-cantaining rings during oxidative regeneration of spent hydroprocessing catalysts[J]. Energy & Fuels,1995,9(3):439-440.
    [56]Britt Phillip F, Buchanan AC, Ⅲ, Owens Clyde V Jr, et al. Formation of nitrogen containing polycyclic aromatic compounds from the co-pyrolysis of carbohydrates and amino acids[J]. Fuel Chemistry Devision Preprint,2002,47(1):400-402.
    [57]袁帅,李军,周志杰等.吡咯型氮快速热解中HCN和NH3生成机理研究[J].燃料化学学报,2010,已接收.
    [58]袁帅,李军,周志杰等.吡啶型氮热解中氮逸出机理的量子化学及实验研究[J].燃料化学学报,2010,已接收.
    [59]Hansson K M, Samuelsson J, Tullin C, et al. Formation of HNCO, HCN and NH3 from the pyrolysis of bark and nitrogen-containing model compounds [J]. Combustion and Flame,2004,137(3):256-277.
    [60]Yuan S, Zhou Z-J, Li J, et al. HCN and NH3 released from biomass and soybean cake under rapid pyrolysis[J]. Energy & Fuels,2010,24(11):6166-6171.
    [61]Leppalahti J. Formation of NH3 and HCN in slow-heating-rate inert pyrolysis of peat, coal and bark[J]. Fuel,1995,74(9):1363-1368.
    [62]Aho M J, Hamalainen J L. Importance of solid fuel properties to nitrogen oxide formation through HCN and NH3 in small particle combustion[J]. Combustion and Flame,1993,95(1):22-30.
    [63]姚向君,田宜水.生物质能源资源清洁转化利用技术.北京:化学工业出版社,2005.
    [64]Shinji Kambara, Takayuki Takarada, Yasuhiro Yamamoto, and Kunio Kato. Relation between functional forms of coal nitrogen and formation of NOx precursors during rapid pyrolysis[J]. Energy & Fuels,1993,7(6):1013-1020.
    [65]Marek A. Wojtowicz, Jan R. Pels and Jacob A. Moulijn. The fate of nitrogen functionalities in coal during pyrolysis and combustion[J]. Fuel,1995,74(4):507-516.
    [66]朱宏斌,倪燕慧,唐黎华等.烟煤快速加氢热解的研究Ⅵ.煤和半焦中氮化学形态剖析)[J].燃料化学学报,2001,29(2):124-128.
    [67]Peter F. Nelson, Ian W. Smith, Ralph J. Tyler, John C. Mackies. Pyrolysis of coal at high temperatures. Energy & Fuels,1988,2:391-400.
    [68]Li Chun-zhun, TAN Li-lian. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass:Part III Further discussion on the formation of HCN and NH3 during pyrolysis[J]. Fuel,2000,79(15):1899-1906.
    [69]杨秀华,丁玉献.运用回归分析对炼焦生产的预测与控制[J].煤质技术,2004,11(6): 25-26.
    [70]Zhang Qun, Wu Xin-ci, Feng An-zhu et al. Pridiction of coke quality at Baosteel[J]. Fuel Processing Techonology,2004,86(1):1-11.
    [71]刘海峰,刘银河,刘艳华,车得福.煤热解过程中含氮气相产物转化规律的实验研究[J].燃料化学学报,2008,36(2):134-138.
    [72]Chronakis I S, Galatanu A N, Nylander T, et al. The behaviour of protein preparations from blue-green algae at the air/water interface[J]. Colloids and. Surfaces A: Physicochemical and Engineering Aspects,173:181-192.
    [73]Naoto T, Yasuo O. Nitrogen chemistry in coal pyrolysis:Catalytic roles of metal cations in secondary reactions of volatile nitrogen and char nitrogen[J]. Fuel Processing Technology,2008,89(4):379-390.
    [74]Yan Xiao, Che De-fu, Xu Tong-mo. Effect of rank, temperatures and inherent minerals on nitrogen emissions during coal pyrolysis in a fixed bed reactor[J]. Fuel Processing Technology,2005,86(7):739-756.
    [75]Wu Zhi-heng, Sugimoto Y, Kawashima H. Catalytic nitrogen release during a fixed-bed pyrolysis of model coals containing pyrolic or pyridinic nitrogen[J]. Fuel,2001,80(2): 251-254.
    [76]GB/T 212-2001.煤的工业分析方法.
    [77]Lizzio A A, Jiang H, Radovic L R. On the kinetics of carbon (char) gasification: reconciling models with experiments[J]. Carbon,1990,28:7-19.
    [78]Chen W Y, Tang L. Variables, kinetics and mechanisms of heterogeneous reburing[J]. AICHE J,2001,47(12):2781-2797.
    [79]Ikeda E, Mackie J C. Thermal decomposition of two coal model compounds-pyridine and 2-picoline.Kinetics and product distributions[J]. Journal of Analytical and Applied Pyrolysis,1995,34(1):47-63.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.