水稻减数分裂基因OsSGO1功能研究与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
减数分裂是有性生殖物种世代交替的转折点;减数分裂不仅维持了基因组的稳定性,而且通过重组创造了遗传多样性。在减数分裂过程中,DNA复制一次后进行两次连续的细胞分裂。第二次减数分裂与有丝分裂类似,涉及到姊妹染色单体的分离;而减数第一次分裂是独一无二的,在这次分裂中同源染色体分离。为保证同源染色体的准确分离,同源染色体在减数分裂前期I通过一系列复杂的过程结合在一起形成稳定的二价体。这些复杂的前期I事件包括同源配对、联会和重组。分子遗传学、细胞学和生物化学研究已经表明玉米Sgo1基因在减数分裂过程中起到了保护着丝粒处黏着蛋白的重要作用。OsSGO1基因是玉米Sgo1基因在水稻中的同源基因。本课题应用RNA干扰技术分析了该基因在水稻生长发育过程中的功能。利用本实验室设计的RNAi工具载体pCam23A构建OsSGO1-RNAi载体;并通过农杆菌介导的水稻愈伤组织转化法获得了转基因株系;进而通过PCR鉴定筛选出阳性的OsSGO1-RNAi株系。OsSGO1-RNAi株系的营养生长正常,但结实率显著降低;通过内源OsSGO1基因表达量的半定量RT-PCR证实OsSGO1-RNAi株系的不育表型与RNA干扰介导的内源OsSGO1 mRNA水平的降低是相关的。进一步深入的细胞学观察显示,OsSGO1基因的knockdown导致OsSGO1-RNAi株系的减数分裂异常,具体表现为姐妹染色单体在末期Ⅰ时提前解离,后期Ⅱ时不均等分离,最终导致花粉败育;Immunostaining实验揭示OsSGO1蛋白定位于着丝粒处。这些研究结果表明OsSGO1基因是水稻减数分裂的必需基因,该基因在减数分裂过程中对姐妹染色单体着丝粒处的黏着起了重要的保护作用。
Meiosis, an essential process in sexual life cycle, is necessary not only for the maintenance of genomic stability but also for the creation of genetic diversity. Meiosis involves two sequential rounds of chromosome segregation following a single round of DNA replication. The first meiotic division is unique and involves the segregation of homologous chromosomes. To ensure accurate segregation, homologous chromosomes form stable bivalents through a complex processes which include homologous pairing, synapsis and recombination. The corn Sgo1 gene has been shown to play an important role in protecting of centromeric cohesion. OsSGO1 is the rice homologue of the maize Sgo1 gene. Here, we analyzed the function of OsSGO1 in meiosis using the RNA interference (RNAi) approach. We constructed an OsSGO1-RNAi vector and transformed it into rice calli by Agrobacterium-mediated DNA transfer. OsSGO1-RNAi lines were obtained by screening the plants regenerated from the transformed calli by PCR. The OsSGO1-RNAi lines showed normal vegetative growth but sterile during flowering phase. The sterility phenotypes were associated with down-regulated OsSGO1 transcript level mediated by RNAi. Further cytological observations of male meiocytes revealed that knockdown of OsSGO1 caused precocious disassociation and random segregation of sister chromatids at telophaseⅠand anaphase II, respectively, which finally led to sterile pollen formation. Immunostaining experiments revealed that the OsSGO1 localizes to centromere. These results indicate that OsSGO1 is essential for rice meiosis and plays an important role in protecting centromeric cohesion during meiosis.
引文
Akhmedov T, Gross B, Jessberger R. Mammalian SMC3 C-terminal and coiled-coil protein domains specifically bind palindromic DNA, do not block DNA ends, and prevent DNA bending. Journal Biologyogy Chemistry, 1999, 274: 38216-38224
    Bai X, Peirsion BN, Dong F, Cai X, Makaroff CA. Isolation and characterization of SYN1, a RAD21-like gene essential for meiosis in Arabidopsis. Plant Cell, 1999, 11: 417-430
    Bhatt AM, Lister C, Page T, Fransz P. Findlay or meiotic chromosome segregation and belongs to the REC8/RAD21 cohesin gene family. Plant Journal, 1999, 19: 463-472
    Bickel SE, Orr-Weaver TL, Balicky EM. The sister-chromatid cohesion protein ORD is required for chiasma maintenance in Drosophila Oocytes. Current Biology, 2002, 12: 925-929
    Birkenbihl RP, Subramani S. Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double-strand-break repair. Nucleic Acids Research, 1992, 20: 6605-11
    Birkenbihl RP, Subramani S. The rad21 gene product of Schizosaccharomyces pombe is a nuclear, cell cycle-regulated phosphoprotein. Journal Biologyogy Chemistry, 1995, 270: 7703-11
    Bishop DK, Park D, Xu L, Kleckner N. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell, 1992, 69: 439-456
    Blat Y, Kleckner N. Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell, 1999, 98: 249-59
    Chen CB, Xu YY, Ma H, Chong K. Cell biological characterization of male meiosis and pollen development in rice. Journal Integr Plant Biologyogy, 2005, 47: 734-744
    Chuck G, Meeley RB, and Hake S. The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Development, 1998, 12: 1145-1154
    Ciosk R, Zachariae W, Michaelis C, Shevchenko A, Mann M, Nasmyth K. An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell, 1998, 93:1067-1076
    Cohen-Fix O, Peters JM, Kirschner MW, Koshland D. Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Development, 1996, 10:3081-3093.
    Darwiche N, Freeman LA, Strunnikov A. Characterization of the components of the putative mammalian sister chromatid cohesion complex. Gene, 1999: 233:39-47
    Dawe RK. Meiotic chromosome organization and segregation in plants. Plant Molecular Biology, 1998, 49: 371-395
    Dong F, Cai X, Makaroff CA. Cloning and characterization of two Arabidopsis genes that belong to the RAD21/REC8 family of chromosome cohesin proteins. Gene, 2001, 271: 99-108
    Fousteri MI, Lehmann AR. A novel SMC protein complex in Schizosaccharomyces pombe contains the Rad18 DNA repair protein. EMBO Journal, 2000, 19: 1691-1702
    Funabiki H, Yamano H, Kumada K, Nagao K, Hunt T, Yanagida M: Cut2 proteolysis required for sister-chromatid separation in fission yeast. Nature, 1996, 381:438-441
    Golubovskaya IN, Sheridan WF, Harper LC, and Cande WZ. Novel meiotic mutants of maize identified from Mu transposon and EMS mutant screens. MNL, 2003, 77: 10-13
    Gomez R, Valdeolmillos A, Parra MT, Viera A, Carreiro C, Roncal F, Rufas JS, Barbero JL, and Suja JA. Mammalian SGO2 appears at the inner centromere domain and redistributes depending on tension across centromeres during meiosis II and mitosis. EMBO Journal, 2007, 8(2): 173-180
    Guacci V, Koshland D, Strunnikov A. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S.cerevisiae. Cell, 1997, 91: 47-57
    Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant Journal, 1994, 6: 271-282
    Hiei Y, Komari T, Kubo T. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Molecular Biology, 1997, 35: 205-218
    Hirano T. SMC-mediated chromosome mechanics:a conserved scheme from bacteria to vertebrates. Genes Development, 1999, 13: 11-19
    Hirano M, Anderson DE, Erickson HP, Hirano T. Bimodal activation of SMC ATPase by intra-and inter-molecular interactions. EMBO Journal, 2001, 20: 3238-3250
    Hofgen R, Willmitzer L. Storage of competent cells for Agrobacterium transformation. Nucleic Acids Research, 1988, 16: 9877
    Indjeian VB, Stern BM, and Murray AW. The centromeric protein Sgo1 is required to sense lack of tension on mitotic chromosomes. American Association for the Advancement of Science, 2005, 99: 130-133
    Jessberger R, Riwar B, Baechtold H, Akhmedov AT. SMC proteins constitute two subunits of the mammalian recombination complex RC-1. EMBO Journal, 1996, 15: 4061-4068
    Katis VL, Galova M, Rabitsch KP, Gregan J, and Nasmyth K. Maintenance of cohesin at centromeres after meiosis I in budding yeast requires a kine to chore-associated proteinrelated to MEI-S332. Current Biologyogy, 2004, 14: 560-572
    Kejian Wang, Ding Tang1, Lilan Hong, Wenying Xu, Jian Huang, Ming Li, Minghong Gu, Yongbiao Xue, Zhukuan Cheng. DEP and AFO Regulate Reproductive Habit in Rice. Plos Genetics, 2009, 6: 351-353
    Kerrebrock AW, Moore DP, Wu JS, and Orr-Weaver TL. Mei-S332, a Drosophila protein required for sister-chromatid cohesion, can localize to meiotic centromere regions. Cell, 1995, 83: 247-256
    Kerrebrock AW, Moore DP, Wu JS, Orr-Weaver TL. Mei-S332, a Drosophila protein required for sister-chromatid cohesion, can localize to meiotic centromere regions, Cell, 1995, 83: 247-256
    Kimura K, Hirano T. ATP-dependent positive supercoiling of DNA by 13S condensin: A biochemical implication for chromosome condensation. Cell, 1997, 90: 25-634
    Kimura K, Rybenkov VV, Crisona NJ, Hirano T, Cozzarelli NR. 13S condensing actively reconfigures DNA by introducing global positive writhe:Implications for chromosome condensation. Cell, 1999, 98: 239-248
    Kimura K, Cuvier O, Hirano T. Chromosome condensation by a human condensing complex in Xenopus egg extracts. Journal Biologyogy Chemistry, 2001, 276: 5417-5420
    Osman K, Sanchez-Moran E, Higgins JD, Jones GH, Franklin FC. Chromosome synapsis in Arabidopsis: analysis of the transverse filament protein ZYP1 reveals novel functions for the synaptonemal complex. Chromosoma , 2006, 115: 212-219
    Kitajima TS, Kawashima SA, Watanabe Y. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature, 2004, 427: 510-517
    Kitajima TS, Yokobayashi S, Yamamoto M, and Watanabe Y. Distinct cohesin complexes organize meiotic chromosome domains. Science, 2003, 300: 1152-1155
    Klein F, Mahr P, Galova M, Buonomo SBC, Michaelis C, Nairz K, Nasmyth K. A central role for cohesions in sister chromatid cohesion,formation of axial elements and recombination during yeast meiosis. Cell, 1999, 98: 91-103
    Lawe J, Cordell SC, van den Ent F. Crystal structure of the SMC head domain:an ABC ATPase with 900 residues antiparallel coiled-coil inserted. Journal Molecular Biology, 2001, 306: 25-35
    Lee J, Kitajima TS, Tanno Y, Yoshida K, Morita T, Miyano T, Miyake M, and Watanabe Y. Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells. Nature cell biology, 2007, 10:42-52.
    Lee J, Iwai T, Yokota T, Yamashita M. Temporally and spatially selective loss of Rec8 protein from meiotic chromosomes during mammalian meiosis. Journal Cell Science, 2003, 116: 2781-2790
    Liu Z, Makaroff CA. Arabidopsis separase AESP is essential for embryo development and the release of cohesin during meiosis. Plant Cell, 2006, 18: 1213–1225
    刘巧泉,张景六,王宗阳,洪孟民,顾铭洪.根癌农杆菌介导的水稻高效转化系统的建立.植物生理学报,1998, 24(3): 259-271.
    Losada A, Hirano M, Hirano T. Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis. Genes Development, 2002, 16: 3004-16
    Losada A, Hirano M, Hirano T. Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Development, 1998, 12: 1986-1997
    Losada A, Yokochi T, Kobayashi R, Hirano T. Identification and characterization of SA/Scc3p subunits in the Xenopus and human cohesin complexes. Journal Cell Biologyogy, 2000, 150: 405-416
    Losada A, Hirano T. Intermolecular DNA interactions stimulated by the cohesion complex in vitro:Implications for sister chromatid cohesion. current Biologyogy, 2001, 11: 268-272
    McKay MJ, Troelstra C, van der Spek P, Kanaar R, Smit B, Hagemeijer A, Bootsma D, Hoeijmakers JH. Sequence conservation of the rad21 Schizosaccharomyces pombe DNA double-strand break repair gene in human and mouse. Genomics, 1996, 36: 305-15
    Meeley, RB, and Briggs, SP. Reverse genetics for maize. MNL, 1995, 69: 67-82.
    Melby TE, Ciampaglio CN, Briscoe G, Erickson HP. The symmetrical structure of structural maintainance of chromosomes(SMC)and MukB proteins:long,antiparallel coiled coils, folded at a flexible hinge. Journal Cell Biologyogy, 1998, 142: 1595-1604
    Mengiste T, Revenkova E, Bechtold N, Paszkowski J. An SMC-like protein is required for efficient homologous recombination in Arabidopsis. EMBO Journal, 1999, 18: 4505-4512
    Michaelis C, Ciosk R, Nasmysh K. Cohesions:chromosomal proteins that prevent premature separation of sister chromatids. Cell, 1997, 91: 35-45
    Mito Y, Sugimoto A, Yamamoto M. Distinct developmental function of two Caenorhabditis elegans homologs of the cohesin subunit Scc1/Rad21. Molecular Biology Cell, 2003, 14: 2399-2409
    Mo Wang, Kejian Wang, Ding Tang, Cunxu Wei, Ming Li, Yi Shen, Zhengchang Chi, Minghong Gu, and Zhukuan Cheng, The Central Element Protein ZEP1 of the Synaptonemal Complex Regulates the Number of Crossover during Meiosis in Rice. Plant cell, 2010, 10:.110-113
    Moore DP, Page AW, Tang TT, Kerrebrock AW, and Orr-Weaver TL. The cohesion protein MEI-S332 localizes asto condensed meiotic and mitotic centromeres until sister chromochromatids separate. Journal Cell Biology, 1998, 140: 1003-1012
    Nasmyth K, Peters JM, Uhlmann F. Splitting the chromosome:cutting the ties that bind sister chromatids. Science, 2000, 288: 1379-1384
    Hamant O, Golubovskaya I, Meeley R, Fiume E, Timofejeva L, Schleiffer A, Nasmyth K, and Cande WZ. A REC8-Dependent Plant Shugoshin Is Required for Maintenance of Centromeric Cohesion during Meiosis and Has No Mitotic Functions. Current Biology, 2005, 15: 948-954,
    Page SL, Hawley RS Chromosome choreography: the meiotic ballet. Science, 2003, 301: 785-789
    Parisi S, McKay MJ, Molnar M, Thompson MA, van der Spek PJ, van Drunen-Schoenmaker E, Kanaar R, Lehmann E, Hoeijmakers JH, Kohli J. Rec8p,a meiotic recombination and sister chromatid cohesion phosphoprotein of the Rad21p family conserved from fission yeast to humans. Molecular Cell Biology, 1999, 19: 3515-3528
    Pasierbek P, Jantsch M, Melcher M, Schleiffer A, Schweizer D, Loidl J. A Caenorhabditis elegans cohesion protein with functions in meiotic chromosome pairing and disjunction. Genes Development, 2001, 15: 1349-1360
    Rabitsch KP, Gregan J, Schleiffer A, Javerzat JP, Eisenmeiocytes haber F, and Nasmyth K. Two fission yeast homologs of Drosophila Mei-S332 are required for chromosome segregation during meiosis I and II. Current Biologyogy, 2004, 14: 287-301
    Rivera T, Losada A. Shugoshin and PP2A, shared duties at the centromere. Bioessays, 2006, 28(8): 775-779.
    Ross KJ, Fransz P, Jones GH. A light microscopic atlas of meiosis in Arabidopsis thaliana. Chromosome Research, 1996, 4: 507-516
    Sambrook J, Russell DW.分子克隆实验指南. In现代生物技术译丛书,北京:科学出版社, 2002,
    Sigrist S, Jacobs H, Stratmann R, Lehner CF. Exit from mitosis is regulated by Drosophila fizzy and the sequential destruction of cyclins A,B and B3. EMBO Journal, 1995, 14: 4827-38
    Stern K, Bidlack J, Jansky S. Meiosis and alternation of generations. In Introductory Plant Biology, Ed 9. The McGraw-Hill companies, 2003, pp: 221-229
    Sumara I, Vorlaufer E, Gieffers C, Peters BH, Peters JM. Characterization of vertebrate cohesin complexes and their regulation in prophase. Cell Biologyogy, 2000, 151: 749-762
    Tanaka T, Maria Cosma P,Wirth K, Nasmyth K. Identification of cohesin association sites at centromeres and along chromosome arms. Cell, 1999, 98: 847-58
    Tang TTL, Bickel, SE, Young, LM., and Orr-Weaver, TL. Maintenance of sister-chromatid cohesion at the centromere by the Drosophila MEI-S332 protein. Genes Development, 1998, 12: 3843-3856
    Tatebayashi K, Kato J, Ikeda H. Isolation of a Schizosaccharomyces pombe rad21ts mutant which is aberrant in chromosome segregation, microtubule function, DNA repair proteolysis. Genetics, 1998, 148: 49-57
    Taylor EM, Moghraby JS, Lees J. Characterization of a novel human SMC heterodimer homologous to the Schizosaccharomyces pombe Rad18/Spr18 complex. Molecular Biologyogy Cell, 2001, 12: 1583-1594
    Toth A, Ciosk R, Uhlmann F, Galova M, Schleiffer A, Nasmyth K. Yeast cohesion complex requires a conserved protein, Eco1p(Ctf7), establish cohesion between sister chromatids during DNA replication. Genes Development, 1999, 13: 320-333
    Uhlmann F, Wernic D, Poupart MA, Koonin EV, Nasmyth K: Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell, 2000, 103:375-386.
    Verkade HM, Bugg SJ, Lindsay HD. Rad18 is required for DNA repair and checkpoint responses in fission yeast. Molecular Biologyogy Cell, 1999, 10:2905-2918
    Warren WD, Lin E, Nheu TV, Hime GR, McKay MJ. Drad21, a Drosophila rad21 homologue expressed in S-phase cells. Gene, 2000, 250: 77-84
    Watanabe Y. The importance of being Smc5/6. Nature Cell Biologyogy, 2005, 7:329-331
    Yamagishi Y, Sakuno T, Shimura M, and Watanabe Y. Heterochromatin links to centromeric protection by recruiting shugoshin. Nature, 2008, 455(7210): 251-255
    Zhang L-R, Tao J-Yi, Wang T. Molecular characterization of OsRAD21-1, a rice homologue of yeast RAD21 essential for mitotic chromosome cohesion. Journal of Experimental Botany, 2004, 55: 1149-1152
    Zhang L-R, Tao J-Y,Wang S-X , Chong K,Wang T. The rice OsRad21-4,an orthologue of yeast Rec8 protein, is required for efficient meiosis. Plant Molecular Biology, 2006, 60(4): 533-554
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.