多孔氧化物微纳结构的制备与其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Preparation of Porous Metal Oxides with Micro/Nano Structures and Study on Their Growth Mechanisms
  • 作者:牛海霞
  • 论文级别:博士
  • 学科专业名称:无机化学
  • 学位年度:2007
  • 导师:杨晴 ; 谢毅
  • 学科代码:070301
  • 学位授予单位:中国科学技术大学
  • 论文提交日期:2007-04-01
摘要
本论文旨在补充和发展无机微纳结构材料的合成与组装方法,利用前驱体煅烧路线控制合成多孔无机材料,以及利用生物分子模板法设计制备微纳结构的仿生材料。研究中,通过调节实验选用合理的合成路线,制备了微纳结构的多孔氧化物(氧化镁,氧化铜)和无机仿生材料(硫化镉和氧化锌),并对其形貌尺寸的控制和合成机理进行了探索性的研究。论文主要内容总结如下:
     1.利用生物小分子甘氨酸作模板,硝酸铜水溶液作铜源,制备了大孔的氧化铜。利用溶剂、反应温度、铜源和反应物浓度等实验参数对产物的影响,对CuO产物的形貌实现了有效的控制,并在前人工作和实验结果的基础上提出了大孔CuO可能的生长机理。此外,用甘氨酸为模板,还通过水热过程成功地合成了CdS树枝晶。
     2.在前人研究的基础上,将模板法和煅烧技术相结合用于多孔金属氧化物的制备。利用不同的高分子聚合物,比如聚乙烯吡咯烷酮(PVP),葡聚糖为模板试剂,研究其对反应途径的影响,实现了对多孔MgO形貌的有效控制。实验证明,不同的溶剂、不同的模板以及模板的用量,对产物的形貌有很大的影响。此实验路径进一步完善了煅烧合成反应路线,也加深了我们对煅烧合成技术的认识。
     3.建立了通过高温热解无机盐溶液前驱体制备微纳结构金属氧化物晶体的简便路线。具体提出了煅烧一种无机盐水溶液来合成多孔MgO纳米片的方法并将其成功地推广到蘑菇状ZnO微晶的制备方面。与传统的方法相比,此水溶液热解过程具有以下优势:①丰富和发展了液相法制备微纳材料的新方法与新技术,扩展了水溶液制备微纳材料的领域;②操作方便灵活,原料廉价易得,无需昂贵设备;③在空气中直接反应,不需要任何保护气体。该路线有望用于其他金属氧化物微纳材料的合成上。
     4.在总结前人工作的基础上,丰富和发展了传统水热、溶剂热合成技术。用混合溶剂热法合成了金属有机物前驱体,然后使其热解,可以得到一种新颖的晶态材料—骨状MgO纳米晶。详细研究了溶剂热过程中的反应条件,比如浓度、温度、溶剂和时间对最后产物形貌的影响。并探讨了骨状MgO纳米晶的可能生长机理。又利用水热法和前驱体法相结合制备了花状ZnO微晶,该晶体是由纳米片自组装而成。
This dissertation is intended to supplement and develop precursor calcinations routes to synthesize porous inorganic materials and use templates to prepare micro- or nano-scale biomimetic inorganic materials. On the basis of previous work, we have developed some novel mild routes to fabricate porous metal oxides (MgO and CuO) and micron- or nano-scale inorganic biomimetic materials (CdS and ZnO). The control of the morphology and size of the products has also been investigated. The details are summarized as follows:
    1. The macroporous CuO has been produced with glycine as template and Cu(NO_3)_2 aqueous solution as copper source. The morphologies of the products could be tuned through varying solvent, reaction temperature, copper sources and the reactants concentrations. On the basis of the experimental results and previous literatures, a possible growth mechanism has also been proposed. Moreover, CdS dendrites have been successfully generated using glycine as structure-directing agent.
    2. On the basis of previous work, combined the traditional templating method with the calcination technique, a template-assisted calcination route has been applied to synthesize porous materials. The morphologies of porous MgO could be controlled through using different templates, such as poly (vinyl pyrrolidone) (PVP) and dextran. Studies found that the templates had an important role on the products. The experimental route has perfected clacinations reactions and can be easily extended into the preparation of other metal oxides crystals. All above studies has increased our understanding on the calcinations techniques and provided efficient routes to porous inorganic materials.
    3. A facile thermal decomposition route has been developed for the synthesis of metal oxides using inorganic salt solution as precursors. The porous MgO nanoplates have been produced through calcinations of only aqueous Mg(NO_3)_2 solution. The method has also been applied to grow mushroom-like ZnO microcrystals by using Zn(NO_3)_2 solution as precursor instead of Mg(NO_3)_2 solution. Compared with previous methods, our new route has the following features: (i) the system does not need any protective gases; (ii) the raw materials are inexpensive, and the manipulation is simple; (iii) the route has enriched the methods of preparing micro- or nano-scale materials. 4. Based on previous literatures, a feasible solvothermal/hydrothermal approach was enriched and developed. The material with novel morphology — bone-like MgO nanocrystals has been achieved by the thermal decomposition of an organic metal precursor, which was pre-prepared by a solvothermal process. Some crucial factors, such as the solvothermal temperature, the volume ratio of absolute alcohol to water, and the amount of Mg powders, affected the products formation. This is the first report related to the synthesis of nanobones. The products growth mechanism was also discussed. The tlower-like ZnO microcrystals have been synthesized through a precursor process followed by a hydrothermal process. The microcrystals are self-assembled by nanoplates. The precursor is pre-obtained by a precipitation reaction.
引文
[1] X.G. Peng, L. Manna, W. Yang, J. Wickham, E.K. Scher, Andreas, A.P. Alivisatos, Nature 404 (2000) 59.
    [2] P.C. Ohara, J.R. Heath, W.M. Gelbart, Angew. Chem. Int. Ed. Engl. 36 (1997) 1078.
    [3] M. Hartmann, Chem. Mater. 17 (2005) 4577.
    [4] M.M. Yusuf, H. Imai, H. Hirashima, J. Sol-Gel Sci. Technol. 25 (2002) 65.
    [5] J. Andersson, S. Areva, B. Spliethoff, M. Linden, Biomaterials 26 (2005) 6827.
    [6] T. Maschmeyer, F. Rey, G. Sankar, J.M. Thomas, Nature 378 (1995) 159.
    [7] J. Lee, S. Yoon, T. Hyeon, S.M. Oh, K.B. Kim, Chem. Commun. 999 (1999) 2177.
    [8] G.J.d.A.A. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin, Chem. Rev. 102 (2002) 4093.
    [9] N.I. Kovtyukhova, T.E. Mallouk, Chem. Eur. J. 8 (2002) 4354.
    [10] J. Jang, J. Bae, Chem. Commun. 9 (2005) 1200.
    [11] M. Kuang, D. Wang, M. Gao, J. Hartmann, H. Mohwald, Chem. Mater. 17 (2005) 656.
    [12] A. Hagfeldt, M. Graetzel, Chem. Rev. 95 (1995) 49.
    [13] S.B. Lee, D.T. Mitchell, L. Trofin, T.K. Nevanen, H. Soderlund, C.R. Martin, Science 296 (2002) 2198.
    [14] X.J. Li, D.L. Zhu, Q.W. Chen, Y.H. Zhang, Appl. Phys. Lett. 74 (1999) 389.
    [15] S. Abello, F. Medina, D. Titbit, J. Perez-Ramirez, Y. Cesteros, P. Salagre, J.E. Sueiras, Chem. Commun. (2005) 1453.
    [16] Y. Ding, G. Zhang, H. Wu, B. Hai, L. Wang, Y. Qian, Chem. Mater. 13 (2001) 435.
    [17] K.Y. Chan, J. Ding, J.W. Ren, S.A. Cheng, K.Y. Tsang, J. Mater. Chem. 14 (2004) 505.
    [18] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57 (1985) 603.
    [19] 瞿其曙,何友昭,淦五二,李敏,林祥钦,化学通报 64(2001)01006.
    [20] 夏君旨,陶瓷研究与职业教育 2(2004)44.
    [21] 朱小龙,苏雪筠,中国陶瓷 36(2000)36.
    [22] 黎青,陈玲燕,材料导报 9(1995)10。
    [23] Y. Djaoued, P.V. Ashrit, S. Badilescu, R. Bruning, J. Sol-Gel Sci. Technol. 28 (2003) 235.
    [24] F. Jiao, P.G. Bruce, Angew. Chem. Int. Ed. 43 (2004) 5958.
    [25] W.C. Li, A.H. Lu, C. Weidenthaler, F. Schuth, Chem. Mater. 16 (2004) 5676.
    [26] W.S. Chae, S.W. Lee, Y.R. Kim, Chem. Mater. 17 (2005) 3072.
    [27] C.J. Martinez, B. Hockey, C.B. Montgomery, S. Semancik, Langmuir 21 (2005) 7937.
    [28] S.E. Skrabalak, K.S. Suslick, J. Am. Chem. Soc. 127 (2005) 9990.
    [29] O.D. Velev, T.A. Jede, R.F. Lobo, A.M. Lenhoff, Nature 389 (1997) 447.
    [30] B.T. Holland, C.F. Blanford, A. Stein, Science 281 (1998) 538.
    [31] G.S. Zhu, S.L. Qiu, F.F. Gao, D.S. Li, Y.F. Li, R.W. Wang, B. Gao, B.S. Li, Y.H. Guo, R.R. Xu, Z. Liu, O. Terasaki, J. Mater. Chem. 11 (2001) 1687.
    [32] K.H. Rhodes, S.A. 13avis, F. Caruso, B.J. Zhang, S. Mann, Chem. Mater. 12 (2000) 2832.
    [33] G. Wu, L. Zhang, B. Cheng, T. Xie, X. Yuan, J. Am. Chem. Soc. 126 (2004) 5976.
    [34] F. Gu, S.F. Wang, M.K. Lu, G,J. Zhou, D. Xu, D.R. Yuan, J. Phys. Chem. B 108 (2004) 8119.
    [35] 马剑华,温州大学学报 15(2002)79.
    [36] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359 (1992) 710.
    [37] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, Schlenker, J. Am. Chem. Soc. 114 (1992) 10834
    [38] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359 (1992) 710.
    [39] S. Forster, M. Antonietti, Adv. Mater. 10 (1998) 195.
    [40] C.G. Goltner, M. Antonietti, Adv. Mater. 9 (1997) 431.
    [41] Q.S. Huo, R. Leon, P.M. Petroff, G.D. Stucky, Science 268 (1995) 1324.
    [42] Q. Huo, D.I. Margolese, U. Ciesla, D.K. Demuth, P. Feng, T.E. Gier, P. Sieger, A. Firouzi, B.F. Chmelka, F. Schuth, G.D. Stucky, Chem. Mater. 6 (1994) 1176.
    [43] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stuck'y, Science 279 (1998) 548.
    [44] S.A. Davies, S.L. Burkett, N.H. Mendelson, S. Mann, Nature 385 (1997) 420.
    [45] F. Rothen, Pieranski, P. La, Recherche 175 (1986) 313.
    [46] A. Imhof, D.J. Pine, Nature 389 (1997) 948.
    [47] J.E.G.J. Wijnhoven, W.L. Vos, Science 281 (1998) 802.
    [48] Q.B. Meng, C.H. Fu, Y. Einaga, Z.Z. Gu, A. Fujishima, O. Sato, Chem. Mater. 14 (2002) 83.
    [49] M. Fu, J. Zhou, Q. Xiao, B. Li, R. Zong, W. Chen, J. Zhang, Adv. Mater. 18 (2006) 1001 1004.
    [50] J. Wang, B.P. Lin, C.W. Yuan, Acta Chim. Sin. 62 (2004) 1019.
    [51] M. Sadakane, T. Asanuma, J. Kubo, W. Ueda, Chem. Mater. 17 (2005) 3546.
    [52] S. Madhavi, C. Ferraris, T.J. White, J. Solid State Chem. 178 (2005) 2838.
    [53] Z.C. Zhou, X.Y. Bao, X.S. Zhao, Chem. Commun. (2004) 1376.
    [54] J. Lee, J. Kim, T. Hyeon, Adv. Mater. 18 (2006) 2073.
    [55] S.H. Yeo, L.K. Teh, C.C. Wong, J. Porous Mater. 13 (2006) 281.
    [56] A. Stein, Microporous Mesoporous Mater. 44 (2001) 227.
    [57] W. Stober, A. Fink, E. Bohn, J. Colloid Interface Sci. 26 (1968) 62~69.
    [58] Y.H. Guo, Y. Yang, C.W. Hu, C.X. Guo, E.B. Wang, Y.C. Zou, S.H. Feng, J. Mater. Chem. 12 (2002) 3046.
    [59] M.A. Al-Daous, A. Stein, Chem. Mater. 15 (2003) 2638.
    [60] A. Stein, R.C. Schroden, Curr. Opin. Solid State Mat. Sci. 5 (2001) 553.
    [61] S. R, M. FC, Adv. Mater. 12 (2000) 1149.
    [62] 李海青,闫卫东,沈晓莉,李贺新,张.旭,杨.敏,黄英娟,化学通报 67 (2004) w77.
    [63] Q.R. Sheng, Y. Cong, S. Yuan, J.L. Zhang, M. Anpo, Microporous Mesoporous Mater. 95 (2006) 220.
    [64] Q. Liu, A.Q. Wang, X.D. Wang, T. Zhang, Microporous Mesoporous Mater. 92 (2006) 10.
    [65] Y.Z. Li, N.H. Lee, E.G. Lee, J.S. Song, S.J. Kim, Chem. Phys. Lett. 389 (2004) 124.
    [66] G. Soler-Illia, E.L. Crepaldi, D. Grosso, C. Sanchez, Curr. Opin. Colloid Interface Sci. 8 (2003) 109.
    [67] S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, J. Phys. Chem. B 106 (2002) 4640.
    [68] S. Valkama, T. Ruotsalainen, H. Kosonen, J. Ruokolainen, M. Torkkeli, R. Serimaa, G. ten Brinke, O. Ikkala, Macromolecules 36 (2003) 3986.
    [69] 刘玉萍,周慧静,沈铸睿,李丽颖,周杏弟,孙平川,袁忠勇,陈铁红,李宝会,丁大同,科学通报 51(2006) 361.
    [70] H. Kosonen, S. Valkama, A. Nykanen, M. Toivanen, G. ten Brinke, J. Ruokolainen, O. Ikkala, Adv. Mater. 18 (2006) 201.
    [71] 秦振平,郭红霞,化工进展 21 (2002) 323.
    [72] Y. Wei, D.L. Jin, T.Z. Ding, W.H. Shih, X.H. Liu, S.Z.D. Cheng, Q. Fu, Adv. Mater. 10 (1998) 313.
    [73] S.A. Davis, S.L. Burkett, N.H. Mendelson, S. Mann, Nature 385 (1997) 420.
    [74] S.D. Sims, D. Walsh, S. Mann, Adv. Mater. 10 (1998) 151.
    [75] R.M. Wang, C.M. Liu, H.Z. Zhang, C.R Chen, L. Guo, H.B. Xu, S.H. Yang, Appl. Phys. Lett. 85 (2004) 2080.
    [76] W.J. Zhang, Y.Q. He, Q. Qi, Mater. Chem. Phys. 93 (2005) 508.
    [77] P.V. Braun, P. Wiltzius, Nature 402 (1999) 603.
    [78] P.N. Bartlett, P.R. Birkin, M.A. Ghanem, C.S. Toh, J. Mater. Chem. 11 (2001) 849.
    [79] Q. Fang, J.Y. Zhang, Int. J. Inorg. Mater. 3 (2001) 1193.
    [80] P. Sharma, A. Mansingh, K. Sreenivas, Appl. Phys. Lett. 80 (2002) 553.
    [81] M. Baroni, M.V. Conceicao, R.R. Rosa, C. Persson, H. Arwin, E.F. da Silva, L.S. Roman, O. Nakamura, I. Pepe, A.F. da Silva, J. Non-Cryst. Solids 352 (2006) 3734.
    [82] M. Zukalova, J. Rathousky, A. Zukal, Collect. Czech. Chem. Commun. 68 (2003) 2019.
    [83] H.M. Cheng, Y.R. Ma, F.H. Liao, J.M. Ma, L.M. Qi, Acta Phys.-Chim. Sin. 19 (2003) 326.
    [84] B. Gates, Y.N. Xia, Adv. Mater. 13 (2001) 1605.
    [85] Z. Lei, J. Li, Y. Ke, Y. Zhang, H. Wang, G. He, Z. Lei, J. Li, Y. Ke, Y. Zhang, H. Wang, G. He, J. Mater. Chem. 11(2001)1778.
    
    [86] D.Y. Wang, V. Salgueirino-Maceira, L.W. Liz-Marzan, F. Caruso, Adv. Mater. 14 (2002) 908.
    [87] R.M. de Vos, H. Verweij, Science 279 (1998) 1710.
    [88] J.C. Yu, A. Xu, L. Zhang, R. Song, L. Wu, J. Phys. Chem. B 108 (2004) 64.
    [89] J.H. Yang, L.M. Qi, D.B. Zhang, J.M. Ma, H.M. Cheng, Crystal Growth & Design 4 (2004) 1371.
    [90] K. Ioku, G. Kawachi, N. Yamasaki, M. Toda, H. Fujimori, S. Goto, Asbm6: Advanced Biomaterials Vi. Trans Tech Publications Ltd, Zurich-Uetikon, 2005, p. 521.
    [91] M.B. Sorensen, R.G. Hazell, J. Chevallier, N. Pind, T.R. Jensen, Microporous Mesoporous Mater. 84 (2005) 144.
    
    [92] A. Rabenau, Angew. Chem. Int. Ed. 24 (1985) 1026.
    [93] B. Zhang, X. Ye, W. Dai, W. Hou, Y. Xie, Chem. Eur. J. 12 (2006) 2337.
    [94] D.M. Bibby, M.P. Dale, Nature 317 (1985) 157.
    
    [95] W.S. Sheldrick, M. Wachhold, Angew. Chem. Int. Ed. Engl. 36 (1997) 206.
    [96] J.H. Huang, L. Gao, J. Am. Ceram. Soc. 89 (2006) 724.
    
    [97] G.D. Wei, D.B. Yuan, Y.H. Lin, C.W. Nan, Chemical Physics Letters 372 (2003) 590.
    [98] G. Hu, M.J. Cheng, D. Ma, X.H. Bao, Chem. Mater. 15 (2003) 1470.
    [99] F.B. Su, X.S. Zhao, Y. Wang, J.H. Zeng, Z.C. Zhou, J.Y. Lee, J. Phys. Chem. B 109 (2005) 20200.
    
    [100] YD. Xia, R. Mokaya, Chem. Mater. 17 (2005) 1553.
    [101] R.H.W. Au, R.J. Puddephatt, Chem. Vapor Depos. 13 (2007) 20.
    [102] L.R. Qin, J.W. Zhao, L.D. Zhang, X.W. Zou, Chem. Lett. 35 (2006) 380.
    [103] S.Y. Bae, H.W. Seo, J. Park, H. Yang, B. Kim, Chem. Phys. Lett. 376 (2003) 445.
    [104] W.H. Zhang, C.H. Liang, H.J. Sun, Z.Q. Shen, Y.J. Guan, P.L. Ying, C. Li, Adv. Mater. 14 (2002) 1776.
    
    [105] W.H. Suh, K.S. Suslick, J. Am. Chem. Soc. 127 (2005) 12007.
    [106] Y.H. Choaa, J.K. Yanga, B.H. Kimb, Y.K. Jeongc, J.S. Leea, T. Nakayamad, T. Sekinod, K. Niiharad, Journal of Magnetism and Magnetic Materials 266 (2003) 12.
    [107] S.E. Skrabalak, K.S. Suslick, J. Am. Chem. Soc. 128 (2006) 12642.
    [108] A.H. Lu, F. Schuth, Adv. Mater. 18 (2006) 1793.
    [109] J.J. Liu, Y.C. Sui, C.G Duan, W.N. Mei, R.W. Smith, J.R. Hardy, Chemistry of Materials 18 (2006) 3878.
    [110] Z. Dohnalek, G.A. Kimmel, D.E. McCready, J.S. Young, A. Dohnalkova, R.S. Smith, B.D. Kay, J. Phys. Chem. B 106 (2002) 3526.
    
    [111] K.M. Kulinowski, P. Jiang, H. Vaswani, V.L. Colvin, Adv. Mater. 12 (2000) 833.
    [112] G. Luo, Z.J. Liu, L. Li, S.H. Xie, J.L. Kong, D.Y. Zhao, Adv. Mater. 13 (2001) 286.
    [113] C.A. Morris, M.L. Anderson, R.M. Stroud, C.I. Merzbacher, D.R. Rolison, Science 284 (1999) 622.
    [114] 周贵恩,聚合物x射线衍射,中国科学技术大学出版社 (1999).
    [115] 章晓中,电子显微分析,清华大学出版社 (2006).
    [116] 孟庆昌,透射电子显微学,哈尔滨工业大学出版社 (1998).
    [117] L.I, B. F, R MP, J. Phys. Chem. 100 (1996) 4160.
    [118] L.E. Brus, J. Chem. Phys. 80 (1984) 4403.
    [119] P. Gangopadhyay, R. Kesavamoorthy, S. Beta, P. Magudapathy, K.G.M. Nair, B.K. Panigrahi, S.V. Narasimhan, Phys. Rev. Lett. 94 (2005).
    [120] D.V. Ragone, Thermodynamics of Materials (c1995) Wiley.
    [121] S. Chabchoub, M. Dogguy, J. Therm. Anal. 44 (1995) 1473.
    [122] Y.L. Shishkin, Thermochim. Acta 441 (2006) 162.
    [123] A. Badanoiu, M. Georgescu, A. Puri, J. Therm. Anal. Calorim. 74 (2003) 65.
    [124] D.F. Parra, L.P. Mercuri, J.R. Matos, H.F. Brito, R.R. Romano, Thermochim. Acta 386 (2002) 143.
    [125] R.L. McCreery, Raman Spectroscopy for Chemical Analysis, John Wiley & Sons, New York (2000).
    [126] W.F. Murphy, Raman Spectroscopy, North-Holland Publishing Company, New York (1980).
    [127] S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity Academic Press: London (1982).
    [128] J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger, Pure Appl. Chem. 66 (1994) 1739.
    [129] F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by Powders and Porous Solids; Academic Press: San Diego (1999).
    [130] M. Kruk, M. Jaroniec, Chem. Mater. 13 (2001) 3169.
    [131] R. Ryoo, 1.-S. Park, S. Jun, C.W. Lee, M. Kruk, M. Jaroniec, 123 (2001) 1650.
    [132] M. Kruk, M. Jaroniec, Chem. Mater. 12 (2000) 222.
    [133] R. Ryoo, I.-S. Park, S. Jun, C.W. Lee, M. Kruk, M. Jaroniec, J. Am. Chem. Soc. 123 (2001) 1650.
    [134] L. Mercier, T. Pinnavaia, J. Environ. Sci. Technol. 32 (1998) 2749.
    [135] L. Mercier, T.J. Pinnavaia, Chem. Commun. 12 (2000) 188.
    [136] F. Babonneau, L. Leite, S. Fontlupt, J. Mater. Chem. 9 (1999) 175.
    [137] M. Kruk, M. Jaroniec, R. Ryoo, S.H. Joo, Chem. Mater. 12 (2000) 1414.
    [138] M. Park, S. Komarneni, Microporous Mesoporous Mater. 25 (1998) 75.
    [139] X.S. Zhao, G.Q. Lu, X. Hu, Microporous Mesoporous Mater. 41 (2000) 37.
    [140] O. Franke, G. Schulz-Ekloff, J. Rathousky, J. Starek, A. Zukal, Chem. Commun. (1993) 724.
    [141] P.J. Branton, P.G. Hall, K.S.W. Sing, H. Reichert, F. Schuth, K.K. Unger, J. Chem. Soc., Faraday Trans. 90 (1994) 2965.
    [142] P.I. Ravikovitch, S.C.O. Domhnaill, A.V. Neimark, F. Schuth, K.K. Unger, Langmuir 11 (1995) 4765.
    [143] P.C. Ball, R. Evans, Langmuir 5 (1989) 714.
    [144] H. Liu, L. Zhang, N.A. Seaton, J. Colloid Interface Sci. 156 (1993) 285.
    [145] M. Kruk, M. Jaroniec, A. Sayari, Langmuir 13 (1997) 6267.
    [146] C. Yu, Y. Yu, D. Zhao, Chem. Commun. (2000) 575.
    [147] W.W.J. Lukens, P. Yang, G.D. Stucky, Chem. Mater. 13 (2001) 28.
    [148] H.-P. Lin, S.-T. Wong, C.-Y. Mou, C.-Y. Tang, J. Phys. Chem. B 104 (2000) 8967.
    [149] P.J. Kooyman, M.J. Verhoef, E. Prouzet, Stud. Surf. Sci. Catal. 129 (2000) 535.
    [150] M. Kruk, M. Jaroniec, Y. Yang, A. Sayari, J. Phys. Chem. B 104 (2000) 1581.
    [151] Y.X. Zhang, G.H. Li, Y.C. Wu, Y.Y. Luo, L.D. Zhang, J. Phys. Chem. B 109 (2005) 5478.
    [152] S.H. Han, W.G. Hou, J. Xu, Z.M. Li, Colloid Polym. Sci. 282 (2004) 1286.
    [153] S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60 (1938) 309.
    [154] M. Jaroniec, R. Madey, Physical Adsorption on Heterogeneous Solids; Elsevier: Amsterdam (1988).
    [155] M. Kruk, M. Jaroniec, Y. Sakamoto, O. Terasaki, R. Ryoo, C.H. Ko, J. Phys. Chem. B 104 (2000) 292.
    [156] M. Kruk, V. Antochshuk, M. Jaroniec, A. Sayari, J. Phys. Chem. B 103 (1999) 10670.
    [157] 白青龙,张春花,王冀敏,内蒙古民族大学学报(自然科学版) 19(2004)528.
    [158] T.Q. Vu, R. Maddipati, T.Ao Blute, B.J. Nehilla, L. Nusblat, T.A. Desai, Nano Lett. 5 (2005) 603.
    [159] D.T. Haynie, L. Zhang, J.S. Rudra, W.H. Zhao, Y. Zhong, N. Palath, Biomacromolecules 6 (2005) 2895.
    [160] B.Y. Lou, R.H. Wang, D.Q. Yuan, B.L. Wu, F.L. Jiang, M.C. Hong, Inorg. Chem. Commun. 8 (2005) 971.
    [161] J.S. Sub, M. Moskovits, J. Am. Chem. Soc. 108 (1986)4711.
    [162] 葛四平,朱星,北京大学学报(自然科学版) 41(2005)423.
    [163] H. Niu, Q. Yang, K. Tang, Y. Xie, Y. Zhu, J. Nanosci. Nanotechnol. 6 (2006) 162.
    [164] 仝志明,李焱,曹竹安,清华大学学报 39(1999)8.
    [165] D. Walsh, L. Arcelli, T. Ikoma, J. Tanaka, S. Mann, Nat. Mater. 2 (2003) 386.
    [166] R. Kong, Q. Yang, K.B. Tang, Chem. Lett. 35 (2006) 402.
    [167] J.H. Yang, L.M. Qi, D.B. Zhang, J.M. Ma, H.M. Cheng, Cryst. Growth Des. 4 (2004) 1371.
    [168] H. Niu, Q. Yang, K. Tang, Y. Xie, Scripta Mater. 54 (2006) 1791.
    [169] W. Nie, J.T. Zhu, N. Zhao, R.G. Xie, Y.M. Chert, W. Jiang, X.L. Ji, Nanotechnology.17 (2006) 3313.
    [170] H. Niu, Q. Yang, F. Yu, K. Tang, W. Zhou, Chin. J. Chem. Phys. 19 (2006) 438.
    [171] Y.Q. Chang, X.Y. Xu, X.H. Luo, C.P. Chen, D.P. Yu, J. Cryst. Growth 264 (2004) 232.
    [172] H. Ohgi, T. Maeda, E. Hosono, S. Fujihara, H. Imai, Crystal Growth & Design 5 (2005) 1079.
    [173] Z.F. Liu, Z.G. Jin, W. Li, J.J. Qiu, Mater. Lett. 59 (2005) 3620.
    [174] H.M. Yang, X.L. Song, X.C. Zhang, W.Q. Ao, G.Z. Qiu, Mater. Lett. 57 (2003) 3124.
    [175] G. Hu, D. O'Hare, J Am. Chem. Soc. 127 (2005) 17808
    [176] M.H. Cao, Y.H. Wang, C.X. Guo, Y.J. Qi, C.W. Hu, E.B. Wang, J. Nanosci. Nanotechnol. 4 (2004) 824.
    [177] S. Mathur, T. Ruegamer, I. Grobelsek, Chem. Vapor Depos. 13 (2007) 42.
    [178] S.A. Studenikin, N. Golego, M. Cocivera, J. Appl. Phys. 83 (1998) 2104.
    [179] 张立娟,刘洪国,冯绪胜,化学通报 65 (2002) w50.
    [180] S.F. Chen, S.H. Yu, T.X. Wang, J. Jiang, H. Colfen, B. Hu, B. Yu, Advanced Materials 17 (2005) 1461.
    [181] W. Shan, B. Wang, Y.H. Zhang, Y. Tang, Chem. Commun. (2005) 1877.
    [1] A. Imhof, D.J. Pine, Nature 389 (1997) 948.
    [2] J.E.G.J. Wijnhoven, W.L. Vos, Science 281 (1998) 802.
    [3] M.A. Al-Daous, A. Stein, Chem. Mater. 15 (2003) 2638.
    [4] W.L. Mi, J.Y.S. Lin, Y.D. Li, B.Q. Zhang, Microporous Mesoporous Mat. 81 (2005) 185.
    [5] B.T. Holland, C.F. Blanford, A. Stein, Science 281 (1998) 538 540.
    [6] O.D. Velev, E.W. Kaler, Adv. Mater. 12 (2000) 531.
    [7] C.F. Blanford, H. Yan, R.C. Schroden, M. Al-Daous, A. Stein, Adv. Mater. (2001) 401.
    [8] Y. Xia, B. Gates, Y. Yin, Y. Lu, Adv. Mater. 12 (2000) 693.
    [9] A.K. Srivastava, S. Madhavi, T.J. White, R.V. Ramanujan, J. Mater. Chem. 15 (2005) 4424.
    [10] H. Zhang, G.C. Hardy, Y.Z. Khimyak, M.J. Rosseinsky, A.I. Cooper, Chem. Mater. 16 (2004) 4245.
    [11] B. Gates, Y. Yin, Y. Xia, Chem. Mater. 11 (1999) 2827.
    [12] B.J. Melde, A. Stein, Chem. Mater. 14 (2002) 3326.
    [13] O.D. VelevU, A.M. Lenhoff, Curr. Opin. Colloid Interface Sci. 5 (2000) 56.
    [14] J.D..Joannopoulos, P.R. Villeneuve, S. Fan, Nature 386 (1997) 143.
    [15] B. Temelkuran, E. Ozbay, Appl. Phys. Lett. 74 (1999) 486.
    [16] S.B. Lee, D.T. Mitchell, L. Trofin, T.K. Nevanen, H. Soderlund, C.R. Martin, Science 296 (2002) 2198.
    [17] Y. DJAOUED, P.V. ASHRIT, S. BADILESCU, R. BRuN/NG, Journal of Sol-Gel Science and Technology 28 (2003) 235.
    [18] V.S.Y. Lin, K. Motesharei, K.S. Dancil, M.J. Sailor, M.R. Ghadiri, Science 278 (1997) 840.
    [19] D.K. Yi, D.Y. Kim, Nano Lett. 3 (2003) 207.
    [20] D. Walsh, L. Arcelli, T. Ikoma, J. Tanaka, S. Mann, Nat. Mater. 2 (2003) 386.
    [21] H. Zhang, I. Hussain, M. Brust, A.I. Cooper, Adv. Mater. 16 (2004) 27.
    [22] J.F. Zhou, M.F. Zhou, R.A. Caruso, Langmuir 22 (2006) 3332.
    [23] H.F. Zhang, A.I. Cooper, J. Mater. Chem. 15 (2005) 2157.
    [24] H.W. Yan, C.F. Blanford, B.T. Holland, M. Parent, W.H. Smyrl, A. Stein, Adv. Mater. 11 (1999) 1003.
    [25] F. Iskandar, T. Iwaki, T. Toda, K. Okuyama, Nano Lett. 5 (2005) 1525.
    [26] H. Yan, C.F. Blanford, A. Stein, W.H. Smyrl, Chem. Commun. (2000) 1477
    [27] Y.G. Zhang, Z.B. Lei, J.M. Li, S.M. Lu, New J. Chem. 25 (2001) 1118.
    [28] D.B. Kuang, A.W. Xu, J.Y. Zhu, H.Q. Liu, B.S. Rang, New J. Chem. 26 (2002) 819.
    
    [29] J. Blin, A. Leonard, Z. Yuan, L. Gigot, A. Vantomme, A.K. Cheetham, B.-L. Su, Angew. Chem. Int. Ed. 42 (2003) 2872.
    [30] F.B. Su, X.S. Zhao, Y. Wang, J.H. Zeng, Z.C. Zhou, J.Y. Lee, J. Phys. Chem. B 109 (2005) 20200.
    
    [31] Z.C. Zhou, X.Y. Bao, X.S. Zhao, Chem. Commun. (2004) 1376.
    [32] M. Kanungo, M.M. Collinson, Chem. Commun. (2004) 548.
    [33] B. Zhang, S.A. Davis, S. Mann, Chem. Mater. 14 (2002) 1369.
    [34] I.K. Sung, S.B. Yoon, J.S. Yu, D.P. Kim, Chem. Commun. (2002) 1480.
    [35] Z.B. Lei, J.M. Li, Y.X. Ke, Y.G. Zhang, H. Wang, G.F. He, J. Mater. Chem. 11 (2001) 1778.
    [36] S. Madhavi, C. Ferraris, T.J. White, J. Solid State Chem. 178 (2005) 2838.
    [37] R. Seshadri, F.C. Meldrum, Adv. Mater. 12 (2000) 1149.
    [38] Z. Lei, J. Li, Y. Zhang, S. Lu, J, Mater. Chem. 10 (2000) 2629
    
    [39] M. Rajamathi, S. Thimmaiah, P. Morganc, R. Seshadri, J. Mater. Chem. 11 (2001) 2489.
    [40] Z.Q. Qin, M.C. Jennings, R.J. Puddephatt, Inorg. Chem. 42 (2003) 1956.
    [41] H. Niu, Q. Yang, K. Tang, Y. Xie, Y. Zhu, J. Nanosci. Nanotechnol. 6 (2006) 162.
    [42] B. Zhang, X. Ye, W. Dai, W. Hou, Y. Xie, Chem. Eur. J. 12 (2006) 2337.
    [43] J.A. Switzer, H.M. Kothari, P. Poizot, S. Nakanishi, E.W. Bohannan, Nature 425 (2003) 490.
    [44] J. Hwang, T. Timusk, G.D. Gu, Nature 427 (2004) 714.
    [45] J.T. Zhang, J.F. Liu, Q. Peng, X. Wang, Y.D. Li, Chem. Mater. 18 (2006) 867.
    [46] R. Yang, L. Gao, Solid State Commun. 134 (2005) 729.
    
    [47] G.F. Zou, H. Li, D.W. Zhang, K. Xiong, C. Dong, Y.T. Qian, J. Phys. Chem. B 110 (2006) 1632.
    [48] M.H. Cao, C.W. Hu, Y.H. Wang, Y.H. Guo, C.X. Guo, E.B. Wang, Chem. Commun. (2003) 1884.
    [49] C.T. Hsieh, J.M. Chen, H.H. Lin, H.C. Shih, Appl. Phys. Lett. 82 (2003) 3316.
    [50] X. Jiang, T. Herricks, Y. Xia, Nano Lett. 2 (2002) 1333.
    [51] X.F. Wu, G.Q. Shi, S.B. Wang, P.Y. Wu, Eur. J. Inorg. Chem. (2005) 4775.
    [52] D. Chen, G Shen, K. Tang, Y. Qian, J. Cryst. Growth 254 (2003) 225.
    [53] S.Z. Li, H. Zhang, Y.J. Ji, D.R. Yang, Nanotechnology 15 (2004)1428.
    [54] Y.Y. Xu, D.R. Chen, X.L. Jiao, J. Phys. Chem. B 109 (2005) 13561.
    [55] H.W. Hou, Y. Xie, Q. Li, Cryst. Growth Des. 5 (2005) 201.
    [56] H.M. Fan, L.T. Yang, W.S. Hua, X.F. Wu, Z.Y. Wu, S.S. Xie, B.S. Zuo, Nanotechnology 15 (2004) 37.
    
    [57] H. Niu, Q. Yang, K. Tang, Y. Xie, Microporous Mesoporous Mater. (in press).
    [58] Y.L. Wang, X.C. Jiang, Y.N. Xia, J. Am. Chem. Soc. 125 (2003) 16176.
    [59] K. Chatterjee, B. Satpati, P.V. Satyam, D. Chakravorty, J. Appl. Phys. 96 (2004) 683.
    [60] Z.H. Liang, Y.J. Zhu, Chem. Lett. 33 (2004) 1314.
    [61] K. Nakaoka, K. Ogura, J. Electrochem. Soc. 149 (2002) C579.
    
    [62] K. Ogura, K. Nakaoka, M. Nakayama, S. Tanaka, J. Electroanal. Chem. 511 (2001) 122.
    [63] J. Ge, S. Xu, L. Li, Y. Li, Chem. Eur. J. 12 (2006) 3672 - 3677.
    [64] K.K. Nanda, S.N. Sahu, S.N. Behera, Phys. Rev. A 66 (2002) 013208.
    [65] T. Yu, C.H. Sow, A. Gantimahapatruni, F.C. Cheong, Y.W. Zhu, K..C. Chin, X.J. Xu, C.T. Lim, Z.X. Shen, J.T.L. Thong, A.T.S. Wee, Nanotechnology 16 (2005) 1238.
    [66] H. Niu, Q. Yang, K. Tang, Y. Xie, Scripta Mater. 54 (2006) 1791.
    [67] Z. Tang, N.A. Kotov, Adv. Mater. 17 (2005) 951.
    [68] H. Colfen, M. Antonietti, Angew. Chem., Int. Ed. 44 (2005) 5576.
    [69] L. Niemeyer, L. Pietronero, H.J. Wiesmann, Phys. Rev. Lett. 52 (1984) 1033.
    [70] Y. Gimeno, C.A. Hernandez, S. Gonzalez, R.C. Salvarezza, A.J. Arvia, Chem. Mater. 13 (2001) 1857.
    
    [71] X.Q. Wang, H. Itoh, K. Naka, Y. Chujo, Langmuir 19 (2003) 6242.
    [72] S. Gorai, D. Ganguli, S. Chaudhuri, Mater. Lett. 59 (2005) 826.
    [73] X.W. Zheng, L.Y. Zhu, X.J. Wang, A.H. Yan, Y. Xie, J. Cryst. Growth 260 (2004) 255.
    [74] S.Z. Wang, H.W. Xin, J. Phys. Chem. B 104 (2000) 5681.
    
    [75] D.B. Kuang, A. Xu, Y.P. Fang, H.Q. Liu, C. Frommen, D. Fenske., Adv. Mater. 15 (2003) 1747.
    [76] D.B. Wang, D.B. Yu, M.W. Shao, X.M. Liu, W.C. Yu, Y.T. Qian, J. Cryst. Growth 257 (2003) 384.
    
    [77] Y.J. Xiong, Y. Xie, GA. Du, X.B. Tian, Y.T. Qian, J. Solid State Chem. 166 (2002) 336.
    [78] X.L. Gao, GH. Gu, Z.S. Hua, Y. Guo, X. Fu, J.M. Song, Colloids and Surfaces A: Physicochem. Eng. Aspects 254 (2005) 57.
    
    [79] X.J. Zhang, Q.R. Zhao, Y.P. Tian, Y. Xie, Cryst. Growth Des. 4 (2004) 355.
    [80] Q. Yang, F. Wang, K.B. Tang, C.R. Wang, Z.W. Chen, Y.T. Qian, Mater. Chem. Phys. 78 (2003) 495.
    
    [81] Y.C. Zhu, H.G. Zheng, Q. Yang, A.L. Pan, Z.P. Yang, Y.T. Qian, J. Cryst. Growth 260 (2004) 427.
    [82] Q.Y. Lu, F. Gao, S. Komarneni, J. Am. Chem. Soc. 126 (2004) 54.
    [83] M. Chen, Y. Xie, J. Lu, Y.J. Xiong, S.Y. Zhang, Y.Y. Qian, X.M. Liu, J. Mater. Chem. 12 (2002) 748.
    
    [84] D.S. Xu, Y.J. Xu, D.P. Chen, G.L. Guo, L.L. Gui, Y.Q. Tang, Chem. Phy. Lett. 325 (2000) 340.
    [85] J.H. Zhan, X.G. Yang, D.W. Wang, S.D. Li, Y. Xie, Y. Xia, Y.T. Qian, Adv. Mater. 12 (2000) 1348.
    
    [86] F. Gao, Q.Y. Lu, S.H. Xie, D.Y. Zhao, Adv. Mater. 14 (2002) 1537.
    [87] S. Wang, D.G. Choi, S.M. Yang, Adv. Mater. 14 (2002) 1311.
    
    [88] J. Yang, J.H. Zeng, S.H. Yu, L. Yang, G.E. Zhou, Y.T. Qian, Chem. Mater. 12 (2000) 3259.
    [89] Y.R. Ma, L.M. Qi, J.M. Ma, H.M. Cheng, W. Shen, Langmuir 19 (2003) 9079.
    [90] S.H. Yu, J. Yang, Z.H. Han, Y. Zhou, R.Y. Yang, Y.T. Qian, Y.H. Zhang, J. Mater. Chem. 9 (1999) 1283.
    
    [91] H.F. Zhang, A.I. Cooper, Soft Matter 1 (2005) 107.
    [92] S.W. Yeh, T.L. Wu, K.H. Wei, Nanotechnology 16 (2005) 683.
    
    [93] Y.D. Li, H.W. Liao, Y. Ding, Y. Fan, Y. Zhang, Y.T. Qian, Inorg. Chem. 38 (1999) 1382.
    [94] P. Yan, Y. Xie, Y.T. Qian, X.M. Liu, Chem. Commun. 14 (1999) 1293.
    [95] Y.D. Li, H.W. Liao, Y. Ding, Y.T. Qian, L. Yang, G.E. Zhou, Chem. Mater. 10 (1998) 2301.
    [96] S.H. Yu, J. Yang, Z.H. Han, Y. Zhou, R.Y. Yang, Y.T. Qian, Y.H. Zhang, J. Mater. Chem. 9 (1999) 1283.
    
    [97] P.J. Barrie, A. Gyani, M. Motevalli, P. Obrien, Inorg. Chem. 32 (1993) 3862.
    [98] B.W. Low, F.L. Hirshfeld, R.M. Richards, J. Am. Chem. Soc. 81 (1959) 4412.
    [99] P. Di Leo, J. Cuadros, Clay Clay Min. 51 (2003) 403.
    
    [100] C. Qian, F. Kim, L. Ma, F. Tsui, P. Yang, J. Liu, J. Am. Chem. Soc. 126 (2004) 1195.
    [101] S.Z. Wang, H.W. Xin, J. Phys. Chem. B 104 (2000) 5681.
    [102] Y. Gimeno, A.H. Creus, S. Gonzalez, R.C. Salverezza, A.J. Arvia, Chem. Mater. 13 (2001) 1857.
    [1] Y.S. Yuan, M.S. Wong, S.S. Wang, J. Mater. Res. 11 (1996) 8.
    [2] R. Ma, Y. Bando, Chem. Phys. Lett. 370 (2003) 770.
    
    [3] Y. Chen, J. Li, Y. Han, X. Yang, J. Dai, Ceram. Int. 29 (2003) 663.
    
    [4] Y.Q. Zhu, W.K. Hsu, W.Z. Zhou, M. Terrones, H.W. Kroto, D.R.M. Walton, Chem. Phys. Lett. 347 (2001)337.
    
    [5] J. Jiu, K.-i. Kurumada, M. Tanigaki, M. Adachi, S. Yoshikawa, Mater. Lett. 58 (2004) 44.
    [6] J. Lee, T. Jeong, S. Yu, S. Jin, J. Heo, W. Yi, J.M. Kim, J. Vac. Sci. Technol. B 19 (2001) 1366.
    [7] A. Wood, Chem. Week 164 (2002) 29.
    
    [8] D. Gulkova, O. Solcova, M. Zdrazil, Microporous Mesoporous Mater. 76 (2004) 137.
    [9] G. Bilalbegovic, Phys. Rev. B 70 (2004).
    [10] K.J. Klabunde, J. Stark, O. Koper, C. Mohs, D.G Park, S. Decker, Y. Jiang, I. Lagadic, D. Zhang, J. Phys. Chem. 100 (1996) 12142.
    
    [11] P. Yang, C.M. Lieber, Science 273 (1996) 1836.
    
    [12] Y.B. Li, Y. Bando, D. Golberg, Z.W. Liu, Appl. Phys. Lett. 83 (2003) 999.
    
    [13] C. Tang, Y. Bando, T. Sato, J. Phys. Chem. B 106 (2002) 7449.
    
    [14] Q. Yang, J. Sha, L. Wang, Y. Wang, X. Ma, J. Wang, D. Yang, Nanotechnology 15 (2004) 1004.
    
    [15] M. Zhao, X.L. Chen, X.N. Zhang, H. Li, HQ Li, L. Wu, Chem. Phys. Lett. 388 (2004) 7.
    
    [16] J. Roggenbuck, M. Tiemann, J. Am. Chem. Soc. 127 (2005) 1096.
    
    [17] B.M. Choudary, R.S. Mulukutla, K.J. Klabunde, J. Am. Chem. Soc. 125 (2003) 2020.
    
    [18] H. Niu, Q. Yang, K. Tang, Y. Xie, Microporous Mesoporous Mat. (revised).
    
    [19] H. Niu, Q. Yang, K. Tang, Y. Xie, J. Nanopart. Res. (in press).
    
    [20] L. Shi, Y.M. Xu, Q. Li, J. Nanosci. Nanotechnol. 6 (2006) 185.
    
    [21] H. Niu, Q. Yang, K. Tang, Y. Xie, Scripta Mater. 54 (2006) 1791.
    
    [22] H.W. Kim, S.H. Shim, Chem. Phys. Lett. 422 (2006) 165.
    
    [23] S. Kar, S. Chaudhuri, J. Nanosci. Nanotechnol. 6 (2006) 1447.
    
    [24] Y. Hao, G. Meng, C. Ye, X. Zhang, L. Zhang, J. Phys. Chem. B 109 (2005) 11204.
    
    [25] T.J. Zhu, L. Lu, X.B. Zhao, Mater. Sci. Eng. B 129 (2006) 96.
    
    [26] R.M. Morris, K.J. Klabunde, Inorg. Chem. 22 (1983) 682.
    
    [27] J.Y. Ying, C.P. Mehnert, M.S. Wong, Angew. Chem. Int. Ed. 38 (1999) 56.
    
    [28] R.A. Caruso, J.H. Schattka, Adv. Mater. 12 (2000) 1921.
    
    [29] B. Zhang, S.A. Davis, S. Mann, Chem. Mater. 14 (2002) 1369.
    
    [30] R.H. Jin, J.J. Yuan, J. Mater. Chem. 15 (2005) 4513.
    
    [31] B.L. Newalkar, S. Komarneni, U.T. Turaga, H. Katsuki, J. Mater. Chem. 13 (2003) 1710.
    
    [32] D. Walsh, L. Arcelli, T. Ikoma, J. Tanaka, S. Mann, Nat. Mater. 2 (2003) 386.
    
    [33] X.G. Peng, L. Manna, W. Yang, J. Wickham, E.K. Scher, Andreas, A.P. Alivisatos, Nature 404 (2000) 59.
    
    [34] L. Manna, E.C. Scher, A.P. Alivisatos, J. Am. Chem. Soc. 122 (2000) 12700
    [35] N.E. Kelly, S.O. Lee, K.D.M. Harris, J. Am. Chem. Soc. 123 (2001) 12682.
    [36] T. Ahmad, K.V. Ramanujachary, S.E. Lofland, A.K. Ganguli, J. Mater. Chem. 14 (2004) 3406.
    [37] A.M. Cao, J.S. Hu, H.P. Liang, L.J. Wan, Angew. Chem. Int. Ed. 44 (2005) 4391.
    [38] Y.A. Yang, H. Wu, K.R. Williams, Y.C. Cao, Angew. Chem. Int. Ed. 44 (2005) 6712.
    
    [39] A.P. Alivisatos, Science 271 (1996) 933.
    
    [40] L. Zheng, J. Li, J. Phys. Chem. B 109 (2005) 1108.
    
    [41] S.A. Empedocles, R. Neuhauser, M.G Bawendi, Nature 399 (1999) 126.
    
    [42] P. Alivisatos, P.F. Barbara, A.W. Castleman, J. Chang, D.A. Dixon, M.L. Klein, GL. McLendon, J.S. Miller, M.A. Ratner, P.J. Rossky, S.I. Stupp, M.E. Thompson, Adv. Mater. 10 (1998) 1297.
    
    [43] C.G. Sztrum, O. Hod, E. Rabani, J. Phys. Chem. B 109 (2005) 6741.
    [44] M.C. Schlamp, X. Peng, A.P. Alivisatos, J. Appl. Phys. 82 (1997) 5837.
    [45] M. Li, H. Schnablegger, S. Mann, Nature 402 (1999) 393.
    [46] W.U. Huynh, X. Peng, A.P. Alivisatos, Adv. Mater. 11 (1999) 923.
    [47] L. Gou, C.J. Murphy, Nano. Lett. 3 (2003) 231.
    
    [48] G.J.d.A.A. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin, Chem. Rev. 102 (2002) 4093.
    [49] J. Lee, S. Yoon, T. Hyeon, S.M. Oh, K.B. Kim, Chem. Commun. 999 (1999) 2177.
    [50] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, Schlenker, J. Am. Chem. Soc. 114 (1992) 10834
    
    [51] J.Y. Ying, C.P. Mehnert, M.S. Wong, Angew. Chem. Int. Ed. 38 (1999) 56.
    [52] X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Nature 409 (2001) 66.
    [53] F. Jiao, P.G Bruce, Angew. Chem. Int. Ed. 43 (2004) 5958.
    
    [54] L.Z. Wang, Y. Ebina, K. Takada, K. Kurashima, T. Sasaki, Adv. Mater. 16 (2004) 1412.
    [55] M. He, X.H. Lu, X. Feng, L. Yu, Z.H. Yang, Chem. Commun. 19 (2004) 2202.
    [56] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, J. AM. CHEM. SOC. 114 (1992) 10834.
    
    [57] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359 (2002) 710.
    [58] N.A. Dhas, K.S. Suslick, J. Am. Chem. Soc. 127 (2005) 2368.
    [59] G.M. Whitesides, J.P. Mathias, C.T. Seto, Science 254 (1991) 1312.
    [60] Y. Li, X. Li, C. Yang, Y. Li, J. Mater. Chem. 13 (2003) 2641.
    
    [61] Q.W. Chen, D.L. Zhu, C. Zhu, J. Wang, Y.G Zhang, Appl. Phys. Lett. 82 (2003) 1018.
    [62] M. Rajamathi, S. Thimmaiah, P. Morganc, R. Seshadri, J. Mater. Chem. 11 (2001) 2489.
    [63] Y. Zhu, Q. Yang, H. Zheng, W. Yu, Y. Qian, Mater. Chem. Phys. 91 (2005) 293.
    [64] F. Xu, Y. Xie, X. Zhang, C. Wu, W. Xi, J. Hong, X. Tian, New J. Chem. 27 (2003) 1331.
    [65] T.J. Gardner, G.L. Messing, Thermochimica Acta 78 (1984) 17.
    [66] P. Yang, D. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Nature 396 (1998) 152.
    [67] P. Yang, D. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Chem. Mater. 11 (1999) 2813.
    [68] J.R. Zhang, L. Gao, J. Solid State Chem. 177 (2004) 1425.
    [69] D.F. Zhang, L.D. Sun, J.L. Yin, C.H. Yan, Adv. Mater. 15 (2003) 1022.
    [70] Y. Li, N.H. Lee, E.G. Lee, J.S. Song, S.J. Kim, Chem. Phys. Lett. 389 (2004) 124.
    [71] Y. Liu, E. Koep, M. Liu, Chem. Mater. 17 (2005) 3997.
    [72] L.L. Zhao, M. Yosef, M. Steinhart, P. Goring, H. Hofmeister, U. Gosele, S. Schlecht, Angew. Chem. Int. Edit. 45 (2006) 311.
    [73] F. Jiao, A. Harrison, J.C. Jumas, A.V. Chadwick, W. Kockelmann, P.G. Bruce, J. Am. Chem. Soc. 128(2006)5468.
    
    [74] B. Zhang, X. Ye, W. Dai, W. Hou, Y. Xie, Chem. Eur. J. 12 (2006) 2337.
    [75] T. Maschmeyer, F. Rey, G. Sankar, J.M. Thomas, Nature 378 (1995) 159.
    [76] N.I. Kovtyukhova, T.E. Mallouk, Chem. Eur. J. 8 (2002) 4354.
    [77] J. Jang, J. Bae, Chem. Commun. 9 (2005) 1200.
    
    [78] C.J. Martinez, B. Hockey, C.B. Montgomery, S. Semancik, Langmuir 21 (2005) 7937.
    [79] D.G. Shchukin, J.H. Schattka, M. Antonietti, R.A. Caruso, J. Phys. Chem. B 107 (2003) 952.
    [80] A. Hagfeldt, M. Graetzel, Chem. Rev. 95 (1995) 49.
    [81] S.B. Lee, D.T. Mitchell, L. Trofin, T.K. Nevanen, H. Soderlund, C.R. Martin, Science 296 (2002) 2198.
    
    [82] H. Niu, Q. Yang, K. Tang, Y. Xie, Microporous Mesoporous Mater. 96 (2006) 428.
    [83] K.Y. Chan, J. Ding, J.W. Ren, S.A. Cheng, K.Y. Tsang, J. Mater. Chem. 14 (2004) 505.
    [84] J. He, T. Kunitake, T. Watanabe, Chem. Commun. (2005) 795
    [85] Y. Xiong, Y. Xie, J. Yang, R. Zhang, C. Wu, G. Du, J. Mater. Chem. 12 (2002) 3712.
    [86] L.M. Qi, J. Li, J.M. Ma, Adv. Mater. 14 (2002) 300.
    [87] G.D. Wei, C.W. Nan, Y. Deng, Y.H. Lin, Chem. Mater. 15 (2003) 4436.
    [88] Y. Sun, Y. Xia, Adv. Mater. 14 (2002) 833.
    [89] W. Nie, J.T. Zhu, N. Zhao, R.G Xie, Y.M. Chen, W. Jiang, X.L. Ji, Nanotechnology 17 (2006) 3313.
    
    [90] H. Niu, Q. Yang, F. Yu, K. Tang, W. Zhou, Chin. J. Chem. Phys. 19 (2006) 438.
    [91] H. Niu, Q. Yang, K. Tang, Y. Xie, Microporous Mesoporous Mater. 96 (2006) 428.
    [92] P. Ding, B.J. Qu, Mater. Lett. 60 (2006) 1233.
    [93] J. Jiang, Y.Q. Chen, Z.Y. He, Y. Su, R.L. Zhou, L. Chen, D. Cai, J. Nanosci. Nanotechnol. 5 (2005) 825.
    
    [94] G.H. Rosenblatt, M.W. Rowe, G.P.W. Jr., R.T. Williams, Phys. Rev. B 39 (1989) 10309.
    [95] G.P. Summers, T.M. Wilson, B.T. Jeffries, H.T. Tohver, Y. Chen, M.M. Abraham, Phys. Rev. B 27 (1983)1283.
    
    [96] J. Zhang, L. Zhang, Chem. Phys. Lett. 363 (2002) 293.
    [97] A. Firouzi, D. Kumar, L.M. Bull, T. Besier, P. Sieger, Q. Huo, S.A. Walker, J.A. Zasadzinski, C. Glinka, J. Nicol, D. Margolese, GD. Stucky, B.F. Chmelka, Science 267 (1995) 1138.
    [98] M.J. Rosen, Surfactants and Interfacial Phenomena Wiley: New York (1989) 2nd ed.
    [99] R. Viswanatha, D.D. Sarma, Chem. Eur. J. 12 (2006) 180.
    [100] A.-H. Lu, F. Schuth, Adv. Mater. 18 (2006) 1793 1805.
    [101] Y. Cheng, Y.S. Wang, D. Chen, F. Bao, J. Phys. Chem. B 109 (2005) 794.
    [102] H. Colfen, S. Mann, Angew. Chem. Int. Ed. 42 (2003) 2350.
    [103] H. Colfen, M. Antonietti, Angew. Chem., Int. Ed. 44 (2005) 5576.
    [104] Z. Tang, N.A. Kotov, Adv. Mater. 17 (2005) 951.
    [1] T. Maschmeyer, F. Rey, G. Sankar, J.M. Thomas, Nature 378 (1995) 159.
    [2] J. Lee, S. Yoon, T. Hyeon, S.M. Oh, K.B. Kim, Chem. Commun. 999 (1999) 2177.
    [3] V. Proux-Delrouyre, J.M. Laval, C. Bourdillon, J. Am. Chem. Soc. 123 (2001) 9176.
    [4] G.J.d.A.A. Soler-lllia, C. Sanchez, B. Lebeau, J. Patarin, Chem. Rev. 102 (2002) 4093.
    [5] N.I. Kovtyukhova, T.E. Mallouk, Chem. Eur. J. 8 (2002) 4354.
    [6] J. Jang, J. Bae, Chem. Commun. 9 (2005) 1200.
    [7] L.L. Zhao, M. Yosef, M. Steinhart, P. Goring, H. Hofmeister, U. Gosele, S. Schlecht, Angew. Chem. Int. Edit. 45 (2006) 311.
    [8] J. Roggenbuck, M. Tiemann, J. Am. Chem. Soc. 127 (2005) 1096.
    [9] S. Fujihara, T. Maeda, H. Ohgi, E. Hosono, H. Imai, S.H. Kim, Langmuir 20 (2004) 6476.
    [10] K.Y. Chan, J. Ding, J.W. Ren, S.A. Cheng, K.Y. Tsang, J. Mater. Chem. 14 (2004) 505.
    [11] J. Morell, G. Wolter, M. Froba, Chem. Mater. 17 (2005) 804.
    [12] E. Litovsky, M. Shapiro, A. Shavit, J. Am. Ceram. Soc. 79 (1996) 1366.
    [13] Y. Xia, B. Gate, Y. Yin, Y. Lu, Adv. Mater. 12 (2000) 693.
    [14] A. Hagfeldt, M. Graetzel, Chem. Rev. 95 (1995) 49.
    [15] N. Perkas, Y.Q. Wang, Y. Koltypin, A. Gedanken, S. Chandrasekaran, Chem. Commun. (2001) 988.
    
    [16] A. Fujishima, K. Honda, Nature 238 (1972) 37.
    
    [17] J.C. Yu, A. Xu, L. Zhang, R. Song, L. Wu, J. Phys. Chem. B 108 (2004) 64.
    
    [18] S.B. Lee, D.T. Mitchell, L. Trofin, T.K. Nevanen, H. Soderlund, C.R. Martin, Science 296 (2002) 2198.
    
    [19] Y. Li, W.P. Cai, B.Q. Cao, G.T. Duan, F.Q. Sun, C.C. Li, L.C. Jia, Nanotechnology 17 (2006) 238.
    
    [20] Q. Liu, A. Wang, X. Wang, T. Zhang, Chem. Mater. 18 (2006) 5153.
    
    [21] S.E. Skrabalak, K.S. Suslick, J. Am. Chem. Soc. 127 (2005) 9990.
    
    [22] L.W. Yin, Y. Bando, D. Golberg, A. Gloter, M.S. Li, X.L. Yuan, T. Sekiguchi, J. Am. Chem. Soc. 127 (2005) 16354.
    
    [23] Y. Chen, J. Li, Y. Han, X. Yang, J. Dai, Ceram. Int. 29 (2003) 663.
    
    [24] Y.S. Yuan, M.S. Wong, S.S. Wang, J. Mater. Res. 11 (1996) 8.
    
    [25] K.L. Klug, V.P. Dravid, Appl. Phys. Lett. 81 (2002) 1687.
    
    [26] R. Ma, Y. Bando, Chem. Phys. Lett. 370 (2003) 770.
    
    [27] Y.Q. Zhu, W.K. Hsu, W.Z. Zhou, M. Terrones, H.W. Kroto, D.R.M. Walton, Chem. Phys. Lett. 347 (2001) 337.
    
    [28] P. Yang, C.M. Lieber, Science 273 (1996) 1836.
    [29] K.J. Klabunde, J. Stark, O. Koper, C. Mohs, D.G. Park, S. Decker, Y. Jiang, I. Lagadic, D. Zhang, J. Phys. Chem. 100 (1996) 12142.
    
    [30] J. Lee, T. Jeong, S. Yu, S. Jin, J. Heo, W. Yi, J.M. Kim, J. Vac. Sci. Technol. B 19 (2001) 1366.
    [31] G. Zhang, H. Hattori, K. Tanabe, Appl. Catal. 36 (1988) 189.
    [32] L. Huang, D.Q. Li, D.G. Evans, X. Duan, Eur. Phys. J. D 34 (2005) 321.
    [33] L. Huang, D.Q. Li, Y.J. Lin, M. Wei, D.G. Evans, X. Duan, J. Inorg. Biochem. 99 (2005) 986.
    [34] W.C. Li, A.H. Lu, C. Weidenthaler, F. Schuth, Chem. Mater. 16 (2004) 5676.
    [35] H. Niu, Q. Yang, K. Tang, Y. Xie, Scripta Mater. 54 (2006) 1791.
    [36] D. Gulkova, O. Solcova, M. Zdrazil, Microporous Mesoporous Mater. 76 (2004) 137.
    [37] Z. Dohnalek, G.A. Kimmel, D.E. McCready, J.S. Young, A. Dohnalkova, R.S. Smith,.B.D. Kay, J. Phys. Chem. B 106 (2002) 3526.
    
    [38] Y. Ding, G Zhang, H. Wu, B. Hai, L. Wang, Y. Qian, Chem. Mater. 13 (2001) 435.
    [39] M. Kruk, M. Jaroniec, Chem. Mater. 13 (2001) 3169.
    [40] D.R. Rolison, Science 299 (2003) 1698.
    
    [41] E. Alvarado, L.M. Torres-Martinez, A.F. Fuentes, P. Quintana, Polyhedron 19 (2000) 2345.
    [42] H. Itoh, S. Utamapanya, J.V. Stark, K.J. Klabunde, J.R. Schlup, Chem. Mater. 5 (1993) 71.
    [43] J.L. Grant, R. Cooper, P. Zeglinski, J. Chem. Phys. 90 (1989) 807.
    [44] G.P. Summers, T.M. Wilson, B.T. Jeffries, H.T. Tohver, Y. Chen, M.M. Abraham, Phys. Rev. B 27 (1983) 1283.
    
    [45] J. Zhang, L. Zhang, Chem. Phys. Lett. 363 (2002) 293.
    
    [46] Y. Hao, G. Meng, C. Ye, X. Zhang, L. Zhang, J. Phys. Chem. B 109 (2005) 11204.
    [47] G.H. Rosenblatt, M.W. Rowe, G.P.W. Jr., R.T. Williams, Phys. Rev. B 39 (1989) 10309.
    [48] F.L. Deepak, P. Saldanha, S.R.C. Vivekchand, A. Govindaraj, Chem. Phys. Lett. 417 (2006) 535.
    [49] K.P. Kalyanikutty, F.L. Deepak, C. Edem, A. Govindaraj, C.N.R. Rao, Mater. Res. Bull. 40 (2005) 831.
    
    [50] H.W. Kim, S.H. Shim, Chem. Phys. Lett. 422 (2006) 165.
    [51] T.M. Oza, B.V. Mirza, Indian J. Chem. 3 (1965) 280.
    
    [52] W.C. Carter, A.R. Roosen, J.W. Cahn, J.E. Taylor, Acta Metall. Mater. 43 (1995) 4309.
    [53] R.L. Penn, J.F. Banfield, Geochim. Cosmochim. Acta 63 (1999) 1549.
    [54] J.F. Banfield, S.A. Welch, H.Z. Zhang, T.T. Ebert, R.L. Penn, Science 289 (2000) 751.
    [55] R.L. Penn, J.F. Banfield, Science 281 (1998) 969.
    [56] J.W. Morse, W.H. Casey, Am. J. Sci. 288 (1988) 537.
    [57] H.L. Zhu, R.S. Averback, Mater. Manuf. Process. 11 (1996) 905.
    [58] J. Zhan, H.P. Lin, C.Y. Mou, Adv. Mater. 15 (2003) 621.
    [59] H. Yan, J. Johnson, M. Law, R. He, K. Knutsen, J.R. McKinney, J. Pham, R. Saykally, P. Yang, Adv. Mater. 15 (2003) 1907.
    
    [60] D. Chen, G Shen, K. Tang, Z. Liang, H. Zheng, J. Phys. Chem. B 108 (2004) 11280.
    [61] A. Taubert, Angew. Chem. Int. Ed. 43 (2004) 5380.
    
    [62] F. Li, Y. Ding, P. Gao, X. Xin, Z.L. Wang, Angew. Chem. Int. Ed. 43 (2004) 5238.
    [63] M.S. Mo, J.C. Yu, L.Z. Zhang, S.K.A. Li, Adv. Mater. 17 (2005) 756.
    [64] C.K. Xu, K. Rho, J. Chun, D.E. Kim, Appl. Phys. Lett. 87 (2005).
    [65] J.L. Yang, S.J. An, W.I. Park, G.C. Yi, W. Choi, Adv. Mater. 16 (2004) 1661.
    [66] M. Yin, Y. Gu, I.L. Kuskovsky, T. Andelman, Y. Zhu, G.F. Neumark, S. O'Brien, J. Am. Chem. Soc. 126 (2004) 6206.
    
    [67] J. Tang, X. Cui, Y. Liu, X. Yang, J. Phys. Chem. B 109 (2005) 22244.
    [68] K.-S. Cho, D.V. Talapin, W. Gaschler, C.B. Murray, J. Am. Chem. Soc. 127 (2005) 7140
    [69] J.-S. Jan, S. Lee, C.S. Carr, D.F. Shantz, Chem. Mater. 17 (2005) 4310.
    [70] S.H. Chen, D.L. Carroll, J. Phys. Chem. B 108 (2004) 5500.
    [71] X.J. Zhang, Q.R. Zhao, Y.P. Tian, Y. Xie, Cryst. Growth Des. 4 (2004) 355.
    [72] Y. Hu, J.F. Chen, X. Xue, T.W. Li, Y. Xie, Inorg. Chem. 44 (2005) 7280.
    [73] D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch, Solid State Commun. 105 (1998) 399.
    
    [74] M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Adv. Mater. 13 (2001) 113.
    [75] S. Fujihara, H. Naito, T. Kimura, Thin Solid Films 389 (2001) 227.
    [76] F.A. Sigoli, M.R. Davolos, J. M. Jafelicci, J. Alloys Compd. 262-263 (1997) 292.
    [77] R. Lindsay, E. Michelangeli, B.G. Daniels, T.V. Ashworth, A.J. Limb, G. Thornton, G.S. A., A. Baraldi, R. Larciprete, S. Lizzit, J. Am. Chem. Soc. 124 (2002) 7117.
    [78] Y. Nakanishi, A. Miyake, H. Kominami, T. Aoki, Y. Hatanaka, G. Shimaoka, Appl. Surf. Sci. 142 (1999)233.
    [79] D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto, Appl. Phys. Lett. 70 (1997)2230.
    [80] H. Rensmo, K. Keis, H. Lindstrom, S. Sodergren, A. Solbrand, A. Hagfeldt, S.E. Lindquist, L.N. Wang, M. Muhammed, J. Phys. Chem. B 101 (1997) 2598.
    [81] J.A. Rodriguez, T. Jirsak, J. Hrbek, J. Phys. Chem. B 103 (1999) 1966.
    [82] W.I. Park, G.-C. Yi, M. Kim, S.J. Pennycook, Adv. Mater. 14 (2002) 1841.
    [83] H.Q. Yan, J. Johnson, M. Law, Adv. Mater. 15 (2003) 1907—1911.
    [84] H.Q. Yah, R.R. He, J. Johnson, M. Law, R.J. Saykally, P.D. Yang, J. Am. Chem. Soc. 125 (2003) 4728.
    [85] Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, J. Am. Chem. Soc. 124 (2002) 12954.
    [86] Z.W. Pan, Z.R. Dai, Z. L.Wang, Science 291 (2001) 1947.
    [87] Z.L. Wang, Adv. Mater. 15 (2003) 432.
    [88] Z. Li, Y. Xiong, Y. Xie, Inorg. Chem. 42 (2003) 8105.
    [89] Z.Q. Li, Y. Ding, Y.J. Xiong, Q. Yang, Y. Xie, Chem. Eur. J. 10 (2004) 5823.
    [90] H. Yah, R. He, J. Pham, P. Yang, Adv. Mater. 15 (2003) 402.
    [91] J.B. Baxter, F. Wu, E.S. Aydil, Appl. Phys. Lett. 83 (2003) 3797.
    [92] H. Huang, S. Yang, J. Gong, H. Liu, Junhong Duan, X. Zhao, R. Zhang, Y. Liu, Y. Liu, J. Phys. Chem. B 109 (2005) 20746.
    [93] 候宏卫,中国科学技术大学博士学位论文 (2005).
    [94] T.C. Damen, S.P.S. Porto, B. Tell, Phys. Rev. 142 (1966) 570.
    [95] B.B. Li, D.P. Yu, S.L. Zhang, Phys. ReV. B 59 (1999) 1645.
    [96] Z. Li, Y. Xie, Y. Xiong, R. Zhang, New J. Chem. 27 (2003) 1518.
    [97] Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng, Appl. Phys. Lett. 78 (2001) 407.
    [98] K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79 (1996) 7983.
    [1] M. Li, H. Schnablegger, S. Mann, Nature 402 (1999) 393.
    [2] X.G. Peng, L. Manna, W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Nature 404 (2000) 59.
    [3] J.D. Hartgerink, E. Beniash, S.I. Stupp, Science (2001) 1684.
    [4] J. Yang, L. Qi, D. Zhang, J. Ma, H. Cheng, Cryst. Growth Des. 4 (2004) 1371.
    [5] H.G. Zhang, Q. Zhu, Y. Wang, Chem. Mater. 17 (2005) 5824.
    [6] Y.Q. Zhu, W.K. Hsu, W.Z. Zhou, M. Terrones, H.W. Kroto, D.R.M. Walton, Chem. Phys. Lett. 347 (2001) 337.
    [7] G. Cook, P.L. Timms, C. Goltner-Spickermann, Angew. Chem. Int. Ed. 42 (2003) 557.
    [8] S. Mann, Angew. Chem. Int. Ed. 39 (2000) 3392.
    [9] D. Yang, L. Qi, J. Ma, Chem. Commun. (2003) 1180.
    [10] Z. Wang, X. Qian, J. Yin, Z. Zhu, Langmuir 20 (2004) 3441.
    [11] H. Niu, Q. Yang, K. Tang, Y. Xie, Y. Zhu, J. Nanosci. Nanotechnot. 6 (2006) 162.
    [12] J. Zhang, L.D. Sun, J.L. Yin, H.L. Su, C.S. Liao, C.H. Yan, Chem. Mater. 14 (2002) 4172.
    [13] L.Y. Zhu, Y. Xie, X.W. Zheng, X. Liu, G.E. Zhou, J. Cryst. Growth 260 (2004) 494 499.
    [14] Y.S. Yuan, M.S. Wong, S.S. Wang, J. Mater. Res. 11 (1996) 8.
    [15] R. Ma, Y. Bando, Chem. Phys. Lett. 370 (2003) 770.
    [16] Y. Chen, J. Li, Y. Han, X. Yang, J. Dai, Ceram. Int. 29 (2003) 663.
    [17] J.L. Grant, R. Cooper, P. Zeglinski, J. Chem. Phys. 90 (1989) 807.
    
    [18] L. Yan, J. Zhuang, X. Sun, Z. Deng, Y. Li, Mater. Chem. Phys. 76 (2002) 119.
    
    [19] C. Tang, Y. Bando, T. Sato, J. Phys. Chem. B 106 (2002) 7449.
    
    [20] Y.J. Chen, J.B. Li, Y.S. Han, X.Z. Yang, J.H. Dai, J. Cryst. Growth 245 (2002) 163.
    
    [21] J.C. Yu, A. Xu, L. Zhang, R. Song, L. Wu, J. Phys. Chem. B 108 (2004) 64.
    
    [22] L. Shi, Y.M. Xu, Q. Li, J. Nanosci. Nanotechnol. 6 (2006) 185.
    
    [23] H. Niu, Q. Yang, K. Tang, Y. Xie, Scripta Mater, (in press).
    
    [24] J. Zhan, Y. Bando, J. Hu, D. Golberg, Inorg. Chem. 43 (2004) 2462.
    
    [25] J. Zhang, L. Zhang, Chem. Phys. Lett. 363 (2002) 293.
    
    [26] Y. Hao, G. Meng, C. Ye, X. Zhang, L. Zhang, J. Phys. Chem. B 109 (2005) 11204.
    
    [27] X.R. Fu, Z.T. Song, GM. Wu, J.P. Huang, X.Z. Duo, C.L. Lin, J. Sol-Gel Sci. Technol. 16 (1999) 277.
    
    [28] H. Thoms, M. Epple, H. Viebrock, A. Reller, J. Mater. Chem. 5 (1995) 589.
    [29] E.F.d. Oliveira, Y. Hase, Vib. Spectrosc. 25 (2001) 53.
    
    [30] H.S. Jung, J.K. Lee, J.Y. Kim, K.S. Hong, J. Colloid Interface Sci. 259 (2003) 127.
    [31] S.H. Rhee, Y. Yang, H.S. Choi, J.M. Myoung, K. Kim, Thin Solid Films 396 (2001) 23.
    [32] H. Thoms, M. Epple, A. Reller, Solid State Ionics 101-103 (1997) 79.
    [33] H. Thoms, M. Epple, A. Reller, Thermochim. Acta 302 (1997) 195.
    [34] M.S. Mel'gunov, E.A. Mel'gunova, V.I. Zaikovskii, V.B. Fenelonov, A.F. Bedilo, K.J. Klabunde, Langmuir 19 (2003) 10426.
    
    [35] H. Niu, Q. Yang, F. Yu, K. Tang, Y. Xie, W. Zhou, Chin. J. Chem. Phys. 19 (2006) 438.
    [36] A. Plati, A dissertation submitted for the degree of Master of Philosophy at the University of Cambridge (2003).
    
    [37] C.Y. Kuo, S.Y. Lu, T.Y. Wei, J. Cryst. Growth 285 (2005) 400.
    [38] Y.H. Ye, F. LeBlanc, A. Hache, V.V. Truong, Appl. Phys. Lett. 78 (2001) 52.
    [39] J. Holms, K.P. Johnston, R.C. Doty, B.A. Korgel, Science 287 (2000) 1471.
    [40] M. Nirmal, B.O. Dabbousi, M.G. Bawendi, J.J. Macklin, T. K., T.D. Harris, L.E. Brus, Nature 383 (1996) 802.
    
    [41] P. Santiago, J.A. Ascencio, D. Mendoza, Appl. Phys. A 78 (2004) 513.
    [42] I.A. Ovidko, Science 295 (2002) 2386.
    
    [43] D.B. Kuang, A. Xu, Y.P. Fang, H.Q. Liu, C. Frommen, D. Fenske., Adv. Mater. 15 (2003) 1747.
    [44] C. Wu, Y. Xie, D. Wang, J. Yang, T. Li, J. Phys. Chem. B 107 (2003) 13583.
    [45] S. Abello, F. Medina, D. Tichit, J. Perez-Ramirez, Y. Cesteros, P. Salagre, J.E. Sueiras, Chem. Commun. (2005) 1453.
    
    [46] M.S. Mo, J.C. Yu, L.Z. Zhang, S.K.A. Li, Adv. Mater. 17 (2005) 756.
    [47] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.J. Choi, Adv. Funct. Mater. 12 (2002) 323.
    
    [48] H. Yan, R. He, J. Pham, P. Yang, Adv. Mater. 15 (2003) 402.
    [49] L. Dong, J. Jiao, D.W. Tuggle, J.M. Petty, S.A. Elliff, M. Coulter, Appl. Phys. Lett. 82 (2003) 1096.
    [50] Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, M.A. Rodriguez, H. Konishi, H. Xu, Nat. Mater. 2 (2003) 821.
    
    [51] W.I. Park, G.-C. Yi, M. Kim, S.J. Pennycook, Adv. Mater. 14 (2002) 1841.
    [52] H.Q. Yan, J. Johnson, M. Law, Adv. Mater. 15 (2003) 1907-1911.
    [53] H.Q. Yan, R.R. He, J. Johnson, M. Law, R.J. Saykally, P.D. Yang, J. Am. Chem. Soc. 125 (2003) 4728.
    [54] Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, J. Am. Chem. Soc. 124 (2002) 12954.
    
    [55] Z.W. Pan, Z.R. Dai, Z. L.Wang, Science 291 (2001) 1947.
    [56] Z.L. Wang, Adv. Mater. 15 (2003) 432.
    [57] Z. Li, Y. Xiong, Y. Xie, Inorg. Chem. 42 (2003) 8105.
    [58] Z.Q. Li, Y. Ding, Y.J. Xiong, Q. Yang, Y. Xie, Chem. Eur. J. 10 (2004) 5823.
    [59] Y. Yan, P. Liu, J.G. Wen, B. To, M.M. Al-Jassim, J. Phys. Chem. B 107 (2003) 9701.
    [60] J.-H. Park, H.-J. Choi, Y.-J. Choi, S.-H. Sohn, J.-G Park, J. Mater. Chem. 14 (2004) 35.
    [61] X. Zhang, S. Xie, Z. Jiang, X. Zhang, Z. Tian, Z. Xie, R. Huang, L. Zheng, J. Phys. Chem. B 107 (2003) 10114.
    
    [62] Y. Zhang, H. Jia, X. Luo, X. Chen, D. Yu, R. Wang, J. Phys. Chem. B 107 (2003) 8289.
    [63] J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren, Nano. Lett. 3 (2003) 235.
    [64] T.C. Damen, S.P.S. Porto, B. Tell, Phys. Rev. 142 (1966) 570.
    [65] B.B. Li, D.P. Yu, S.L. Zhang, Phys. ReV. B 59 (1999) 1645.
    [66] K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79(1996)7983.
    [67] X. Li, J. Liu, Y. Li, Mater. Chem. Phys. 80 (2003) 222.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.